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Abstract

This paper presents a computational method for generating virtual 3D morphologies of functional materials using
low-parametric stochastic geometry models, i.e., digital twins, calibrated with 2D microscopy images. These digital
twins allow systematic parameter variations to simulate various morphologies, that can be deployed for virtual
materials testing by means of spatially resolved numerical simulations of macroscopic properties. Generative
adversarial networks (GANs) have gained popularity for calibrating models to generate realistic 3D morphologies.
However, GANs often comprise of numerous uninterpretable parameters make systematic variation of morphologies
for virtual materials testing challenging. In contrast, low-parametric stochastic geometry models (e.g., based on
Gaussian random fields) enable targeted variation but may struggle to mimic complex morphologies. Combining
GANs with advanced stochastic geometry models (e.g., excursion sets of more general random fields) addresses
these limitations, allowing model calibration solely from 2D image data. This approach is demonstrated by
generating a digital twin of all-solid-state battery (ASSB) cathodes. Since the digital twins are parametric, they
support systematic exploration of structural scenarios and their macroscopic properties. The proposed method
facilitates simulation studies for optimizing 3D morphologies, benefiting not only ASSB cathodes but also other
materials with similar structures.

Keywords:—Spatial stochastic model, stereology, generative adversarial network, all-solid-state battery cathode,
microscopic image data.

1 Introduction

It is consensus that the properties of (functional) materials for batteries, such as the accessible charge capacity or ionic
conductivity, are significantly influenced by their nano/microstructure [1–5]. These structure-property relationships
are of crucial importance to provide structuring recommendations for materials with optimized performance [6, 7].
However, such recommendations, by themselves, are often not sufficient—one must also know how to manufacture
materials with desired structures. For this purpose, experimental variations of manufacturing processes can be used
to produce materials with different structures and compositions. Subsequently, the influence of parameters of the
manufacturing processes on the nano/microstructure of materials, i.e., so-called process-structure relationships can
be investigated [8]. In order to derive both types of relationships it is necessary to quantitatively characterize the
nano/microstructures of materials, using, e.g., structural descriptors (like porosity, specific surface area, etc.) [9].
Imaging techniques, such as computed electron or X-ray tomography (nano-CT or micro-CT), or focused ion beam
(FIB) milling followed by scanning electron microscopy (SEM), allow for a quantitative characterization of the 3D
nano/microstructure of materials, followed by statistical analysis and modeling of image data [10–12]. In particular,
regression models can be deployed to predict the nano/microstructure of materials for any feasible configuration of
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process parameters [13]. This enables the calibration of process parameters by means of computer-aided optimization
[14] such that, according to resulting structuring recommendations, structures with improved properties can be
manufactured. In order to derive such process-structure-property relationships an important step is to derive a
quantitative mathematical description of materials nano/microstructure.

Particularly, stochastic geometry [15] provides useful mathematical tools for describing the nano/microstructures
of various materials by means of spatial stochastic modeling [16–20]. More precisely, once calibrated to (e.g., 3D
image) data, these kinds of stochastic models can be regarded as digital twins for material nano/microstructures
since they allow for the generation of virtual, but realistic 3D nano/microstructures. Consequently, stochastic geom-
etry models are informative mathematical tools for characterizing the nano/microstructure of materials with various
applications. For example, using 3D morphologies generated by stochastic geometry models as input for spatially
resolved numerical simulations (e.g., tensile tests or transport processes), comprehensive databases of morphologies
and effective macroscopic material properties can be determined by means of computer simulations [7,21,22]. For a
wide range of applications, such as batteries and fuel cells, virtual material microstructures can be generated stochas-
tically and their properties can be analyzed using the specialized software tool GeoDict, which enables the simulation
and evaluation of electrode properties, such as charging behavior, to support material optimization and performance
assessment [23–25]. It should be emphasized here that parametric stochastic geometry models, in particular because
of their interpretable model parameters, are extremely valuable. Before deploying a parametric model, typically it
has to be investigated whether an adequate model type has been chosen for describing experimentally measured
data. Therefore, in the case of stochastic geometry models a common approach is to optimize model parameters
until the discrepancy between generated structures and data is as small as possible [26]. If this optimization problem
delivers satisfactory results, it is assumed (possibly after some further validation steps) that the parametric model
can be used to describe the data. Otherwise, the type of the parametric model would have to be modified, e.g., by
increasing its complexity.

Once it is ensured that realistic nano/microstructures can be generated by a parametric stochastic geometry
model, it can be deployed for investigating further structural scenarios that have not been yet observed within data.
More precisely, a systematic variation of model parameters allows for the generation of a wide range of structurally
different morphologies followed by the simulation of their corresponding macroscopic properties. This means that
parametric models enable the generation of large databases comprised of nano/microstructures together with their
macroscopic properties [7, 27]. Consequently, this type of virtual materials generation and testing can be utilized to
derive structure-property relationships while reducing the number of real-life experiments (e.g., material synthesis,
imaging, analysis of macroscopic properties) necessary to derive similar relationships [6, 7, 27–29].

Stochastic geometry offers models that capture a wide range of morphologies, e.g., line patterns, random graphs,
packings of particles and complex tessellations of space [15, 30]. For multiphase materials, e.g., for porous media a
commonly considered model type are excursion sets of so-called random fields [15,31]. More precisely, random fields
are stochastic models that can be used to randomly generate functions that assign points of Euclidean space with
a random number. Then, the morphology of material phases can be modeled by considering all points in space for
which the random value is above a certain threshold—resulting in the excursion set. Well-studied cases of this class
of models are excursion sets of Gaussian random fields or χ2 random fields [15,32]. For these models there are some
analytical formulas that allow for the calibration of model parameters to 3D image data, i.e., these formulas ensure
that parameters of excursion set models are chosen such that generated morphologies exhibit similar statistics as
nano/microstructures observed in 3D image data. Thus, choosing model parameters that minimize the discrepancy
between generated structures and imaged ones is quite forward, however, for these “simple parametric models” it
is not always ensured that such a minimum enables the generation of realistic morphologies. In other words, the
model type may not be sufficient for representing the data. However, as model complexity increases—such as for
excursion sets of more general random fields, which are necessary to capture more intricate nano/microstructures—
the required number of model parameters increases substantially. This can make classical model calibration by means
of interpretable descriptors impractical.

In recent years, non-parametric methods of machine learning have emerged that can be calibrated to data without
possibly restrictive model assumptions, allowing for the generation of statistically similar samples as observed in the
data [33–35]. Typically, these data-driven models are referred to as generative artificial intelligence (AI). Rather
established examples from generative AI are generative adversarial networks (GANs) [36]. In a classical setup,
GANs consist of two competing networks, referred to as generator and discriminator. During training, the task
of the generator (which receives noise as input) is to generate random samples that are statistically similar to the
training data. In other words, the generator is supposed to model the (often multivariate) probability distribution
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associated with the data. The discriminator is trained to distinguish between “real data” and samples generated
by the generator. For training purposes, the generator receives feedback of the discriminator’s decision such that
its weights are iteratively improved, in order to “trick” the discriminator. GANs or similar generative networks,
which have been successfully trained with 3D image data of a materials’ nano/microstructure, can be considered
to be calibrated stochastic geometry models / digital twins, since they allow for the generation of virtual but
realistic morphologies. One significant advantage of these non-parametric approaches is that they need almost no
assumptions on the morphologies to be modeled, i.e., the same network architectures can be used to model a broad
range of morphologies. In addition, non-parametric methods have been used to calibrate 3D models based on 2D
image data, which is often a non-trivial problem [37–39]. For example, in [37] GANs have been trained to generate
random 3D images, the planar sections of which are statistically similar to 2D image data. However, methods from
generative AI can have some drawbacks in comparison to conventional parametric approaches of stochastic geometry.
For example, the generators deployed in GANs are neural networks, the parameters (i.e., the weights) of which are
often not interpretable. Consequently, it is not straightforward to systematically vary generator parameters for
investigating a broad range of structural scenarios to perform the virtual materials testing approach outlined above.

In the present paper, we introduce a computational method for using 2D image data to calibrate parametric
stochastic geometry models for the 3D multiphase morphology of (functional) materials. More precisely, we consider
rather flexible excursion sets of generalizations of Gaussian/χ2 random fields. For the parametric model considered
in the present paper, there are no analytical formulas that allow for the direct calibration to image data. To
overcome this limitation, we combine our parametric stochastic geometry models with GANs for the purpose of
model calibration [40]. The considered models are flexible enough to stochastically model complex 3D morphologies,
enabling the systematic exploration of different structures. Thus, they can also be deployed for virtual materials
testing purposes which is not straightforward when deploying GANs only. The method described in the present paper
will be used to parametrically model the three-phase microstructure of cathodes in all-solid-state batteries (ASSBs)—
that might offer increased energy density and safety in comparison to commercially available batteries [41]. Therefore,
the presented digital twin, i.e., the parametric stochastic 3D model for the 3D morphology of cathodes in ASSBs
can serve as a starting point for virtual materials testing [27,42].

2 Methods

2.1 Description of material and data acquisition

In this section we shortly describe the ASSB cathode material and the corresponding microscopy image data, on
which the proposed method for the calibration of digital twins is demonstrated. A detailed description on cathode
preparation, solid electrolyte (SE) synthesis, imaging and segmentation is provided in [43]. The ASSB cathodes
considered in the present paper are comprised of glassy Li3PS4 − 0.5LiI and LiNi0.83Mn0.06Co0.11O2 which serve as
solid electrolyte (SE) and active material (AM) within the cathode, respectively. In order to obtain SE particles
with a sufficiently small particle size, initially synthesized SE particles have been comminuted in a planetary ball
mill (Pulverisette 7, Fritsch, Germany) with milling media of 3mm diameters, see [43] for further details. After
fabricating the cathode with these SE and AM particles, the microstructure of the resulting ASSB cathode was
imaged by SEM. To obtain a 3D tomogram, slices of the electrode were cut by plasma focused ion beam (PFIB)
followed by SEM imaging. The resulting 3D image data have been segmented into three phases, i.e., the SE and
AM phase, and a phase associated with remaining porosity within the cathode material, see [43] for details regarding
image processing. After one-hot encoding the experimentally measured 3D image data can be considered to be a
mapping S : W3D × {1, 2, 3} → {0, 1}, which is given by

S((x, y, z), i) =


1, if i = 1 and (x, y, z) is associated with the SE phase,
1, if i = 2 and (x, y, z) is associated with the AM phase,
1, if i = 3 and (x, y, z) is associated with the pore space,
0, else,

(1)

for each voxel (x, y, z) in some cuboidal sampling window W3D = {1, . . . , nx} × {1, . . . , ny} × {1, . . . , nz} ⊂ Z3 and
for each channel i = 1, 2, 3. The integers nx, ny, nz > 0 denote the side lengths of the cuboidal sampling window.

