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URS A. PEUKER2, VOLKER SCHMIDT1

1Institute of Stochastics, Ulm University, 89069 Ulm, Germany

2Institute of Mechanical Process Engineering and Mineral Processing,
Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany

Abstract. In order to link the properties of a feed stream to those of a product in separation
operations such as cake filtration, a comprehensive database is required which often cannot be
achieved through laboratory measurements alone. For this reason, a stochastic 3D model for
the generation of virtual filter cake structures is developed and calibrated to tomographic image
data of experimentally built filter cake structures. In this way, digital twins of real particles
can be simulated using mixed Gaussian random fields on the unit sphere in R3, which are
then spatially arranged to form a three-dimensional artificial filter cake. Its 3D morphology
is validated with respect to geometric descriptors that were not used for model fitting, such
as tortuosity, constrictivity and specific surface area of pore space. In future work, using the
stochastic 3D model developed in the present paper, a large database of systematically varied
artificial filter cakes will be generated by adjusting interpretable model parameters, allowing
for transfer functions to be determined and structure-property relationships to be statistically
investigated.

1. Introduction

In process engineering, it is often necessary to separate liquids from particulate solids [1–3],
for which one option is cake filtration. In this process, a cake of particles is formed on a support
fabric by which further particles are separated from the liquid. This filter cake continues to
grow as the process time increases, until the increasing pressure drop across the bed, requiring
the entire filter cake to be removed. A new separating cake structure is then rebuilt in a next
process cycle. Cake filtration is based on the micro-process of pore flow, which is determined
by the permeability or its reciprocal, the specific filter cake resistance [4, 5]. Often the perme-
ability is linked to just a single geometric particle descriptor, namely the Sauter diameter [6] by
the Carman-Kozeny equation [7] which shows, in many cases, a high numerical error [8]. How-
ever, the entire 3D morphology of the particle collective participating in the process influences
associated effective properties such as capillary pressure, permeability, residual moisture and
saturation. To design a solid-liquid separation process, these properties need to be estimated,
which is done using various empirical, semi-empirical or analytical models [9–11]. In these
process models, information on particle geometry is often reduced to a single aggregated de-
scriptor, which provides only limited quantitative information about the particle system and the
corresponding structure-property relationships. Moreover, these aggregated descriptors alone
are insufficient to fully describe or model process-related effects in detail or in some cases pro-
vide contradictory dependencies that cannot be resolved even in parametric fits [12–14]. It is
important to consider multi-dimensional information on particle geometry to accurately model
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and understand the particle system as well as the corresponding process [15]. The interaction
of various descriptors of the micro-structure of a filter cake is decisive for the performance of
the process, but this cannot be aggregated into a single value. In particular, the internal struc-
ture of the cakes cannot be described by single-value descriptors but rather by distributions of
descriptors [14, 16].

Previous modeling attempts [17–23] have been proposed to capture the relationship between
relevant geometric descriptors and resulting process properties such as particle size and per-
meability. This results in additional model parameters such as modified porosity functions.
However, it is often difficult or outright impossible to isolate the influence of a single particle
shape or size descriptor without altering other relevant descriptors of the particle system. For
example, since the porosity of a filter cake varies when the individual particle size distribution is
changed, it is not possible to say with certainty whether an observed effect is due to the change
in porosity or the change in particle size and/or shape distribution. In order to isolate the influ-
ence of porosity, it would be necessary to vary the porosity over a wide range independently of
other influences. In [24], structure-property relationships were analyzed experimentally, where
it has been concluded that only the porosity and information on the particle size and shape
distributions are geometric variables influencing the effective properties of a filter cake. How-
ever, this theory is difficult to test experimentally, as porosity and packing structure are varied
simultaneously with, for example, particle shape.

In our research, we therefore analyze shape and size descriptors of individual particles in
detail, utilizing tomographic image data of filter cakes which consist of spherical glass beads
and of quartz particles obtained from 3D measurements by X-ray computed tomography (µ-CT),
see Figure 1. The filtration tests correspond to conventional laboratory tests in a pressurised
nutsch with adaptations to the measuring principle of microscopy. From this comprehensive
analysis, we obtain particle-discrete segmented datasets which are used to establish a descriptor
vector for each particle.

Figure 1. Scanning electron microscope images of quartz (left) and glas (right)
particles, with 3D renderings of individual particles from µ-CT measurements.

