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Abstract

A new algorithmic approach to segmentation of highly porous three dimen-

sional image data gained by focused ion beam tomography is described which

extends the key-principle of local threshold backpropagation described in [1].

The technique of focused ion beam tomography has shown to be capable
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of imaging the microstructure of functional materials. In order to perform

a quantitative analysis on the corresponding microstructure a segmentation

task needs to be performed. However, algorithmic segmentation of images

obtained with focused ion beam tomography is a challenging problem for

highly porous materials if filling the pore phase, e.g. with epoxy resin, is dif-

ficult. The grey intensities of individual voxels are not sufficient to determine

the phase represented by them and usual thresholding methods are not appli-

cable. We thus propose a new approach to segmentation, that pays respect

to the specifics of the imaging process of focused ion beam tomography. As

an application of our approach, the segmentation of three dimensional im-

ages for a cathode material used in polymer electrolyte membrane fuel cells

is discussed. We show that our approach preserves significantly more of the

original nanostructure than an thresholding approach.

Keywords: 3D Imaging, FIB-SEM Tomography, Porous Media,
Segmentation
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1. Introduction

In the next decades humanity has to face the problem of global climate

change which is linked to our societies present and future energy consump-

tion. Replacing fossil fuels and internal combustion engines by hydrogen and

fuel cells is regarded as a key solution for future sustainable energy supply

[2]. In particular, polymer electrolyte membrane fuel cells (PEMFC) are im-

portant energy converters delivering electric energy from chemical energy. In

the PEMFC reaction, hydrogen and oxygen are converted to water. For a

controlled performance of this reaction a high level of technological know-

how especially in the membrane electrode assembly (MEA) is mandatory

[3]. This approximately 40 µm thick structure consists of an anode catalyst

layer, a polymer electrolyte membrane (PEM) and a cathode catalyst layer

(CCL). In the anode catalyst layer hydrogen molecules are catalytically split

into electrons and protons. The PEM conducts protons to the anode but

does not conduct electrons. The electrons can be conducted to the CCL via

an electric circuit thereby providing electric energy. Finally, in the CCL, the

protons, electrons and oxygen have to be transported to platinum catalyst

sites where the crucial oxygen reduction reaction takes place.

There is no doubt that the 3D CCL morphology has a large impact on
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the performance of PEMFCs [4]. To better understand the influence of CCL

morphology on rate limiting processes, several approaches have been devel-

oped to create artificial CCL morphologies [5]. However, since the CCL mor-

phology is considerably influencing the transport processes within PEMFC,

methods are required for the correct reconstruction of real CCL morphologies

in 3D. The method which is currently best suited for this purpose is Focused

Ion Beam (FIB) / Scanning Electron Microscope (SEM) tomography (shortly

called FIB-SEM tomography in this paper). Note that FIB-SEM tomography

is an advanced imaging technique which has successfully been used in mate-

rials science, e.g. for ceramics [6, 7], batteries [8, 9] and PEMFC cathodes

[10, 11]. But algorithmic segmentation of FIB-SEM images is a challeng-

ing problem for highly porous materials especially if it is difficult to fill the

pore phase, e.g. with epoxy resin. Due to the principle of serial sectioning,

images of porous media contain a specific type of shine-through artefacts.

They appear when the xy sectioning plane intersects with pore space. The

gray-values then represent the solid material behind the pore instead of the

(empty) pore space itself. As a consequence image characteristics are similar

to those of other parts of the image that do not cover pore space. There-

fore the gray-value itself is not a sufficient, and sometimes even misleading,
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criteria for classification of individual voxels. The quality of the obtained

segmentation, however, has a direct impact on how meaningful a later anal-

ysis of the obtained microstructure will be. In [12], e.g., the authors observe

significant difference in porosity for different segmentation approaches. We

believe that this due to the fact that the studied algorithms are general pur-

pose methods and do not consider the specific nature of FIB-SEM images as

mentioned above.