Note that during fabrication of the cathode composite, a powder mixture that is comprised of SE and AM
particles is pressed into a cylindrical cell setup which forms the cathode half-cell. Unlike in wet-processed electrodes,
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no conductive carbon or binders are added. In particular, during cathode pressing uniaxial stress has been deployed.
Consequently, microstructural statistics determined with respect to specific directions (e.g., directional shortest path
lengths) may depend on the orientation of the chosen coordinate system. Therefore, we cannot assume that the
microstructure of ASSB cathodes can be described by a stochastic 3D model that is statistically invariant under
rotations of the coordinate system—a simplifying property known as isotropy.

For the ASSB cathode specimen considered in this study, the uniaxial direction in which force has been applied
during pressing aligns with the z-direction of the segmented image data represented by the mapping S given in
Eq. (1). Figure 1 visualizes the 2D segmentation along two perpendicular planar sections which are parallel to the
x–y-plane and the y–z plane. A first visual inspection suggests that both planar sections look statistically quite
dissimilar which indicates anisotropy. Still the planar section parallel to the x–y plane shown in Figure 1b indicates
isotropy with respect to rotations around the z-axis, i.e., cylindrical isotropy, which is also a reasonable assumption
in the context of cathode production.

(a) (b)

Figure 1: 2D sections of segmented (experimentally measured) 3D image data, parallel to the y–z plane (a) and the
x–y plane (b). Both sub-figures use the same length scale. The pore space, active material and the solid electrolyte
are represented by black, red and gray color, respectively.

To develop an anisotropic, yet cylindrically isotropic spatial stochastic model, we first derive an isotropic model in
Section 2.2. In particular, this means that arbitrarily oriented planar sections, taken from 3D morphologies generated
by the model, will look statistically similar to planar sections that are parallel to the x–y-plane. Therefore, for the
purpose of fitting the isotropic model, solely 2D image data is required, i.e., the model is fitted by a sequence of
ndata planar 2D images S1, . . . , Sndata

: W2D × {1, 2, 3} → {0, 1}, where ndata = nz, which are given by

Sz((x, y), i) = S((x, y, z), i), (2)

for any (x, y) ∈ W2D = {1, . . . , nx} × {1, . . . , ny}, z ∈ {1, . . . , nz} and i ∈ {1, 2, 3}. Thus, in addition to modeling
ASSB cathode microstructures, the methods described in Sections 2.2 and 2.3 below can also be applied in other
situations, where only 2D image data of materials nano/microstructures is available, e.g., when acquiring 3D data is
prohibitively expensive in terms of time and resources.

Finally, in a second step, in order to obtain a cylindrically isotropic model for the microstructure of ASSB
cathodes, we locally stretch/compress the generated morphologies in z-direction, see Section 2.3.6.

2.2 Isotropic spatial stochastic modeling

In this section we introduce some isotropic spatial stochastic models, the discretized realizations of which are mappings
ξ : W × {1, 2, 3} → {0, 1} on some cuboidal sampling window W ⊂ Zd, where d is some positive integer (e.g., d = 2
or d = 3), i.e., the mappings ξ can be considered to be simulated image data of three-phase materials. Then, in
Section 2.3, we will describe methods for calibrating the models introduced in the present section to (2D) image
data. The calibration aims to generate images that are statistically similar to the planar sections of the segmented
2D image given by Eq. (2). After calibration of an isotropic model to 2D image data, a compression of the coordinate
system along the z-axis will be performed in Section 2.3.6, to obtain an anisotropic, yet cylindrically isotropic model.
For modeling purposes, we utilize so-called excursion sets of random fields. Therefore, in Section 2.2.1 we introduce
random fields with a focus on Gaussian random fields which are well-studied models that can be used as building
blocks for more complex models. Then, in Section 2.2.2 we formally introduce the notion of excursion sets. Finally,
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in Section 2.2.3 a flexible excursion set model is defined that can be used for modeling the 3D microstructure of
ASSB cathodes.

2.2.1 Random fields

As mentioned above, we utilize so-called random fields for modeling purposes. A common definition of random fields
is that they are collections {X(t) : t ∈ T} of random variables, where T denotes some index set. A typical choice of
T , when considering spatially continuous models, is the multi-dimensional Euclidean space, i.e., T = Rd for some
integer d > 1 denoting the dimension. However, in the present paper, due to computational reasons we solely consider
discretized versions of random fields. In particular, we choose T = Zd.

Gaussian random fields. A well-studied class of random fields is given by Gaussian random fields (GRFs), i.e., a
random field {X(t) : t ∈ Zd} of is called a GRF if the random vectors (X(t1), . . . , X(tn)) are normal distributed for
any n ≥ 1 and t1 . . . , tn ∈ Zd. Note that GRFs are uniquely characterized by their mean-value function m : Zd → R
and covariance function ρ : Zd × Zd → R, which are given by

m(t) = E[X(t)] (3)

and
ρ(s, t) = Cov(X(s), X(t)) = E[(X(s)−m(s)) (X(t)−m(t))] , (4)

for any s, t ∈ Zd.

Stationarity. When stochastically modeling the microstructure of homogeneous materials (without structural gra-
dients), a common model assumption is stationarity, where a random field is called stationary if its distribution
is invariant with respect to translations. More precisely, a random field {X(t) : t ∈ Zd} is called stationary if the

distributional equality (X(t1 + x), . . . , X(tn + x))
d
= (X(t1), . . . , X(tn)) holds for any n ≥ 1, t1 . . . , tn ∈ Zd and for

each shift vector x ∈ Zd. In particular, for stationary random fields, the values m(t) of the mean-value function
given in Eq. (3) are constant, and the values ρ(s, t) of the covariance function given in Eq. (4) only depend on the
difference t − s, i.e., it holds that ρ(s, t) = ρ(o, t − s) for any s, t ∈ Zd, where o ∈ Zd denotes the origin. Thus, by
abuse of notation, covariance functions of stationary random fields can be considered to be functions ρ : Zd → R that
are given by ρ(t) = ρ(o, t). Note that in the following, we solely consider stationary random fields that are centered,
i.e., for which m(t) = 0 holds for each t ∈ Zd.

A simple way to simulate (centered stationary) GRFs is given by considering moving averages of a special class of
GRFs, so-called Gaussian white noise denoted by {N(t), t ∈ Zd}, where the random variable N(t) is standard normal
distributed (shortly: N(t) ∼ N (0, 1)) for each t ∈ Zd, and the random variables N(t1) and N(t2) are independent if
t1 ̸= t2. Now, let k : Zd → R be a function such that k(t) = 0 for each t ̸∈ D and some bounded set D ⊂ Zd, referred
to as kernel in the following. Then, the moving average {X(t) : t ∈ Zd} given by

X(t) =
∑
s∈Zd

k(s)N(t− s) = (N ∗ k)(t), (5)

for each t ∈ Zd, is a centered stationary GRF, whose covariance function ρ is given by

ρ(s, t) = (k ∗ kmirrored)(t− s), (6)

for any s, t ∈ Zd, where ∗ denotes convolution and kmirrored is the mirrored version of k, i.e., kmirrored(t) = k(−t) for
each t ∈ Zd. Note that the GRF given in Eq. (5) is normalized, i.e., X(t) ∼ N (0, 1) for each t ∈ Zd, if the kernel k
or the covariance function ρ are normalized such that∑

t∈D

k2(t) = 1 or ρ(s, s) = 1 for each s ∈ Zd. (7)

On the other hand, it is possible to simulate stationary GRFs when the covariance function, but not the kernel,
is known. More precisely, for a given covariance function ρ : Zd → R, we can determine the underlying kernel by

k = FFT−1
(√

FFT(ρ)
)
, (8)
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where we assume symmetry of the kernel k, and FFT,FFT−1 denote the (fast) Fourier transform and its inverse,
respectively [44]. Then, by deploying this kernel in Eq. (5) we can simulate a GRF with covariance function ρ. Note,
however, that the inversion scheme given in Eq. (8) does not ensure that the computed kernel is real-valued nor
that it has bounded support D. In practical applications, this issue can be addressed by considering the real part of
the possibly complex-valued kernel k and by constraining its support. Then, GRFs simulated with this real-valued
kernel (with bounded support) exhibit a covariance function that approximates ρ.

Isotropy. Besides stationarity, another property of interest for modeling purposes is isotropy, i.e., distributional
invariance with respect to rotations around the origin. The notion of isotropy can be easily defined on the continuous
Euclidean space Rd, but not on the discretized index set Zd as rotations of the grid do not necessarily result in
the same grid. Therefore, we first mention some properties of isotropic random fields on Euclidean spaces, i.e., for
T = Rd, and discuss how they can be transferred to random fields on Zd to “approximate isotropy”.