Unfortunately, the variety of available tomographic image data is not large enough to reliably
determine transfer functions [25] for the relationship between geometric particle descriptors and
filter cake properties we measured in our experiments. One approach to solving this problem is
to expand the database by model-based generation of virtual but realistic filter cake structures.
In this way, transfer functions can be determined to infer filter cake properties and ultimately
process properties from geometric particle descriptors.

Thus, based on tomographic image data, we develop a spatial stochastic model [26, 27] that is
able to generate virtual 3D morphologies of filter cake structures which are statistically similar
to real filter cake structures in an appropriate sense. More precisely, the artificial structures are
validated by their real-life counterparts in terms of geometric descriptors that were not used for
model fitting, such as constrictivity, porosity, tortuosity and specific surface area. Our model
operates in two steps. At first, virtual individual particles are generated by means of a mixed
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Gaussian random field on the unit sphere in R3 [28], which is calibrated to the particles observed
in the segmented tomographic image data using spherical harmonics functions. Such a modeling
approach has previously been used in [25, 29] to model the shape of particles in cathodes of
lithium-ion batteries. In the present paper, we extend this methodology by deploying a rejection
sampling scheme [30, 31] based on the joint distribution of particle volume and sphericity, which
is modeled by means of parametric copula functions [30].

This approach has two main advantages. First, the rejection sampling scheme allows us to
reliably generate particles of a given bivariate size and shape distribution, even when particles
exhibit a pronounced aspherical shape. The latter is often difficult to reproduce with models
based on spherical harmonics. On the other hand, parametric modeling by means of a bivariate
copula function allows us to vary the desired distribution of size and shape as well as their
interdependence systematically by adjusting the corresponding parameters. In this way it is
possible to generate ensembles of particles that each follow a different size and shape distribution
from the same model type without the need for new tomographic image data. In a second step,
these individual particles are then packed into artificial filter cake structures using a forced-bias
algorithm [32, 33].

By means of the presented model we lay the foundation for a large-scale (data-driven) in-
vestigation of structure-property relationships for filter cake structures. The model is able to
generate virtual filter cake structures whose individual particles follow a wide range of shape
and size distributions, so that a large database of varying artificial filter cake structures can be
generated and analyzed with respect to properties of their pore space. In future work, such an
extensive database will be used to quantify the relationships between descriptors of individual
particle geometry and effective properties of the resulting filter cakes such as permeability or
de-watering behavior.

The rest of this paper is organized as follows. In Section 2, the material samples and imaging
techniques considered in this paper are described. Section 3 deals with the segmentation of
gray-scale images, whereas Sections 4 and 5 introduce the single particle model and the filter
cake model, respectively. The results obtained in this paper are presented and discussed in
Section 6. Finally, Section 7 concludes.

2. Materials and Imaging

In order to create a limited but sufficient database for modeling, we selected (i) simple but
application-oriented material types that have certain process properties during filtration and
are therefore suitable for (ii) laboratory experiments on cake filtration and also (iii) allow for
three-dimensional, non-destructive measurements of almost the entire cake structure with a
resolution limit below the particle size to be able to quantify the particle descriptor vectors
considered in this paper. In particular, in Section 2.1 we discuss the selection of materials as
well as their characteristic properties and describe the filtration process, whereas in Section 2.2
we explain the image measurement principle and how we adapted the process to it.

2.1. Materials and filtration experiments. In tomographic studies, the smallest adequate
sample sizes are required to avoid extreme exposure times and high acceleration voltages, while
the required resolution can only be achieved with smaller sample sizes due to the limited geo-
metric magnification. For this reason we developed a downscaled pressure nutsch, which has
been reduced in size compared to conventional laboratory equipment. The laboratory test rig
is a down-scaled pressure nutsch for cake forming filtration according to the German guideline
VDI 2762-2 [34]. It was reduced by 1/100 in filter area which results in a cake formation unit
with a diameter of 5 mm. The downscale procedure is described in [16] in more detail.