We thus propose a different approach to segmentation of FIB-SEM im-

ages, which is an extension of an algorithm recently introduced in [1] for the

segmentation of FIB-SEM images of another type of porous material.

In the present paper, our algorithm is applied to FIB-SEM images for

CCL material, where we detect the first and last occurrences of individual

substructures by analysing the variation of grey intensities in z-direction.

This idea is inspired of the way images are obtained by FIB-SEM tomog-

raphy and seeks to eliminate shine-through artefacts as mentioned above.

The algorithm is validated by comparing its segmentation results with those

obtained by thresholding methods and by a manual segmentation approach

[11], which is both subjective and time consuming. Besides that we apply

our algorithm to an additional data sample, which serves as a validation for
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its flexibility and its potential to work for different scenarios.

The paper is organized as follows. In Section 2, we describe the material

and image data that is used as an example of application of our approach.

In the following Section 3 we introduce our method of automatic image seg-

mentation. In Section 4, we discuss the obtained segmentation results and

compare them to those which have been received by global thresholding and

manual segmentation, respectively. Finally, in Section 5 we provide a con-

clusion and give an outlook to possible future research.

2. Preliminaries

2.1. Description of Material and Imaging Technique

In this study, a pristine commercial Gore PRIMEA A510.1 M710.18

C510.4 PEMFC membrane electrode assembly was used to carry out all to-

mographic experiments, see Fig. ??a. For this material, water modeling

and imaging techniques complementary to FIB-SEM tomography have been

studied e.g. in [8, 13] but without establishing any automatic image segmen-

tation. The analysis was performed by a Zeiss ’Neon 40EsB’ with a x- and

y resolution of 2.5 nm and a cutting distance of 13.6 nm in z-direction.

The loading which is mass of Pt per surface area was 0.1 mg/cm2 at the
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anode and 0.4 mg/cm2 at the cathode. The CCL has a thickness of about

11 µm while the thickness of the anode catalyst layer is about 3.5 µm.

For FIB-SEM tomography a FIB for cutting and an SEM for the imag-

ing are positioned in an angle of 50◦–54◦. With the FIB, gallium ions are

accelerated towards the surface of the investigated sample provoking a very

local sputtering process with spot sizes of 10 nm and less. The FIB thereby

enables to remove slices from the sample, see Fig. ??b. Successive slicing by

the FIB and image acquisition by the SEM produces a stack of 2D images.

It is important to note, that for porous media each 2D slice does not only

show structures located in that particular plane. Instead structures that are

located behind a pore are visible much earlier.

2.2. Preprocessing

Due to the different angles of the FIB and the SEM the obtained images

contain a significant drift in y-direction that increases in z-direction. Cor-

recting this drift is essential, as the algorithm described below strongly relies

on correct alignment.

To accomplish this, we used a modified version of the least-square differ-

ence algorithm described in [14]. The algorithm determines the vector that

leads to the smallest difference between two images when they are shifted
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in the direction of the vector. We modify this approach by only accounting

voxels below a certain threshold (τshift = 75). This guarantees that the align-

ment is computed based on the background structures we try to detect later

on. Additionally, we use linear interpolation to estimate grey intensities for

values of non-integral coordinates. The drift is then determined by comput-

ing the difference between slice z and its successor z + 1 for all shift vectors

(sx, sy) ∈ {−10,−9.5,−9, . . . , 9.5, 10}2 where we determine the shift vector

that leads to the minimal difference. Finally, we apply a 2D mean value filter

with radius r = 1.0 to the image.

2.3. Basic Notation

We denote by I the preprocessed image obtained by FIB-SEM tomogra-

phy as described above, where I is a function that maps each voxel location

(x, y, z) to its corresponding grey intensity I(x, y, z), also denoted by Ixy(z)

in the following.