If a random field on Rd is both stationary and isotropic, its covariance function ρ : Rd×Rd → R does only depend
on the distance between the considered points s, t ∈ Rd, i.e., we have

ρ(s, t) = ρ(|s− t| e1), (9)

where e1 = (1, 0, . . . , 0) ∈ Rd is the unit vector parallel to the first axis and | · | denotes the Euclidean norm in Rd.
Therefore, in the case of stationary and isotropic random fields on Rd, covariance functions are considered to be
maps ρ : [0,∞) → R. With an abuse of notation, the corresponding map ρ : Rd × Rd → R can be constructed by
ρ(s, t) = ρ(|s − t|), for any s, t ∈ Rd. Similarly, in the case of stationarity and isotropy, for each t ∈ Rd the value
k(t) of the kernel k : Rd → R only depends on the Euclidean norm |t| of t. Therefore, for discretized random fields
with T = Zd considered in the present paper, we can approximate this scenario by parameterizing kernels, i.e., by
considering

kα,non−normalized(t) =

{
α⌊|t|⌉, if ⌊|t|⌉ ≤ L,
0 else,

(10)

for each t ∈ Zd, where ⌊·⌉ denotes the nearest integer function and α = (α0, . . . , αL) ∈ RL+1 for some L ≥
0. Consequently, the vector α can be considered to be a model parameter which characterizes stationary and
“approximately isotropic” GRFs. For the sake of readability, we call a GRF isotropic if it is a moving average of
Gaussian white noise with a kernel given by Eq. (10). Note that, by means of Eqs. (7) and (10) we can derive a
parameterization kα : Zd → R of normalized kernels, where

kα(t) =
kα,non−normalized(t)√∑
s∈D k2α,non−normalized(s)

, (11)

for each t ∈ Zd. Then, the kernel kα characterizes a normalized stationary and isotropic GRF. Unless stated
otherwise, from here on we only consider normalized stationary and isotropic GRFs which are parameterized by
means of Eq. (11). These random field models will serve as building block for more complex models.

Correlated GRFs. By means of Eq. (5) we can generate independent GRFs, by generating independent copies
of Gaussian white noise N , followed by convolution with their respective kernels. However, in some applications it
is desirable to generate correlated GRFs Xc and Yc, e.g., for modeling attraction or repulsion behavior of phases.
The simulation of correlated GRFs can be easily achieved by combining independent GRFs. For example, besides
considering independent GRFs X,Y , we can additionally introduce three further independent GRFs X̃, Ỹ , Z̃ with
covariance functions ρX̃ , ρỸ , ρZ̃ to construct correlated GRFs. More precisely, the random fields Xc and Yc given by

Xc =
√
1− γ X̃ +

√
γ Z̃ and Yc =

√
1− γ Ỹ ±√γ Z̃ (12)

are normalized GRFs, which in general are not independent1, where γ ∈ [0, 1] is a model parameter. In particular,
the covariance functions ρXc and ρYc of Xc and Yc are given by

ρXc
(s, t) = (1− γ) ρX̃(s, t) + γ ρZ̃(s, t) and ρYc

(s, t) = (1− γ) ρỸ (s, t) + γ ρZ̃(s, t), (13)

1Depending on the choice of the sign ± in Eq. (12), the random fields Xc and Yc are either positively or negatively correlated.
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for any s, t ∈ Zd. Since the variance of Xc(s) and Yc(s) is given by ρXc(s, s) = ρYc(s, s) = 1, they are normalized.
Furthermore, they are non-independent, as their joint covariance function ρXcYc : Zd × Zd → R is given by

ρXcYc(s, t) = E[Xc(s)Yc(t)] = ±γρZ̃(s, t), (14)

for any s, t ∈ Zd. In particular, we have ρXcYc
(t, t) = E[Xc(t)Yc(t)] = ±γ, for each t ∈ Zd, i.e., γ is the absolute

value of the covariance between the random variables Xc(t) and Yc(t).

χ2-fields. Recall that for a normalized GRF X, we have X(t) ∼ N (0, 1) for each t ∈ Zd. In some cases, this assump-
tion can be too restrictive, e.g., the distribution of (normalized) Gaussian random numbers is always symmetrical.
As mentioned above, GRFs can be used as building blocks for more complex models, e.g., χ2-fields. Therefore, for
some integer n > 0, let X1, . . . , Xn be independent and identically distributed normalized GRFs. Then, the random
field X ′ given by

X ′ =

n∑
i=1

X2
i (15)

is called a χ2-field with n degrees of freedom. Moreover, we can model correlated χ2-fields by considering correlated
GRFs. Therefore, let (X1, Y1), . . . , (Xn, Yn) be pairs of independent copies of (Xc, Yc), where the GRFs Xc and Yc

have been introduced in Eq. (12). Then, the random fields X ′ and Y ′ given by

X ′ =

n∑
i=1

X2
i and Y ′ =

n∑
i=1

Y 2
i (16)

are, in general, non-independent χ2-fields with n degrees of freedom.

2.2.2 Excursion sets

The random field models considered in Section 2.2.1 themselves are not yet suitable for modeling morphologies
(e.g., the phases of ASSB cathodes depicted in image data). Still, random fields are useful building blocks for
modeling 3D morphologies, by considering excursion sets of random fields (sometimes also referred to as level sets
[31]). More precisely, for some “level” λ ∈ R, the corresponding (random) excursion set Ξ ⊂ Zd of a random field
X = {X(t), t ∈ Zd} is given by Ξ = {t ∈ Zd : X(t) ≥ λ}. However, due to the deployment of convolutional neural
networks in Section 2.3.3 which are supposed to receive these random sets as input, we will instead identify them as
mappings Ξ: Zd → {0, 1} that are given by

Ξ(t) =

{
1, if X(t) ≥ λ,
0, else,

(17)

for each t ∈ Zd. Such a mapping Ξ can be considered to be a stochastic 3D model for the morphology of two-phase
nano/microstructures. More precisely, for d = 3, points t ∈ Z3 such that Ξ(t) = 1 can be associated with one phase,
whereas 1− Ξ can describe the other phase.

Recall that the cathode materials of ASSBs considered in the present paper are comprised of three phases. A
common way to model the microstructure of such three-phase materials is to consider excursion sets of two (possibly
correlated) random fields. More precisely, letX and Y be two random fields and λX, λY ∈ R be real-valued thresholds.
Then, the first phase Ξ1 can be modeled as in Eq. (17) by

Ξ1(t) =

{
1, if X(t) ≥ λX,
0, else,

(18)

for each t ∈ Zd. The second phase Ξ2 can be modeled as the excursion set on the “complement” of Ξ1 by

Ξ2(t) =

{
1, if Ξ1(t) = 0 and Y (t) ≥ λY,
0, else,

(19)

for each t ∈ Zd. Finally, the third phase is modeled by Ξ3 = 1− Ξ1 − Ξ2.
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2.2.3 Isotropic three-phase model for ASSB cathodes

With random field models and corresponding excursion sets at hand (see Sections 2.2.1 and 2.2.2), we can derive
models for the microstructure of three-phase materials. Recall that we will first derive an isotropic model for ASSB
cathodes. Later, in Section 2.3.6, we modify this model to capture the anisotropy (i.e., cylindrical isotropy) observed
in experimentally measured 3D image data. For modeling three-phase microstructures isotropically with sufficient
flexibility we consider the random fields X, Y , X ′, Y ′, where X, Y are independent GRFs which are independent of
the correlated χ2-fields X ′, Y ′, see Eqs. (12) and (16). Now, we define the first and second phases Ξ1, Ξ2 by

Ξ1(t) =

{
1, if X ′(t) + σXX(t) ≥ λX,
0, else,

and Ξ2(t) =

{
1, if Ξ1(t) = 0 and Y ′(t) + σY Y (t) ≥ λY,
0, else,

(20)

for each t ∈ Zd, where λX, λY ∈ R are some thresholds and σX , σY > 0 are scaling parameters that control the variance
of the GRFs σXX,σY Y , i.e., σXX is a stationary isotropic GRF with Var(σXX(o)) = σ2

XVar(X(o)) = σ2
X .2

In the context of ASSB cathodes, Ξ1 corresponds to the solid electrolyte, while Ξ2 represents the active material
phase. Then, the third (pore) phase Ξ3 is given by Ξ3 = 1 − Ξ1 − Ξ2. This leads to the isotropic cathode model
Ξ: Zd × {1, 2, 3} → {0, 1}, which is given by

Ξ(t, i) = Ξi(t) (21)

for each t ∈ Zd and i ∈ {1, 2, 3}. Clearly, it holds that Ξ(t, 1) + Ξ(t, 2) + Ξ(t, 3) = 1 for each t ∈ Zd, i.e., Ξ(t, i) = 1
if and only if the grid point t is associated with the i-th phase.

Note that the model Ξ introduced in Eq. (21) is parametric. In particular, the underlying GRFs σXX,σY Y
are parameterized by the parameters of their corresponding kernels and their scaling factors σX , σY , see Eq. (11).

Furthermore, recall that the χ2-fields X ′ and Y ′ are defined by means of three independent GRFs X̃, Ỹ , Z̃, see
Eqs. (12) and (16). Thus, the χ2-fields X ′ and Y ′ are parameterized by γ and the parameters of the kernels

associated with X̃, Ỹ , Z̃. However, the degree of freedom n is considered to be fixed from now on. In particular, we
choose n = 2, motivated by [17]. The remaining two parameters are the thresholds λX, λY considered in Eq. (20).
The entire parameter vector of Ξ will be denoted by θ = (θ1, . . . , θp) ∈ Θ, where Θ ⊂ Rp is the set of all admissible
parameter vectors with p > 0 being the number of parameters. Furthermore, we will write Ξθ instead of Ξ if we want
to emphasize that Ξ is characterized by the parameter vector θ ∈ Θ. Note that the number of parameters of Ξ is
given by p = 5 · L+ 5 since the isotropic cathode model Ξ is based on five random fields, each of which is described
by L parameters of its kernel 3. In addition, Ξ is characterized by five further parameters, namely, γ, σX , σY , λX, λY.
As we set the number L of kernel parameters equal to 100 (i.e., kernels have a “length” of 201 and are centered at
the origin o ∈ Zd), the cathode model Ξ has in total p = 505 parameters. Later, in Section 2.3.5, this relatively
high-parametric cathode model will be utilized to derive low-parametric cathode models, which are more suitable for
the purpose of virtual materials testing, as outlined in Section 1.

2.3 Model calibration

In this section, we describe methods for calibrating the parametric cathode model Ξθ introduced in Eq. (21) to data,

i.e., methods for determining a parameter vector θ̂ ∈ Θ such that Ξθ̂ “fits best” to data. In [17,45] similar excursion
set models have been calibrated to image data, where volume fractions and so-called two-point coverage probability
functions have been used as geometrical descriptors to be matched. Therefore, we first introduce these quantities
and explain how they can be estimated from data.