The two solid particle systems involved in our studies for filtration tests differ from each other
in terms of particle size and shape as well as with respect to their material properties. Due
to the wide distribution of particle properties, the resulting process characteristics in filtration
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and cake structure vary accordingly. One solid used in the experiments as disperse phase
is soda-lime glass consisting of spherical particles with size x between 70 and 110 µm (B70)
(Sigmund Lindner GmbH, Germany), which is manufactured via dry spraying. The soda lime
glass beads consist of 72.30 m.-% SiO2, 13.30 m.-% Na2O, 8.90 m.-% CaO and 4.00 m.-% MgO
with other additional trace elements. With a density of 2.55 g/cm3, the material has an X-ray
mass attenuation coefficient of 1.49 cm2/g at 20 keV [35]. The second solid, quartz sand with
the commercial designation BCS201, was purchased from Strobel Quartzsand GmbH, Germany,
in the fraction x < 200 µm and is usually used as filling material for construction. The main
component of the second particle system is 99.1 m.-% SiO2 with traces of Fe2O3, Al2O3 and
TiO2 with < 0.3 m.-% each. This results in an X-ray attenuation coefficient of 2.44 cm2/g at
20 keV [35] with a density of 2.65 g/cm3. All densities of the solids were determined using gas
pycnometry (Micromeritics Multivolume Pycnometer AccuPyc II 1340).

All experiments begin with the preparation of the suspension. The continuous phase of the
suspension is an aqueous solution of de-ionized water, potassium iodide (purity > 99.9 m.-%,
Carl Roth, Germany) and glycerol (C3H8O3, purity > 98.5 m.-%, Carl Roth, Germany). This
composition with a density of 1.10 g/cm² results in an attenuation coefficient of 1.68 cm2/g
at 20 keV [35]. The characteristic values for filtration, such as the masses of solids used per
individual test mS, the volume fractions of solids in the suspension φ, and the filtration pressure
differences ∆p applied, are listed in the appendix, see Table A1.

The suspension is stirred at 250 min-1 for 4 min while degassed at pU = 0.2 bar. After
filling the suspension into the nutsch and starting the vacuum pump, the filtrate is collected
inside a condensate separator. The filter medium consists of a calendered polypropylene woven
fabric (05-1010-SK 006, Sefar, Switzerland). For all measurements, filtration ends after gas
breakthrough. In these tests, the flow cell is thoroughly weighed immediately after filtration
and drying (24 h at 80 ◦C), so that the residual moisture RM can be determined. Further
cake properties, like porosity ε, filter media resistance RM, and filter cake resistance rC can be
derived from the recorded filtrate mass curves as a function of time, measured cake heights and
cake masses according VDI 2762-2 [34], see Table A1.

2.2. Image measurement principle. Figure 2 schematically shows the measurement princi-
ple of the Zeiss Xradia 510 Versa microscope, consisting of a basic cone beam imaging µ-CT
system and an extended X-ray microscope (XRM) used for subsequent measurements. With
so-called µ-CT devices, the magnification is strictly geometric, since an optical system does not
refract X-rays. For an X-ray microscope (XRM), after the scintillator, a magnifying optical unit
transmits the visible light by means of different lenses that can be chosen individually. This
design allows optical magnification in addition to the geometric magnification.

Figure 2. Scheme of the measurement principle deployed by the Zeiss Xradia
510 Versa microscope used for all experiments, where a conventional µ-CT device
is followed by an X-ray microscope (XRM).
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The sample, our filter cake structure within the in-situ filter cake unit, is placed between the
X-ray source and the detector, where it is rotated by 360◦ during the measurement. Individual
X-ray images (projections) of the sample are taken at certain angular distances so that after
the measurement a dataset of N projections is obtained covering the entire range 0, . . . , 360◦.

Using a mathematical reconstruction method, a three-dimensional volumetric image of the
sample can be generated from this image information. In our case, this tomographic recon-
struction is performed by means of the filtered back projection (FBP) algorithm [36], which
is implemented in the ZEISS Xradia reconstruction software (Xradia XMReconstructor, v14).
This includes an automatic centre shift and a beam hardening correction with a factor of 0.05,
where the raw data is smoothed by a Gaussian filter with σ = 0.7. The measurement parameters
of both filter cakes mentioned in Section 2.1 can be found in the appendix, see Table A2.