3. Image Segmentation

In this section we present a new approach to segmentation of FIB-SEM

images. This approach extends the key-principle of local threshold backprop-

agation described in [1]. There, we detected sudden drops in grey intensity
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for given x and y coordinates and stepwise increasing z-values. We then used

the last grey intensity before the drop to estimate a reasonable threshold that

was used to detect the beginning of the currently visible structure. This idea,

however, was based on the assumption that grey intensities remain the same

within each substructure (while different substructures may have different

grey values). However, this assumption does not hold for all datasets in par-

ticular not for the currently analyzed one: For many substructures we find

a huge variation of the grey intensity. This is caused by the geometry of

the structure and by various properties of its material. Both of which have

an impact on the grey intensity. For example rough surfaces lead to higher

grey intensities than surfaces with similar properties that are smoothed by

the sputtering effect of the FIB. Additionally, there is a shine-through ef-

fect for thinner structures, which appear semi-transparent, i.e. they have a

lower grey intensity in the image. The sum of these influences results in a

dataset where neither global nor common local thresholding schemes lead to

sufficiently good results. Even more advanced techniques like the approach

presented in [1] are not able to cover the complexity of the given data. There-

fore we developed a new approach the basic idea of which is given below. For

a general overview of the presented approach including the tasks concerning
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pre- and postprocessing, see the flow chart in Fig. ??.

3.1. Segmentation Principle

For any given pair (x, y) we consider the 1D restriction Ixy of the im-

age I. Within this image we detect both phase shifts, i.e. the first and the

last occurrence of a substructure, by looking for local maxima and minima,

respectively. This is based on the following heuristic principle: When a sub-

structure is visible but still located in the background its grey intensity at

this point is still relatively low. With each layer the FIB cuts off more elec-

trons emitted from the background structures in the pores can be detected by

the SEM detector. Thus the corresponding background intensities increase.

This continues until the substructure reaches the active slice. Therefore, we

assume the grey intensity to reach a local maximum at the substructure’s

first occurrence, see Fig. ??. For the last occurrence of a substructure an

analogous assumption is made. When a structure is being cut off by the FIB

the pore space behind becomes visible. Due to the greater distance of the

following substructure that is separated by the just recently revealed pore

space, the corresponding grey intensity is supposed to be significantly lower.

Thus, we assume to reach a local minimum after the last occurrence of a

substructure.
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This principle is based on the way images are obtained by FIB-SEM

tomography, as described in Section 2.1. We do not rely on common criteria

like the absolute (or relative) grey intensity or the local gradient, but only

consider extrema in one, namely z-direction.

3.2. Detecting Local Extrema

We attempt to detect local minima and maxima within a 1D image Ixy,

which we assume to be the last and first occurrence of a substructure, re-

spectively. Due to the above described variations in grey intensity, we need

to distinguish local extrema that represent the first or last occurrence of sub-

structures from those that are based on variations on grey intensities within

substructures. Therefore we introduce the following definitions for local ex-

trema. We define that Ixy(z) represents a local minimum if both of the

following two criteria are met: 1) Ixy(z) < Ixy(z + ∆) for each ∆ ∈ {−1, 1},

and 2) Ixy(z
′) − Ixy(z) > τmin, where τmin is a prechosen threshold and z′

denotes the location of the last weak maximum defined by

z′ = max{z′ < z : Ixy(z
′) > max{Ixy(z

′ − 1), Ixy(z
′ + 1)}} .

Furthermore, we say that Ixy(z) represents a local maximum if both of the

following two criteria are met: 1) Ixy(z) > Ixy(z+∆) for each ∆ ∈ {−1, 1, 2},
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and 2) Ixy(z) − Ixy(z
∗) > τmax, where τmax again is a prechosen threshold,

but z∗ now denotes the location of the last minimum as defined above.

Note that these definitions are not fully symmetric, but there are two

major differences. First, the grey intensity at voxel z is not only tested

against the intensity at z ± 1 but also against z + 2. This is to compensate

for the fact that the speed the grey intensity increases is significantly slower

than the decrease we try to detect. Therefore, smaller measurement errors,

e.g. induced by false alignment, can lead to premature local maxima. Testing

it against one additional grey intensity prevents the detection of some of these

artificial local maxima. The difference in the characterization of local minima

and local maxima is also the reason why we use two different thresholds (τmin

and τmax) to check for significance. When detecting local minima it is useful

to use a higher value for τmin to prevent within-structural variations from

being classified as last occurrences. Local maxima, on the other hand, are

ignored when they appear within a structure and therefore lower values for

τmax can be used.