2.3.1 Estimation of volume fractions and two-point coverage probability functions

Let Ξ denote a (stationary and isotropic) random set model for three-phase morphologies, e.g., like the ASSB cathode
model stated in Section 2.2.3. Then, the volume fraction εi of the i-th phase is equal to the probability that the origin
o ∈ Zd belongs to the i-th phase, i.e., εi = P(Ξ(o, i) = 1), for each i ∈ {1, 2, 3}. Note that, due to the stationarity
of Ξ, the value of εi does not depend on the chosen reference point o ∈ Zd, i.e., we have εi = P(Ξ(t, i) = 1) for any
t ∈ Zd and i ∈ {1, 2, 3}.

2This scaling is omitted for the GRFs from which the χ2-fields X′, Y ′ are constructed, since χ2-distributed random variables are, by
definition, the squared sum of standard normally distributed random variables.

3The unnormalized kernels introduced in Eq. (10) have L + 1 parameters, but due to the normalization performed in Eq. (11) the
considered kernels have effectively L parameters.
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Typically, we do not observe realizations of the random set model Ξ on the entire grid Zd, but on a bounded
(typically cuboidal) sampling window W ⊂ Zd instead. Then, due to stationarity of Ξ,

ε̂i =
1

#W

∑
t∈W

Ξ(t, i) (22)

is an unbiased estimator for εi, for each phase i ∈ {1, 2, 3}, where #W denotes cardinality of the set W .
Furthermore, we consider a generalization of the volume fraction, namely, so-called two-point coverage probability

functions. More precisely, for the i-th and j-th phase with i, j ∈ {1, 2, 3}, the two-point coverage probability function
Cij : {|t| : t ∈ Zd} → [0, 1] is defined by Cij(h) = P(Ξ(o, i) = 1,Ξ(th, j) = 1), where h ∈ {|t| : t ∈ Zd} and th ∈ Zd is
some point with |th| = h, i.e., Cij(h) is the probability that the origin o is associated with the i-th phase, while a
point th with distance h to the origin is associated with the j-th phase.

The estimation of Cij(h) from data is not as straightforward as for volume fractions. First, consider the function
cij : Zd → [0, 1], which is given by

cij(t) =


1

c(t)

∑
s∈W,s+t∈W

Ξ(s, i) Ξ(s+ t, j), if c(t) > 0.

0, else,

(23)

for each t ∈ Zd, where c(t) = #{s ∈ W : s+ t ∈ W}. Then, for each t ∈ Zd such that c(t) > 0, cij(t) is an unbiased
estimator for Cij(h) with h = |t|. Note that for some distances h ∈ {|t| : t ∈ Zd}, there might be several points
t ∈ Zd with |t| ≈ h. Consequently, there might be multiple estimators cij(t) for Cij(h). Therefore, we will use kernel

regression to combine all these estimators. In this manner we obtain an estimator Ĉij(h) for arbitrary distances
h ≥ 0 such that h = |t| and c(t) > 0 for some t ∈ Zd. With the notation A =

{
(|t|, cij(t)) : t ∈ Zd, c(t) > 0

}
, we can

define the quantity Ĉij(h) even for an arbitrary distance h ≥ 0 by putting

Ĉij(h) =

∑
(x,y)∈A K(h−x

b ) y∑
(x,y)∈A K(h−x

b )
, (24)

where K : Rd → (0,∞) denotes the Gaussian kernel and b > 0 the bandwidth, which we set to b = 0.5.
Until now, the estimation of two-point coverage probability functions has been explained for single realizations of

the random set model Ξ. Similarly, this approach can be deployed for multiple realizations. In particular, for d = 2,
Eq. (24) can be utilized to compute two-point coverage probability function from from the experimentally measured
2D images S1, . . . , Sndata

: W2D × {1, 2, 3} → {0, 1} given in Eq. (2). More precisely, by substituting Ξ with Sk in
Eqs. (23) and (24), we obtain the two-point coverage probability function associated with Sk, which we denote by

Ĉ
(k)
ij for each k ∈ {1, . . . , ndata}. Then, a single two-point probability function Ĉdata

ij : [0,∞)→ [0, 1] associated with
the experimentally measured 2D images is acquired by pointwise averaging, i.e., for each h ≥ 0 we put

Ĉdata
ij (h) =

1

ndata

ndata∑
k=1

Ĉ
(k)
ij (h). (25)

2.3.2 Fitting approximative excursion set models

Note that, for some random field models, there are explicit analytical formulas which link the two-point coverage
probabilities Cij(h) of excursion sets with the covariance functions of the underlying random fields and their thresh-
olds, e.g., for excursion sets of correlated GRFs [45]. For such models, this allows for the direct calibration of model
parameters to image data. However, for more complex models, like the isotropic cathode model Ξθ introduced in
Section 2.2.3, to our knowledge such formulas do not exist. Furthermore, even if such formulas existed, minor changes
to the model would immediately bring about the need to derive updated formulas. Therefore, in this section we
describe a computational method that enables a computer-assisted calibration of Ξθ and similar excursion set models
to image data.

For each pair (i, j) ∈ I = {(x, y) : x, y ∈ {1, 2, 3} with x ≤ y}, let Ĉdata
ij : [0,∞) → [0, 1] denote the two-point

coverage probability function estimated from image data by means of Eq. (25). In addition, for each parameter
vector θ ∈ Θ we denote the two-point coverage probability functions of Ξθ by Cij,θ : {|t| : t ∈ Zd} → [0, 1] for each
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pair (i, j) ∈ I. In order to quantify the discrepancy of the two-point coverage probability functions associated with
the model Ξθ and those estimated from image data, we introduce the loss function loss : Θ→ [0,∞) given by

loss(θ) =
∑

(i,j)∈I

hmax∑
h=0

(
Ĉdata

ij (h)− Cij,θ(h)
)2

, (26)

for each θ ∈ Θ, where we set the maximal distance considered to hmax = 100. Then, we can define the “optimal”
parameter θ̂ ∈ Θ by considering the minimization problem

θ̂ = argmin
θ∈Θ

loss(θ). (27)

Note that no analytical formulas exist for the direct computation of the minimum in Eq. (27). Thus, we have to
deploy iterative numerical methods which provide an approximate solution rather than an exact minimum. Typically,
numerical minimization methods require repeated evaluations of the term on the right-hand side of Eq. (27), i.e.,
of loss(θ) for different parameter vectors θ ∈ Θ. However, this necessitates the computation of the values Cij,θ(h),
which cannot be determined explicitly due to the complexity of the underlying model Ξθ. To remedy this problem,
we compute approximations of Cij,θ(h) by means of Monte-Carlo simulation [46]. More precisely, we simulate a
realization ξθ of the model Ξθ on some sufficiently large sampling window W followed by the computation of the
estimate Ĉij(h) by means of Eq. (24). From here on, we denote such estimates computed for model realizations ξθ
of Ξθ by Ĉij,θ(h). By substituting Cij,θ(h) with its approximation Ĉij,θ(h) in Eq. (26), we obtain a loss function

l̂oss : Θ→ [0,∞) given by

l̂oss(θ) =
∑

(i,j)∈I

hmax∑
h=0

(
Ĉdata

ij (h)− Ĉij,θ(h)
)2

, (28)

which can be numerically evaluated for each θ ∈ Θ and approximates the original loss function given in Eq. (26).4

There are numerous numerical methods for minimizing functions, some of which utilize gradient information (i.e.,
gradient descent methods) to efficiently explore the parameter space Θ. In order to deploy gradient descent methods,

we must be able to compute the gradient of l̂oss which is given by

∇θ l̂oss(θ) =

(
∂

∂θ1
l̂oss(θ), . . . ,

∂

∂θp
l̂oss(θ)

)
, (29)

where ∂
∂θk

l̂oss(θ) denotes the partial derivatives of l̂oss for each k ∈ {1, . . . , p}. In particular, due to the chain

rule of differentiation, this would necessitate the computation of the partial derivatives of Ĉij,θ(h) and, even more
critically, the partial derivatives of ξθ(x, i) for each x ∈ W and i ∈ {1, 2, 3}. However, the function θ 7→ ξθ(x, i) is
not differentiable, and thus the partial derivatives ∂

∂θk
ξθ(x, i) do not exist, see Figure 2 (red arrow). This becomes

evident when considering an alternative representation of Ξθ given by

Ξθ(t, 1) = H(X ′(t) +X(t)− λX) and Ξθ(t, 2) = H(Y ′(t) + Y (t)− λY) · (1− Ξθ(t, 1)), (30)

for each t ∈ Zd, where H = 1[0,∞) denotes the Heaviside step function which is not differentiable at 0. Moreover, the

derivatives of H are zero everywhere else, which implies that, if the loss function l̂oss is differentiable, the gradient

∇θ l̂oss(θ) would be a null vector. This phenomenon is subsumed under the vanishing gradient problem, which makes
minimizing the loss function using gradient descent impossible.

We can remedy this issue by substituting H with a differentiable approximate with non-vanishing gradients, e.g.,
a sigmoid-type function. More precisely, the function H̃ given by

H̃(r) = sigmoid(νr) =
1

1 + e−νr
, (31)

4Note that due to approach based on Monte-Carlo simulation, the values of Ĉij,θ(h) depend on model realizations of Ξθ, i.e., the

values Ĉij,θ(h) and consequently the values of l̂oss(θ) are random approximations of Cij,θ(h).
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for each r ∈ R, is differentiable and converges to H for ν → ∞ (we observed that the parameter choice of ν = 10

is reasonable). Then, by substituting H with H̃ in Eq. (30), we obtain an differentiable and approximative version

Ξ̃θ : Zd × {1, 2, 3} → (0, 1) of the model Ξθ that is given by

Ξ̃θ(t, i) =


H̃(X ′(t) +X(t)− λX), if i = 1,

H̃(Y ′(t) + Y (t)− λY) · (1− Ξ̃θ(t, 1)), if i = 2,

1− Ξ̃θ(t, 1)− Ξ̃θ(t, 2), if i = 3,

(32)

for each t ∈ Zd and i ∈ {1, 2, 3}.

parameter
vector θ
(kernel pa-
rameters &
thresholds)

kernels
kα

noise N

independent GRFs
X,Y, X̃, Ỹ , Z̃

correlated GRFs
X,Y,Xc, Yc

correlated χ2-
fields and GRFs

X,Y,X ′, Y ′

excursion
set model Ξθ

approximative
model Ξ̃θ

two-point coverage
probability functions Ĉij,θ

two-point coverage
probability functions C̃ij,θ

Eqs. (10)

and (11)

Eq. (5) Eq. (12)

Eq. (16)

Eqs. (20)

and (21)

Eqs.

(23) and (24)

Eq. (32)Eqs.

(23) and (24)

Figure 2: Computational scheme for mapping the parameter vector θ onto a realization Ξθ and a corresponding
estimate of the two-point coverage probability functions Ĉij,θ (first and second rows). Arrows visualized in black
indicate operations that are differentiable with respect to θ. The red arrow indicates a non-differentiable operation,
i.e., the thresholding performed in Eq. (20) for computing excursion sets is non differentiable. As an alternative a
differentiable approximation is proposed (third row).

Note that by substituting Ξ with Ξ̃θ in Eq. (23), followed by the computation performed in Eq. (24), we determine

an approximative estimate of the two-point probability function Ĉij,θ which we denote by C̃ij,θ. The advantage of

considering C̃ij,θ instead of Ĉij,θ is that the former is differentiable and has non vanishing gradients with respect to
the parameter vector θ. Therefore, we can deploy gradient descent algorithms to calibrate the excursion set model
Ξθ, i.e., to solve the problem given in Eq. (27), using the loss function

l̃oss(θ) =
∑

(i,j)∈I

hmax∑
h=0

(
Ĉdata

ij (h)− C̃ij,θ(h)
)2

, (33)

which approximates the loss function given in Eq. (26) for each θ ∈ Θ. In particular, we use a stochastic gradient
descent approach to iteratively improve the model parameter θ, see Algorithm 1.

We have implemented Algorithm 1 in the Python package PyTorch [47], which enables us to exploit automatic
differentiation, i.e., partial derivatives of loss functions with respect to model parameters are automatically derived
by applying the chain rule. Moreover, in our implementation we deploy fast Fourier transformation to accelerate
the computation of convolutions between kernels and noise [44]—which is performed for simulating GRFs on the
sampling window W , see Eq. (5). Similarly, note that the operation in Eq. (23) (which is necessary to estimate two-
point coverage probability functions) can be formulated by means of convolutions. Consequently, the computation
of two-point coverage probabilities can be accelerated by deploying fast Fourier transformations as well.

After training, we can generate realizations of the model Ξθ̂, see Figure 3a. By visual inspection the morphology
of these realizations statistically deviate quite strongly from the training data shown in Figure 1b. In particular the
boundaries of phases seem to be too rough in model realizations. An explanation for this could be that Algorithm 1
can be considered to be a computational approach of solving the underdetermined system of equations C̃data

ij = Cij,θ,
where the model parameters θ are the unknown variables.
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Algorithm 1 Training approach using two-point probability functions (Inputs: W : sampling window; Ĉdata
ij :

two-point probability functions; nepoch: number of epochs; nsteps: steps per epoch. Output: θ̂: fitted parameter
vector.)

1: procedure TrainTPPF(Ĉdata
ij ,W, nepochs, nsteps)

2: lr← 0.0001 ▷ Learning rate
3: bs← 32 ▷ Batch size
4: initialize θ by simulating Gaussian noise ▷ Parameter vector
5: for e in 1, . . . , nepoch do ▷ Epochs
6: for step in 1, . . . , nsteps do ▷ Model training steps

7: Generate ξ̃1, . . . , ξ̃bs i.i.d. copies of Ξ̃θ on sampling window W ▷ Model realizations

8: From ξ̃ℓ compute C̃
(ℓ)
ij,θ for each (i, j) ∈ I and ℓ = 1, . . . ,bs ▷ Eqs. (23) and (24)

9: l̃oss(θ)← 1
bs

∑bs
ℓ=1

∑
(i,j)∈I

∑hmax

h=0

(
C̃data

ij (h)− C̃
(ℓ)
ij,θ

)2

▷ Approximate loss in Eq. (33)

10: Update learning rate lr according to Adam algorithm ▷ see [48]

11: θ ← θ − lr · ∇θ l̃oss(θ)
12: end for
13: end for
14: θ̂ ← θ
15: return θ̂
16: end procedure

2.3.3 Generative adversarial framework for fitting excursion sets

In the previous section a method has been described for the calibration of the parameters θ of the model Ξθ by
minimizing the discrepancy between two-point coverage probability functions estimated from model realizations and
data, i.e., user-defined statistics have been used for model calibration which might be insufficient for deriving a
digital twin of the data, see Figure 3a. Note that there are data driven methods that can learn further statistics for
distinguishing between model realizations and image data. Therefore, let Ξcutout be a random cutout taken from the
image data S1, . . . , Sndata

such that the size of the sampling window of Ξcutout coincides with the sampling window
W , i.e., we have that Ξcutout : W × {1, 2, 3} → {0, 1}. Now assume that we have some function D with values in the
interval [0, 1] called discriminator that can distinguish between Ξcutout and realizations of the model Ξθ restricted on
W , where we denote the latter by Ξθ|W from here on. Roughly speaking, for a “bad choice” of the model parameter

θ, we have D(Ξcutout) ≈ 1 and D(Ξθ|W ) ≈ 0, or alternatively D(Ξ̃θ|W ) ≈ 0 when considering the approximative

version Ξ̃θ of Ξθ instead. Then, the model parameter θ can be optimized with the goal to make Ξ̃θ indistinguishable
from Ξcutout with respect to the discriminator D, e.g., by solving the following minimization problem

min
θ∈Θ

E
[
(1−D(Ξ̃θ|W ))2

]
. (34)

Typically, the discriminator D is a convolutional neural network (CNN), i.e., it is parameterized by its layer weights,
which we aggregate to θD ∈ ΘD, where ΘD denotes the set of all admissible weights. Thus, we denote a discriminator
with weights θD by DθD . The network architecture considered in the present paper is visualized in Figure 4.

Since the weights θD are typically randomly initialized it is to be expected that the discriminator DθD is unable
to distinguish between model realizations and image data—consequently, it has to be trained, e.g., by solving the
maximization problem

max
θD∈ΘD

E
[
DθD(Ξ

cutout)2
]
+ E

[
(1−DθD(Ξ̃θ|W ))2

]
. (35)

Since the argument θ within the objective function of the minimization problem (34) does not influenceDθD(Ξ
cutout)2,

we can write the optimization problems (34) and (35) as a minmax problem

min
θ∈Θ

max
θD∈ΘD

E
[
DθD(Ξ

cutout)2
]
+ E

[
(1−DθD(Ξ̃θ|W ))2

]
. (36)

Put simply, on one hand, the discriminator learns its own “data-driven” statistics (features of the convolutional
layers), which enable it to distinguish between model realizations and image data. On the other hand, these statis-
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tics are then used for calibration of Ξ̃θ. Such minmax problems are often optimized alternatingly with iterative
optimization methods, i.e., see Algorithm 2 for our computational implementation.

Algorithm 2 Training approach based on generative adversarial framework (Inputs: W : sampling window; Ξcutout:

random cutouts of image data S1, . . . , Sndata
on W ; nepoch: number of epochs; nsteps: steps per epoch. Output: θ̂:

fitted parameter vector.)

1: procedure Train(Ξcutout,W, nepoch, nsteps)
2: lr← 0.0001 ▷ Learning rate model
3: lrD ← 0.0001 ▷ Learning rate discriminator
4: bs← 32 ▷ Batch size
5: initialize θ by simulating Gaussian noise ▷ Parameter vector
6: initialize θD by simulating Gaussian noise ▷ Weight vector
7: for e in 1, . . . , nepoch do ▷ Epochs
8: for step in 1, . . . , nsteps do ▷ Model training steps
9: θ ← GeneratorTrainingStep(θ, θD,W,bs, lr) ▷ Training step

10: end for
11: for step in 1, . . . , nsteps do ▷ Discriminator training steps
12: θD ← DiscriminatorTrainingStep(Ξcutout, θ, θD,W,bs, lrD) ▷ Training step
13: end for
14: end for
15: θ̂ ← θ
16: return θ̂
17: end procedure
18:

19: procedure GeneratorTrainingStep(θ, θD,W,bs, lr)

20: Generate ξ̃1, . . . , ξ̃bs i.i.d. copies of Ξ̃θ on sampling window W ▷ Model realizations
21: loss(θ)← 1

bs

∑bs
ℓ=1(1−DθD(ξ̃ℓ|W ))2 ▷ Eq. (34)

22: Update learning rate lr according to Adam algorithm ▷ see [48]
23: θ ← θ − lr · ∇θloss(θ)
24: return θ
25: end procedure
26:

27: procedure DiscriminatorTrainingStep(Ξcutout, θ, θD,W,bs, lrD)

28: Generate ξ̃1, . . . , ξ̃bs i.i.d. copies of Ξ̃θ on sampling window W ▷ Model realizations
29: Generate ξcutout1 , . . . , ξcutoutbs i.i.d. copies of Ξcutout ▷ Sample data

30: lossD(θD)← − 1
bs

∑bs
ℓ=1 DθD(ξ

cutout
ℓ )2 + (1−DθD(ξ̃ℓ|W ))2 ▷ Eq. (35)

31: if lossD(θD) > 0.4 then ▷ Avoid discriminator overfitting [40]
32: Update learning rate lrD according to Adam algorithm ▷ see [48]
33: θD ← θD − lrD · ∇θD lossD(θD)
34: end if
35: return θD
36: end procedure

Note that the discriminator architecture used in the present paper (see Figure 4) receives 2D images as input,
i.e., we consider sampling windows W = {1, . . . , 201}2. Thus, due to the assumption of isotropy, 2D image data
suffices for the purpose of calibrating a 3D model. A visualization of a model realization after training is shown
in Figure 3b. We believe that the statistical discrepancy to the image data is caused by the slow convergence of
Algorithm 2. Typically, it is difficult to strike a balance between the learning rates of the discriminator and the
model to be calibrated [49].

13



(a) (b) (c)

Figure 3: 2D model realizations of a model trained with Algorithm 1 (a), a model trained with Algorithm 2 (b) and
a model trained with Algorithm 3 (c). The pore space, active material and the solid electrolyte are represented by
black, red and gray color, respectively. All figures use the same length scale.
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Figure 4: Visualization of the discriminator’s network architecture. The α parameter of the LeakyReLU layers is set
to 0.2, see [50] for further details on LeakyReLu layers. The labels above convolutional layers (Conv) indicate the
kernel size (k), the number of feature maps (n) and the stride (s), see [51] for more details on the deployed layers and
their parameters. For example, the label k4n64s2 indicates a convolutional layer with a kernel size of 9, 64 feature
maps and a stride of 1.