Second, the grey intensity of a local minimum is not compared to the last

local maximum but instead to the last weak local maximum. As the grey

intensity of a substructure may not be the same for all slices its grey intensity
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at the first occurrence is not a reasonable point of reference. The last weak

maximum is closer to the currently tested local minimum and therefore more

likely to provide a reasonable grey intensity.

3.3. Description of the Algorithm

We now employ the concepts stated above to give a complete description

of the algorithm. For every pair (x, y) perform the following steps:

1. Denote the first local minimum by b0
xy.

2. Set k to 1.

3. Compute ak
xy = min{z > bk−1

xy : z local maximum}.

4. Compute bk
xy = min{z > ak

xy : z local minimum}. If no local minima are

left set bk
xy to zmax + 1 where zmax denotes the highest possible z value.

5. If there are local maxima left, increase k by 1 and continue with step 3.

Every interval [ak
xy, b

k
xy − 1] now represents the estimated life span of a

substructure and the resulting binary image is given by

Bextrema(x, y, z) =


255 , if z ∈

⋃kmax
xy

k=1 [ak
xy, b

k
xy − 1],

0 , otherwise.
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3.4. Postprocessing

Due to the complex nature of FIB-SEM images the approach described

above is not able to classify every voxel correctly. However, most of the

occurring problems can be removed by appropriate postprocessing. First,

we set B∗
extrema(x, y, z) = 0 if I(x, y, z) < τ , where τ is a manually chosen

threshold. Then we remove small isolated clusters of foreground voxels by

applying two 2D rank order filters. More precisely, a foreground voxel is

assigned to the background if the ratio of voxels classified as foreground

within a sphere of radius r is smaller than α (here: r1 = 2, α1 = 0.5 and

r2 = 10, α2 = 0.15). Finally, we perform a dilation by a 2D disk with radius

rdil = 4.5, which is limited to voxels with a grey intensity in the original

image I above the previously chosen threshold τ . This dilation connects

otherwise separated voxel to a large set of connected regions and provides

the final outcome of our approach. Fig. ?? provides an illustration for all

postprocessing steps.

In the first two steps, the parameter τ and the corresponding radii r1/2

and quantiles α1/2 for the rank order filters are chosen to provide a good

optical fit. The parameter rdil for the dilation, which is the most influencual

step, is chosen to match the original volume fraction of the material, which
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is a commonly known property of most specimen.

4. Results

We now present the segmentation results, which have been obtained by

our algorithm, and compare them to those of a global thresholding and a

manual segmentation. The manual segmentation was performed by first ap-

plying a certain global threshold and then manually correcting the images

using the software gimp [11]. Furthermore, a local thresholding approach

has been tested. However the best results were obtained for a window size

equal to the dimension of the image, i.e., it turned out that the best local

thresholding is identical with global thresholding.

4.1. Visual Comparision of Segmented Images

A visual comparison of 2D slices (see Fig. ??) indicates a significant im-

provement which has been achieved by the automatic segmentation algorithm

proposed in Section 3. This is also reflected by the rate of errounously clas-

sified voxels, which was reduced to 16.7% (thresholding 22.5%), supposing

that the manual segmentation is correct. Both phases are now being de-

tected by a probability above 80%, with background voxels being detected

more often (85.7%) than foreground voxels (80.7%). Visual inspection shows
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that some of the missing foreground voxels are false positives in the manual

segmentation, which is, due to the huge time consumption, always limited

in detail. For more information, see Table 1, where the rates for correct and

wrong classification of foreground and background voxels, respectively, are

given, comparing the results of manual segmentation with those of automatic

segmentation as proposed in Section 3.