2.3.4 Combined fitting approach

In this section we combine the fitting approaches presented in Sections 2.3.2 and 2.3.3. More precisely, for the
purpose of model calibration, we consider a different loss function which uses both user-defined statistics (two point
coverage probabilities) and features learned by a discriminator. In particular, we combine the optimization problems
given by (27) and (36) to obtain the optimization problem

min
θ∈Θ

max
θD∈ΘD

E
[
DθD(Ξ

cutout)2
]
+ E

[
(1−DθD(Ξ̃θ|W ))2

]
+ γ

∑
(i,j)∈I

hmax∑
h=0

(
Ĉdata

ij (h)− Cij,θ(h)
)2

, (37)

where γ > 0 is a weighting factor. The computational implementation for solving this minmax problem is given
in Algorithm 3. A realization of the model Ξθ calibrated in this manner is visualized in Figure 3c, which already
indicates a relatively good match.

Note that for training purposes, we set the maximum number of epochs to nepoch = 5000. In order to improve
the run times of the calibration with Algorithm 3, in practice we use an early stopping criterion that can terminate
the calibration after 100 epochs at the earliest. More precisely, starting with the 101st epoch, at the end of each
epoch, we deploy Monte Carlo simulation [46] to determine the volume fractions and specific surface areas of phases
of microstructures generated by the current model5. Then, the sum of mean absolute errors for these values is

5Note that the specific surface area SV of some phase can be computed from a 3D image by dividing the phase’s surface area [52] by
the volume of the 3D image’s sampling window. By assuming isotropy, the specific surface area can be computed from 2D images by
considering 4

π
LA, where LA denotes the specific perimeter, i.e., the perimeter of the phase in the 2D image divided by the area observed

in the 2D image [15].
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determined, where volume fractions and specific surface areas computed from training data serves as ground truth.
At the end of an epoch, we check whether this error has decreased. If no improvement is observed within 500 epochs,
the training is stopped and θ̂ is set to the parameter vector that led to the smallest error with respect to volume
fractions and specific surface areas.

2.3.5 Identifying and calibrating low-parametric models

Note that the parameter vector θ of the model Ξθ has a relatively large dimension, in particular since each entry of
the parameter vector α of an underlying kernel kα can be considered to be function values of the kernel evaluated on
an equidistant grid, see Eqs. (10) and (11). Consequently, the interpretability of individual entries of the parameter
vector θ is currently not ensured. However, as outlined in Section 1, parametric models have various advantages, e.g.,
they allow for the systematic variation of model parameters to investigate various structural scenarios for the purpose
of virtual materials testing. In this section we show how the model Ξθ can be utilized to derive a low-parametric
model that is suitable for generating morphologies similar to those observed in data and still can be calibrated with
the methods mentioned above, in particular, with Algorithm 3.

Algorithm 3 Training approach for solving (37) (Inputs: W : sampling window; Ĉdata
ij : two-point probability

functions; Ξcutout: random cutouts of image data S1, . . . , Sndata
on W ; nepoch: number of epochs; nsteps: steps per

epoch. Output: θ̂: fitted parameter vector.)

1: procedure TrainCombined(Ξcutout, Ĉdata
ij ,W, nepochs, nsteps)

2: lr← 0.0001 ▷ Learning rate model
3: lrD ← 0.0001 ▷ Learning rate discriminator
4: bs← 32 ▷ Batch size
5: θ ← TrainTPPF(Ĉdata

ij ,W, 1, 100) ▷ Initialize and pretrain generator weights for 100 steps, using Algorithm 1
6: initialize θD by simulating Gaussian noise ▷ Weight vector
7: for step in 1, . . . , 100 do ▷ Pretrain discriminator for 100 steps
8: θD ← DiscriminatorTrainingStep(Ξcutout, θ, θD,W,bs, lrD) ▷ Discriminator pretrain based on Algorithm 2
9: end for

10: for e in 1, . . . , nepoch do ▷ Epochs
11: for step in 1, . . . , nsteps do ▷ Model training steps

12: Generate ξ̃1, . . . , ξ̃bs i.i.d. copies of Ξ̃θ on sampling window W ▷ Model realizations

13: From ξ̃ℓ compute C̃
(ℓ)
ij,θ for each (i, j) ∈ I and ℓ = 1, . . . ,bs ▷ Eqs. (23) and (24)

14: loss(θ)← 1
bs

∑bs
ℓ=1(1−DθD(ξ̃ℓ|W ))2 + γ

bs

∑bs
ℓ=1

∑
(i,j)∈I

∑hmax

h=0

(
C̃data

ij (h)− C̃
(ℓ)
ij,θ(h)

)2

▷ Eq. (37)

15: Update learning rate lr according to Adam algorithm ▷ see [48]
16: θ ← θ − lr · ∇θloss(θ)
17: end for
18: for step in 1, . . . , nsteps do ▷ Discriminator training steps

19: Generate ξ̃1, . . . , ξ̃bs i.i.d. copies of Ξ̃θ on sampling window W ▷ Model realizations
20: Generate ξcutout1 , . . . , ξcutoutbs i.i.d. copies of Ξcutout ▷ Sample data

21: lossD(θD)← − 1
bs

∑bs
ℓ=1 DθD(ξ

cutout
ℓ )2 + (1−DθD(ξ̃ℓ|W ))2 ▷ Eq. (35)

22: if lossD > 0.4 then ▷ Avoid discriminator overfitting [40]
23: Update learning rate lrD according to Adam algorithm ▷ see [48]
24: θD ← θD − lrD · ∇θD lossD(θD)
25: end if
26: end for
27: end for
28: θ̂ ← θ
29: return θ̂
30: end procedure

Therefore, let θ̂ denote the parameter vector obtained by means of Algorithm 3, i.e., the model that has been
calibrated by means of 2D image data is given by Ξθ̂. Recall that this model comprises five underlying GRFs

15



X̃, Ỹ , Z̃,X, Y , see Figure 2, each of which has its own kernel that is parameterized by a relatively high-dimensional
vector, see Eqs. (10) and (11). We denote the kernel of these GRFs by k in this section. From a calibrated
kernel k, by means of Eqs. (6) and (9) we can determine the corresponding covariance function ρ : [0,∞) → R by
ρ(h) = (k ∗ kmirrored)(he1) for each h ≥ 0. By determining a family of parametric covariance functions that can

be used to adequately model the covariance functions ρ associated with the GRFs X,Y, X̃, Ỹ , Z̃, we will derive a
low-parametric model for the morphology of ASSB cathodes as follows.

First, note that there are various low-parametric parametric families of covariance functions like the Cauchy
family and the powered exponential family [15] as well as the cardinal sine function [53]. In addition, by considering
convex combinations as well as products of these covariance functions new parametric families of covariance functions
can be constructed. By testing various combinations of the parametric covariance functions stated above, it turned
out that the parametric covariance functions ρα : Zd → R given by

ρα(t) = α1
sin(α4h)

α4h
e−α5h

α11
+ (1− α1)

(
α2(α3e

−α6h
α12

+ (1− α2)
sin(α7h)

α7h
e−α8h

α13
) + (1− α3)(1 + (α9h)

2)α10

)
,

(38)
for each t ∈ Zd with h = |t|, defines a parametric family of covariance functions that is suitable for modeling the

covariance functions ρ associated with the GRFs X,Y, X̃, Ỹ , Z̃—where6 α = (α1, . . . , α13) ∈ [0, 1]3× (0,∞)10. Then,
by deploying Eq. (8) we obtain a low-parametric isotropic kernel

kα = FFT−1
(√

FFT(ρα)
)
. (39)

This low-parametric kernel can be substituted with the high-parametric kernels defined in Eqs. (10) and (11).
In particular, by substituting the previously considered high-parametric kernels with the low-parametric versions
described in this section, we acquire a low-parametric model Ξ. With an abuse of notation, we denote its low-
dimensional7 parameter vector by θ ∈ Θ ⊂ Rp, the corresponding model by Ξθ as well as the approximative model
by Ξ̃θ. Particularly, since the covariance function given in Eq. (38) is differentiable with respect to its parameters,

the kernel kα given in Eq. (39) and consequently the approximative, low-parametric model Ξ̃θ is differentiable. Thus,
Algorithms 1 - 3 can also be used for calibrating the low-parametric model described in the present section.

As indicated by the visual comparison shown in Figure 3 the results achieved by the high-parametric model seem
to be best, when it is calibrated by means of Algorithm 3. In order to distinguish between the high-parametric and
the low-parametric models calibrated by means of Algorithm 3, we denote them by ΞHP and ΞLP from here on. The
goodness-of-fit of both models is investigated in Section 3.1 and discussed in Section 4.2.

2.3.6 Cylindrically isotropic ASBB cathode model

Recall that the 3D image data depicting the microstructure of the ASSB cathodes indicates anisotropy, in particular,
the microstructure of the composite seems to be cylindrically isotropic. In other words, planar sections parallel to
the x–y plane seem to be isotropic in 2D, see Section 2.1. Therefore, in order to calibrate a low-parametric but
anisotropic model for ASSB cathode microstructures, we will modify an isotropic model that has been calibrated
by means of planar sections parallel to the x–y plane in the previous section. Recalling the motivation presented
in Section 1, low-parametric stochastic 3D models are desirable because they enable the systematic generation of a
wide range of structural scenarios for the purpose of virtual materials testing. Therefore, going forward, we will only
consider the low-parametric model ΞLP to construct a cylindrically isotropic model for the microstructure of ASBB
cathodes, as this will facilitate virtual materials testing in a forthcoming study. Nevertheless, we would like to point
out that the high-parametric model ΞHP has its merits. On the one hand, as we will demonstrate in Section 3.1,
it achieves better results than ΞLP due to its higher flexibility. Furthermore, it was instrumental in enabling us to
select appropriate parametric covariance functions in Eq. (38).

In order to introduce anisotropy with respect to the z-direction, the isotropic model ΞLP will be scaled into
that direction. To determine a suitable scaling factor, we compute chord length distributions from experimentally
measured image data. Formally, the chord length distribution of a random closed set C ⊂ R3 is defined as the length
distribution of a randomly chosen line segment in C ∩ ℓ, where ℓ ⊂ R3 is a line that passes through the origin [15].

6Note that according to [15] the parameter of the powered exponential kernel should have an upper boundary, i.e., the parameters
α11, α12, α13 should be below a value of 2 such that the powered exponential kernel is a valid covariance function. We omitted this
constraint on the parameters, since the model trained without constraints led to reasonably good results.

7The number p of parameters for the low-parametric model is given by p = 5 · 13 + 5 = 70.
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For details on the estimation of chord length distributions from data, e.g., from the 3D image S given in Eq. (1), the
reader is referred to [9].

Assuming isotropy of C, the chord length distribution is independent on the choice of ℓ. In particular, in the
case of isotropy, the chord length distributions for lines ℓ parallel to the x-, y- and z-directions coincide. With
this knowledge, we aim to find a global scaling factor such that the chord length distributions estimated from the
segmented image S into the z-direction matches the distributions of chord lengths in x- and y-directions. Therefore,
let Φx,i,Φy,i,Φz,i : [0,∞) → [0, 1] denote the distribution functions of chord lengths estimated from S for the i-th
phase in x-, y- and z-direction. As the experimentally measured 3D image S exhibits cylindrical isotropy, the chord
length distributions in x- and y-direction are almost identical. Therefore, we determine a more robust estimation for
chord length distributions parallel to the x–y plane by considering Φxy,i =

1
2 (Φx,i +Φy,i) for each i = 1, 2, 3.

Then, we compute a scaling factor ŝ ∈ [0,∞) for the z-direction by solving the following minimization problem

ŝ = argmin
s∈[0,∞)

∫ ∞

0

3∑
i=1

|Φxy,i(t)− Φz,i(ts)|dt. (40)

Finally, by scaling the isotropic low-parametric model ΞLP in z-direction by ŝ = 0.94, we obtain the anisotropic,
low-parametric cathode model ΞALP, which is given by ΞALP(x, i) = ΞLP(x1, x2, ⌊x3ŝ⌉, i), for each i ∈ {1, 2, 3} and
x = (x1, x2, x3) with (x1, x2, ⌊x3/ŝ⌉) ∈W .

3 Results

In this section the spatial stochastic models, which have been calibrated to experimentally measured image data in
Section 2.3, will be quantitatively validated by comparing model realizations to the experimentally measured ASSB
cathode microstructure. In particular, in Section 3.1 we show results achieved by deploying Algorithm 3 to calibrate
the isotropic high- and low-parametric 3D models denoted by ΞHP and ΞLP, respectively. Recall that the experi-
mentally measured 3D image data used for calibration purposes indicates cyllindrical isotropy with respect to the
x–y plane. Therefore, in Section 3.1 we constrain the quantitative comparison between generated microstructures
(i.e., model realizations) and experimentally measured ones to planar 2D sections. Then, in Section 3.2 we quantita-
tively compare 3D microstructures generated by means of the cyllindrically isotropic model ΞALP and experimentally
measured 3D data.

3.1 Structural descriptors for the isotropic models

Now we validate the isotropic models ΞHP and ΞLP, that have been calibrated with Algorithm 3, using the 2D
images as training data S1, . . . , Sndata

. Note that, for the low-parametric model ΞLP it turned out that a learning
rate of 0.001 for the discriminator lead to better results. Planar sections of microstructures generated by the isotropic
models ΞHP and ΞLP are visualized in Figures 5b and 5c, whereas a planar section of the experimentally measured
3D image data is shown in Figure 5a.

(a) (b) (c)

Figure 5: 2D visualization of tomographic image data (a), and of microstructures generated by ΞHP (b) and ΞLP (c).
The pore space, active material and the solid electrolyte are represented by black, red and gray color, respectively.
All figures use the same length scale.
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In order to quantitatively evaluate the goodness-of-fit, structural descriptors are computed for ten 2D microstruc-
tures generated by the models ΞHP and ΞLP, respectively, as well as for the tomographic image data. The structural
descriptors considered to compare microstructures in 2D, are phase-wise volume fractions (see Eq. (22)), specific
surface areas (see Section 2.3.4) and mean chord lengths, where the latter are mean values associated with the chord
length distributions, see Section 2.3.6 and [9]. The resulting structural descriptors for the three phases observed in
2D sections of the experimentally measured image data and of microstructures generated by the isotropic models ΞHP

and ΞLP are listed in Table 1. Besides the aggregated structural descriptors listed in Table 1, we have determined
cumulative distribution functions of the chord lengths within the phases observed in experimentally measured data
as well as in generated microstructures, see Figure 6.

Overall, the high-parametric model ΞHP outperforms the low-parametric model ΞLP which is no surprise since
the former is more flexible, see Section 4.2 for a detailed discussion.
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Figure 6: Chord length distribution functions computed from experimentally measured 3D image data and generated
2D microstructures for the pore space (a), the active material (b) and the electrolyte (c).

volume fraction average chord length [µm] specific surface area[µm−1]

solid electrolyte (data) 0.42 2.39 0.66
solid electrolyte (ΞHP) 0.43± 0.020 2.68± 0.169 0.62± 0.020
solid electrolyte (ΞLP) 0.42± 0.015 3.36± 0.069 0.51± 0.015

active material (data) 0.51 2.06 0.99
active material (ΞHP) 0.51± 0.019 2.18± 0.041 0.96± 0.025
active material (ΞLP) 0.51± 0.014 2.13± 0.067 0.97± 0.013

pore space (data) 0.07 0.40 0.36
pore space (ΞHP) 0.06± 0.002 0.54± 0.009 0.31± 0.018
pore space (ΞLP) 0.06± 0.001 0.45± 0.004 0.31± 0.009

Table 1: Volume fractions, specific surface areas and mean chord lengths associated with the three phases, i.e.,
solid electrolyte, active material and the pore space. Descriptors computed from planar sections of experimentally
measured data are denoted by “(data)”. Averages and standard deviations of these descriptors are determined from
ten 2D microstructures generated by ΞHP and ΞLP.

3.2 Structural descriptors for the cylindrically isotropic model

In order to have a low-parametric model with which we can generate 3D microstructures that mimic experimentally
measured cathode microstructures, we determined the anisotropic model ΞALP by scaling ΞLP in Section 2.3.6.
Recall that, even though ΞHP seems to outperform ΞLP, in Section 2.3.6 we decided utilize the latter to formulate
the low-parametric model ΞALP for ASSB cathode microstructures, as this will facilitate virtual materials testing in
a forthcoming study.
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In this section we validate this final model for the 3D microstructure of ASSB cathodes, by comparing struc-
tural descriptors computed from generated 3D microstructures to those of experimentally measured 3D image data.
To visually validate the goodness-of-fit, in Figure 7, the experimentally measured 3D image data, as well as 3D
microstructures generated by ΞLP and ΞALP are shown.

83.6µm

(a) (b) (c)

Figure 7: 3D visualization of experimentally meausured 3D image data (a), and 3D microstructures generated by
the low-parametric isotropic ΞLP (b) and the anisotropic model ΞALP (c). The pore space, active material and the
solid electrolyte are shown in black, red and gray color, respectively. All figures use the same length scale.

In order to evaluate the goodness-of-fit for ΞALP quantitatively, structural descriptors are computed for 3D
microstructures generated by the model as well as for the experimentally measured 3D image data. Similarly to the
previous section, we computed the volume fractions, the mean chord lengths and the specific surface areas of the
three phases observed in 3D data, where the specific surface area is computed using the method described in [52]. In
addition to these descriptors, we compute further structural descriptors of the solid electrolyte and active material
phase which are known to impact the macroscopic transport properties of materials—as ion and electron transport
play crucial roles in the functionality of batteries. In particular, we consider the mean geodesic tortuosity of the solid
electrolyte and active material phase, which is useful to quantify the complexity of pathways from a starting plane to
an end plane through the considered phase in comparison to a straight line [54]. Notably, the mean geodesic tortuosity
quantifies shorted path lengths through the transport phase. Therefore, it typically exhibits smaller values than other
types of tortuosities like, for example, the medial axis tortuosity [55]. Moreover, as a descriptor for bottleneck effects,
we consider the so-called constrictivity β ∈ [0, 1] of the two transport phases, see [56] for a formal definition. Note
that values of β close to zero indicate pronounced bottleneck effects, while β = 1 indicates no bottleneck effects.
The considered structural descriptors have been computed for the experimentally measured 3D image data as well
as for 3D microstructures generated by ΞALP, see Table 2. Note that direction-dependent descriptors (i.e., the mean
geodesic tortuosity and the constrictivity) have been calculated in z-direction. A detailed discussion of these results
is given in Section 4.2.

volume
fraction

average
chord
length [µm]

specific
surface
area[µm−1]

constrictivity mean
geodesic
tortuosity

solid electrolyte (data) 0.42 2.31 0.64 0.50 1.11
solid electrolyte (ΞALP) 0.45± 0.006 3.80± 0.066 0.47± 0.003 0.65± 0.034 1.08± 0.002

active material (data) 0.51 2.13 0.87 0.75 1.07
active material (ΞALP) 0.48± 0.005 1.99± 0.017 0.92± 0.007 0.85± 0.050 1.07± 0.001

pore space (data) 0.07 0.50 0.58 - -
pore space (ΞALP) 0.08± 0.001 0.49± 0.002 0.57± 0.009 - -

Table 2: Structural descriptors computed for experimentally measured 3D image data. Averages and standard
deviations of the descriptors considered for the model, ΞALP, were computed based on ten 3D microstructures.

Besides these aggregated structural descriptors, we also consider the cumulative distribution functions of chord
lengths in z-direction, see Figure 8.
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Figure 8: Chord length distribution functions computed from experimentally measured 3D image data and 3D
microstructures drawn from ΞALP associated with pore space (a), active material (b) and solid electrolyte (c).

4 Discussion

In this section we discuss the methods and results presented in this paper. In particular, in Section 4.1 we start
with a discussion on the computational methods introduced in the present paper. Then, in Section 4.2 the results
presented in Section 3 are discussed.