Although the rates given in Table 1 show a clear advantage of the seg-

mentation approach proposed in this paper relative to global thresholding,

they do not fully capture the improvement which has been achieved with re-

spect to correct reconstruction of the 3D morphology. Within the context of

material structure, the preservation morphological features is more relevant

than the correct classification of individual voxels. Therefore, we will give a

more structurally oriented comparison in the following section.

4.2. Spherical Contact Distribution Function

The spherical contact distribution function (SCDF) is a common tool in

stochastic geometry to compare the 3D morphologies of random sets [15]. For

binary image data, the empirical SCDF is given by the cumulative distribu-

tion function of the distances of all background (foreground) voxel to their

nearest foreground (background) voxel, respectively. Fig. ?? shows the em-
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pirical SCDF of both background and foreground for the three segmentation

approaches considered in this paper. In both cases the result provided by

the automatic segmentation algorithm proposed in this paper is significantly

closer to the empirical SCDF of the manual segmentation than that corre-

sponding to thresholding. Note that a lower rate of missclassified voxels does

not necessarily lead to a better fit of the corresponding SCDF. Depending

on the spatial distribution fewer voxels might even have a stronger negative

impact on the structure. For a network of closed pores, for example, an

overestimation of the overall pore sizes by 10% might not be as severe as

classifying 5% of the pores as open, although they are closed. The same is

true for the SCDF were background (foreground) voxels in the center of re-

gions otherwise classified as foreground (background) have a stronger impact

than voxels close to the border of such regions. Such structural differences

have a direct link to the properties of the corresponding material such as its

performance in its respective application.

Furthermore, two difference images have been analysed which were con-

structed by voxel-wise comparison of the manually segmented image with the

automatically segmented image and the image obtained by global threshold-

ing, respectively. The empirical SCDF of these two difference images are
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visualized in Fig. ??. They show that in the automatically segmented image

more than half of the misclassified voxels have a correctly classified neighbour

and, therefore, are presumed not to have a larger impact on the morpholog-

ical properties of the image. The main difference between the binarisation

obtained by the new approach proposed in this paper and global thresholding

occurs for greater radii between 2 and 6. Agagin, this suggests that the new

approach preserves significantly more features of the original 3D morphology.

4.3. Additional Data Sample

In the following we describe the result obtained by our algorithm for

another image. This image shows a monolithic foam-like silica material (see

Fig. ??) and was previously studied in [1]. In this case, however, our primary

goal is not to obtain a reasonable segmentation for later analysis but to test

the applicability of our new approach to other scenarios and the plausibility

of its assumptions. We chose this particular image because it exhibits various

characteristics that are different to the image studied so far. This includes

different levels of illumination across the image and significantly different

structural properties of the material. The foam-like structure mostly consists

of spherically shaped pores that are enclosed by thinner cell walls. This
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structure leads to a scenario with significantly different characteristics for the

corresponding z-profiles, which are analysed by the key part of our algorithm.

The preprocessing was performed as described in [1] with an additional

hMinima-transform applied to each z-profile. For more details on hMinima-

transform see [16]. This smoothed the z-profiles leading to more robust

results. However, the definition of local minima had to be changed to in-

clude plateaus, where a voxel (x, y, z) is also considered a local minima if its

gray intensity is ≤ (instead of a strict <) than it’s neighbouring voxels. Fur-

thermore, we used a different set of parameters for both the key-algorithm

(τmax = 20, τmin = 35) and for postprocessing (τ(x) = meanr=10(I)(x) +

5, r1 = 2, α1 = 0.2, r2 = 1, α2 = 0, rdil = 3). Note that the threshold τ is no

longer location-independent and that only one rank order filter was used.