4.1 Generative adversarial calibration

The excursion set models proposed in this paper build on the work presented in [54], where excursion sets of correlated
Gaussian random fields have been used to model the microstructure of a three-phase material. Here, we extend this
approach by using correlated χ2-random fields, which are constructed from correlated Gaussian random fields with
a flexible correlation structure, as defined in Eq. (12). This added flexibility enhances our model’s adaptability to
various microstructural patterns but comes at the cost of increased model complexity.

In [54], model calibration could be performed, using analytical formulas that related volume fractions and two-
point coverage probability functions observed in image data with parameters of the model. To our knowledge these
analytical formulas do not hold for the proposed models of the present paper. To overcome this challenge, we have
developed a computational method that facilitates the calibration of our flexible models to volume fractions and
two-point coverage probability functions, see Algorithm 1. The results shown in Figure 3a, however, indicate that
a calibration by means of Algorithm 1 results in a model that generates microstructures with increased surface
roughness. An explanation for this could be that there may exist multiple configurations for the model parameters
that lead to adequately fitting descriptors (two-point coverage probability functions and volume fractions), making
it challenging to uniquely identify well-suited parameters. Therefore, motivated by the framework of GANs, in Algo-
rithm 2 we propose an alternative calibration approach that utilizes a neural network that serves as a discriminator.
Roughly speaking the discriminator is supposed to learn descriptors that enable it to distinguish between generated
and experimentally measured microstructures—thus, during calibration the model tries to minimize the discrepancy
of the descriptors learned by the discriminator. Note that there are many reports in the literature referring to
difficulties when training GANs [49], e.g., it can occur that the discriminator learns descriptors that do not provide
meaningful feedback to the model to be trained [49]. This could explain the large discrepancies between experimen-
tally measured image data and microstructures generated by the model that has been trained with Algorithm 2,
compare Figures 1b and 3b.

To overcome these challenges, we combined both calibration approaches. In Algorithm 3, the model is calibrated
to minimize descriptors learned by a discriminator while also ensuring that the two-point coverage probability func-
tions of the generated microstructures align with those observed in experimentally measured image data. In direct
comparison with the other algorithms, this third approach, as presented in Algorithm 3, yields the best visual re-
sults, see Figure 3c. An explanation for this improvement could be that training with two-point coverage probability
functions already leads to promising results, see Figure 3a. Consequently, the discriminator is trained to distinguish
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between experimentally measured data and already quite realistically looking model realizations. Thus, we believe
that the discriminator is able to learn additional, more meaningful descriptors that can guide model calibration.

4.2 Model validation

In this section we discuss the results achieved by the isotropic high- and low-parametric models ΞHP and ΞLP.
In particular, Table 1 indicates that the volume fractions observed in data nearly coincides with volume fractions
of microstructures generated by ΞHP and ΞLP. In general, the mean chord lengths and specific surface areas are
well reproduced by the models for the active material and the pore space, even if some values are slightly over- or
underestimated. Overall the structural validation of ΞHP and ΞLP by means of Table 1 and Figure 6 indicates that
generated 2D microstructures of these isotropic models fit reasonably well to planar sections of the experimentally
measured 3D image data. In comparison to ΞHP, the low-parametric model ΞLP shows larger deviations with respect
to the specific surface area and mean chord length of the solid electrolyte—where a decrease in goodness-of-fit is
to be expected since the high-parametric model ΞHP is more flexible, i.e., more general than the low-parametric
version ΞLP. Still we have chosen to pursue results of the low-parametric model ΞLP as it will facilitate virtual
materials testing in future research, as outlined in Section 1. However, it is important to emphasize the merits of
the high-parametric model, ΞHP. Its increased flexibility not only yields better results but also plays a crucial role
in guiding the selection of suitable parametric covariance functions in Eq. (38) for constructing ΞLP.

Now we discuss the results obtained by scaling ΞLP into z-direction, to mimic the anisotropy observed in experi-
mentally measured 3D image data—resulting in the model ΞALP. The 3D visualization in Figure 7 of experimentally
measured image data and a 3D microstructure generated by ΞALP indicates a good fit. The goodness-of-fit is mostly
confirmed by the results shown in Table 2 as well as in Figures 8, with the exception of some larger deviations for
descriptors associated with the solid electrolyte phase. These errors shown in Table 2 presumably stem from the
underlying, unscaled model ΞLP listed in Table 1, where we observed similar discrepancies due to additional model
assumptions on covariance functions in Eq. (38). In comparison, to related models that have been fitted to image
data of three-phase microstructures in the literature, we observe similar relative errors, see, e.g., [45]. Given the
complexity of the microstructure of ASSB models, we believe that the results achieved by the low-parametric model
ΞALP are satisfactory, which motivates the deployment of this model for the purpose of virtual materials testing in
future research.

5 Conclusions

We developed a computational framework for computing digital twins for the complex 3D morphologies of multiphase
materials, using excursion sets of random fields. These digital twins can be utilized to generate virtual but realistic 3D
microstructures. Common parametric models of stochastic geometry (e.g., excursion sets of Gaussian random fields)
allow for the generation of realistic, yet unobserved, structures through systematic parameter variation. However,
as model complexity increases—which is necessary to capture more intricate microstructures—the required number
of model parameters increases substantially. On the other hand classical (non-parametric) GANs offer a data-
driven approach for modeling complex 3D morphologies. However, after calibration the systematic variation of their
model parameters for generating diverse, not yet measured structural scenarios can be difficult. Yet, the latter is
of particular interest for virtual materials testing schemes—by systematic variations of model parameters a wide
spectrum of structural scenarios can be investigated, such that the corresponding digital twins can be exploited as
geometry input for numerical simulations of macroscopic effective properties. The method proposed in the present
paper allows for the calibration of parametric excursion set models with increased complexity by combining methods
from stochastic geometry with generative AI, i.e., we utilize so-called two-point coverage probability functions as
well as discriminators that are commonly used for training GANs. Under the assumption of isotropy, the model for
the 3D morphology of multiphase microstructures can even be calibrated using 2D image data.

The proposed calibration method has been deployed to fit a parametric digital twin for the 3D microstructure
of ASSB cathode materials. In future research, the model will be deployed for virtual materials testing. Therefore,
we will investigate how perturbations to fitted parameters influence the structure of generated 3D morphologies.
Therefore, we will calibrate the parametric digital twin using additional image data of ASSB cathode materials with
differently sized solid electrolyte particles, as investigated in [43]. In doing so, we aim to identify additional parameters
within the model’s parameter space. This will enable us to develop strategies for perturbing model parameters to
explore new structural scenarios. More precisely, we will generate a broad spectrum of differently structured 3D
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morphologies on which effective macroscopic properties of the ASSB cathode materials will be simulated by numerical
computations—in this manner, we will derive structure-property relationships that can guide the design of new ASSB
cathode materials. The effective macroscopic properties will be simulated with the software tool GeoDict for which
validated simulation models for ASSB electrodes are in development.
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[7] B. Prifling, M. Röding, P. Townsend, M. Neumann, V. Schmidt, Large-scale statistical learning for mass trans-
port prediction in porous materials using 90,000 artificially generated microstructures, Frontiers in Materials 8
(2021) 786502. doi:10.3389/fmats.2021.786502.

22

http://dx.doi.org/10.22029/jlupub-18458 
http://dx.doi.org/10.22029/jlupub-18458 
https://doi.org/10.1016/j.jpowsour.2016.11.051
https://doi.org/10.1016/j.engfracmech.2024.110370
https://doi.org/10.1016/j.engfracmech.2024.110370
https://doi.org/10.1038/s41524-023-01163-9
https://doi.org/10.1002/adfm.202212462
https://doi.org/10.52710/ijm.v18.i2s.953
https://doi.org/10.1002/aic.15757
https://doi.org/10.3389/fmats.2021.786502


[8] M. Alabdali, F. M. Zanotto, M. Duquesnoy, A.-K. Hatz, D. Ma, J. Auvergniot, V. Viallet, V. Seznec, A. A.
Franco, Three-dimensional physical modeling of the wet manufacturing process of solid-state battery electrodes,
Journal of Power Sources 580 (2023) 233427. doi:10.1016/j.jpowsour.2023.233427.

[9] J. Ohser, F. Mücklich, Statistical Analysis of Microstructures in Materials Science, J. Wiley & Sons, 2000.

[10] P. J. Withers, X-ray nanotomography, Materials Today 10 (12) (2007) 26–34. doi:10.1016/S1369-7021(07)

70305-X.

[11] E. Maire, P. J. Withers, Quantitative X-ray tomography, International Materials Reviews 59 (1) (2014) 1–43.
doi:10.1179/1743280413Y.0000000023.

[12] T. Burnett, R. Kelley, B. Winiarski, L. Contreras, M. Daly, A. Gholinia, M. Burke, P. Withers, Large volume
serial section tomography by Xe plasma FIB dual beam microscopy, Ultramicroscopy 161 (2016) 119–129.
doi:10.1016/j.ultramic.2015.11.001.

[13] B. Prifling, D. Westhoff, D. Schmidt, H. Markoetter, I. Manke, V. Knoblauch, V. Schmidt, Parametric mi-
crostructure modeling of compressed cathode materials for Li-ion batteries, Compututational Materials Science.
169 (2019) 109083. doi:10.1016/j.commatsci.2019.109083.

[14] O. Furat, M. Masuhr, F. Kruis, V. Schmidt, Stochastic modeling of classifying aerodynamic lenses for separation
of airborne particles by material and size, Advanced Powder Technology 31 (2020) 2215–2226. doi:10.1016/

j.apt.2020.03.014.

[15] S. N. Chiu, D. Stoyan, W. S. Kendall, J. Mecke, Stochastic Geometry and Its Applications, J. Wiley & Sons,
2013.

[16] O. Furat, J. Petrich, D. P. Finegan, D. Diercks, F. Usseglio-Viretta, K. Smith, V. Schmidt, Artificial generation of
representative single Li-ion electrode particle architectures from microscopy data, npj Computational Materials
7 (2021) 105. doi:10.1038/s41524-021-00567-9.

[17] M. Neumann, S. E. Wetterauer, M. Osenberg, A. Hilger, P. Gräfensteiner, A. Wagner, N. Bohn, J. R. Binder,
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[53] C. Lantuéjoul, Geostatistical Simulation: Models and Algorithms, Springer, 2013.
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