With this setup the approach is capable of obtaining a reasonable seg-

mentation for the additional data set. However, unlike in Section 4.2, we are

not able to perform a quantitative comparison due to the lack of a reference

segmentation. Visual inspection however shows that most features are pre-

served and the quality of the result is similar to the one presented in [1]. A

general trend seems to be that cell walls appear thinner with the new ap-

proach, which is an improvement to the previously overestimated thickness of
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cell walls. This effect also supports the introduction of a separate detection

of the first appearance of structures. On the down-side some structures that

are present for the approach from [1] seem to be missing (or incomplete).

This seems to be a trade-off for the reduced amount of false positives, i.e.,

structures that were present in the segmentation by the previous approach

although they don’t have a corresponding counterpart in the gray-scale im-

age.

5. Conclusion

We have proposed a new approach to automatic segmentation of FIB-

SEM images. This approach was developed by following the key-principle of

analysing the variation of grey intensities in z-direction which has recently

been considered in [1]. Therefore, we introduced the notions of error-tolerant

local maxima and minima and introduced threshold criteria to distinguish

them from (smaller) extrema within substructures. These local maxima and

minima then are used as an indicator for the beginning and end of sub-

structures, respectively. From this preliminary segmentation we derived a

final binarisation by some postprocessing which consists of a thresholding,

cluster-detection and dilation. The final result was then analysed and com-

pared with those obtained by manual segmentation and global thresholding.
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Besides a visual and quantitative evaluation this analysis also covered a struc-

tural analysis of the obtained segmentations and the missclassified voxels. It

turned out that the segmented image, which has been obtained by the new

approach considered in this paper, preserves significantly more features of

the original 3D morphology than this is possible by global thresholding. We

have also described why we consider this to be even more relevant than mere

numbers of misclassified voxels. Finally our approach was applied to a sec-

ond image, where it also obtained a reasonable segmentation, suggesting that

this approach will be applicable to a range of scenarios with variable proper-

ties. However, in spite of the advances of the present approach there is still

work to be done on the way towards more robust and reliable segmentation

approaches.
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V. Schmidt, A two-stage approach to the segmentation of fib-sem images

of highly porous materials, Materials Characterization 69 (0) (2012)

115–126.

[2] S. Dunn, Hydrogen futures: toward a sustainable energy system, Inter-

national Journal of Hydrogen Energy 27 (2002) 235–264.

21



[3] Y. Shao, J. Liu, Y. Wang, Y. Lin, Novel catalyst support materials for

pem fuel cells: current status and future prospects, Journal of Materials

Chemistry 19 (2008) 46–59.

[4] M. Mezedur, M. Kaviany, W. Moore, Effect of pore structure, random-

ness and size on effective mass diffusivity, AIChE Journal 48 (2002)

15–24.

[5] N. Siddique, F. Liu, Process based reconstruction and simulation of a

three-dimensional fuel cell catalyst layer, Electrochimica Acta 55 (19)

(2010) 5357–5366.

[6] L. Holzer, F. Indutnyi, P. Gasser, B. Munch, M. Wegmann, Three-

dimensional analysis of porous BaTiO3 ceramics using FIB nanotomog-

raphy, Journal of Microscopy 216 (2004) 84–95.

[7] G. Gaiselmann, M. Neumann, L. Holzer, T. Hocker, M. R. Prestat,

V. Schmidt, Stochastic 3D modeling of La0.6Sr0.4CoO3−δ cathodes based

on structural segmentation of FIB-SEM images, Computational Mate-

rials Science 67 (2013) 48–62.

[8] T. Hutzenlaub, S. Thiele, R. Zengerle, C. Ziegler, Three-dimensional

22



reconstruction of a LiCoO2 Li-ion battery cathode, Electrochemical and

Solid-State Letters 15 (2012) A33–A36.

[9] O. Stenzel, D. Westhoff, I. Manke, M. Kasper, D. Kroese, V. Schmidt,

Graph-based simulated annealing: A hybrid approach to stochastic

modeling of complex microstructures, Modelling and Simulation in Ma-

terials Science and Engineering 21 (2013) 055004.

[10] C. Ziegler, S. Thiele, R. Zengerle, Direct three-dimensional reconstruc-

tion of a nanoporous catalyst layer for a polymer electrolyte fuel cell,

Journal of Power Sources 196 (4) (2011) 2094–2097.

[11] S. Thiele, R. Zengerle, C. Ziegler, Nano-morphology of a polymer elec-

trolyte fuel cell catalyst layer–imaging, reconstruction and analysis,

Nano Research 4 (2011) 849–860.

[12] E. Wargo, T. Kotaka, Y. Tabuchi, E. Kumbur, Comparison of focused

ion beam versus nano-scale x-ray computed tomography for resolving 3-

d microstructures of porous fuel cell materials, Journal of Power Sources

241 (0) (2013) 608 – 618.

[13] S. Thiele, T. Fürstenhaupt, D. Banham, T. Hutzenlaub, V. Birss,

C. Ziegler, R. Zengerle, Multiscale tomography of nanoporous carbon-

23



supported noble metal catalyst layers, Journal of Power Sources 228 (0)

(2013) 185–192.

[14] T. Sarjakoski, J. Lammi, Least square matching by search, Proceedings

of the XVIII ISPRS Congress Vienna Austria XXXI (1996) 724–728.

[15] S. N. Chiu, D. Stoyan, W. S. Kendall, J. Mecke, Stochastic geometry

and its applications, J. Wiley & Sons, Chichester, 2013.

[16] J. Ohser, K. Schladitz, 3D Images of Materials Structures: Processing

and Analysis, Wiley-VCH, Weinheim, 2009.

24



Tables

classified as FG BG

manually manually

FG automatic 80.7% 14.3%

(FG thresholding) (71.5%) (18.2%)

BG automatic 19.3% 85.7%

(BG thresholding) (28.5%) (81.8%)

Table 1: Detection rates for foreground (FG) and background (BG) voxels. By detection

rate we denote the probability that a voxel is classified as foreground or background by

the automatic approach (rows) given that it was classified as foreground or background

by the manual approach (columns). Thus, the diagonal elements provide the amount of

correctly classified voxels and the off-diagonal elements the falsely classified voxels. In

brackets the corresponding rates are given for the comparision of manual segmentation

and global thresholding.
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Figures

Figure 1: Membrane electrode assembly with cathode, anode and membrane (a); cavity

in the cathode opened by FIB (b)

26



Figure 2: Flow chart of the steps performed during the segmentation process including

the required parameters for these steps

Figure 3: Schematic 1D example for the detection of local maxima (red) and minima

(blue). The bar below shows the binarised image
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Figure 4: Visual example of the effect of postprocessing. From left to right: original

grayscale image I; segmentation before postprocessing; after removing foreground voxels

with gray intensity I(x) < τ ; after removing isolated clusters based on their rank order;

dilation (limited to voxels with I(x) > τ) and final result

Figure 5: A visual example for the results of different segmentation results. From left to

right: original grayscale image; manual segmentation; automatic segmentation as stated

in this paper; global thresholding
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Figure 6: Empirical SCDF for foreground (left) and background (right) for all three seg-

mentation approaches. In both cases the result of our approach is significantly closer to

the manual segmentation than the result of global thresholding.

Figure 7: Empirical SCDF for an image containing the differences between the automatic

segmentation and the manual segmentation. For global thresholding there is a significant

increase after a voxel size of 4. This increase is much smaller for our approach which

indicates that the amount of bigger clusters of missclassified voxels is reduced significantly.
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Figure 8: 2D slice from the 3D FIB-SEM image showing a foam-like silica material. The

structure of the pore space leads to a different configuration of artefacts, e.g., different

levels of illumination for different pore sizes.
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Figure 9: Binarisation results for a foam-like silica material (see Fig. ?? for the grayscale

version). On the left: result obtained by our new approach. On the right: result of the

method described in [1] as a reference. Most structures are preserved by both methods.

For our new approach there seem to be more structures missing (e.g. cell walls open),

while for the old approach there is the tendency to overestimate present structures (e.g.

thicker cell walls) and to show additional ones.
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