As a result of a measurement, the sample is represented by a three-dimensional array of
cubic voxels, after reconstruction of the projection images at different angles. In particular,
after reconstruction of the projection images, Figures 3a and 3d show 2D slices of the filter
cakes built by glass beads and quartz sand, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 3. Left (a, d): Raw tomographic image data. Middle (b, e): Binarized
image data. Right (c, f): Particle-discrete segmentation obtained from adapted
watershed algorithm. Top (a–c): quartz. Bottom (d–f): glass

3. Image Segmentation

3.1. Binarization. The raw image data contains gray-scale information which makes it difficult
to distinguish whether voxels belong to the pore space or to a particle. We therefore binarize
the image data so that foreground voxels correspond to particles and background voxels to pore
space. Formally, we consider a binary 3D image to be a mapping from the infinite domain
Z3 = {. . . ,−1, 0, 1, . . .}3 to {0, 1}, where the value 1 corresponds to the foreground, and the
value 0 to the background. While digital images are only defined over a finite subset of Z3, they
can be extended to Z3 in an appropriate sense to fit into this framework, usually by assigning
a constant value to voxels outside the finite domain. The binarization of gray-scale images
is achieved by means of the algorithm Intermodes [37] implemented in the image processing
software Fiji [38]. This algorithm assumes that the histogram of the underlying gray-scale values
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within the image data is bimodal, which is the case for the tomographic image data considered
in this paper. If the values of the two local maxima are given by s1, s2 ∈ R = (−∞,∞), then
the threshold for binarization is set to t = (s1 + s2)/2. Iterative smoothing of the histogram
is used to determine these maxima. The resulting binarizations are visualized in Figures 3b
and 3e.

3.2. Particle-discrete segmentation. With the binarized tomographic image data at hand,
we now describe how to obtain a particle-discrete segmentation. More precisely, this type
of segmentation is a mapping S : Z3 → {0, 1, 2, . . .} that assigns a positive integer to every
foreground voxel of the tomographic image data and 0 to voxels belonging to the background.
Voxels that are assigned the same positive integer are considered to belong to the same particle.
The procedure that we use for determining such a particle-discrete segmentation is based on
the watershed algorithm [39]. For this, we consider the Euclidean distance transform of binary
image data. More precisely, given a binary image B : Z3 → {0, 1}, the Euclidean distance
transform D : Z3 → [0,∞) of B assigns every voxel v ∈ Z3 a value that corresponds to the
shortest distance from v to the nearest background voxel, i.e., the nearest voxel with value 0 in
the binary image B. Formally, the Euclidean distance transform D is given by

D(v) = inf{∥w − v∥ : w ∈ Z3, B(w) = 0}, (1)

for any v ∈ Z3, where ∥ · ∥ denotes the Euclidean norm on R3. Clearly, if B(v) = 0, then
D(v) = 0 for any v ∈ Z3. Intuitively speaking, the watershed algorithm then treats D as a
topological map, where water sources are placed at regional minima, and the map is flooded with
water rising from these sources. The ridges, along which the water from distinct sources meet,
induce a particle-discrete segmentation of the original binary image. The final number of regions
detected by this algorithm is identical to the number of initially placed water sources, and thus
to the number of regional minima of the Euclidean distance transform. Therefore, the watershed
algorithm is often prone to oversegmentation and requires some adjustments. In particular, we
make use of morphological reconstruction [40] to reduce the effect of oversegmentation [41],
which has been used in [42] to get an appropriate particle-discrete segmentation of gray scale
image data. For a gray-scale image G : Z3 → R, morphological reconstruction involves iterative
morphological dilation G⊕ E of G with a structuring element E ⊂ Z3, defined as(

G⊕ E
)
(v) = max

w∈E
G(v + w) (2)

for any v ∈ Z3. After every iteration, the point-wise minimum of the dilated image and a
predefined mask image M : Z3 → R is taken. Note that in order to make sense of Eq. (2)
for real world applications, the digital image, leading to G, needs to be extended to Z3 by its
minimum value (instead of simply extending it with the value 0). Formally, we then set G0 = G
and Gk = min{M,Gk−1 ⊕ E}, repeating this procedure until Gk = Gk−1 for some integer
k ≥ 1. The resulting image Gk is the morphological reconstruction of the so-called marker
image G using the structuring element E and the mask M . Various image processing tasks can
be performed by use of morphological reconstruction with different choices of G and M , such as
filling holes, detecting connected components, or finding regional minima or maxima [39]. For
our application of reducing oversegmentation in the watershed algorithm, the marker image is
chosen as (1 − α)D, where D is the Euclidean distance transform defined in Eq. (1), and α is
a manually chosen parameter. In our case, both the values of α = 0.25 for quartz sand and
α = 0.3 for glass have been determined manually to yield good results. The mask image M
is then set to be the Euclidean distance transform D. The structuring element E is a cube
with a side length of 3 voxels. Intuitively speaking, this choice of marker and mask image
causes small ridges of the topological map D to disappear, so that only significant ridges are
considered, which counteracts oversegmentation. The watershed algorithm is then applied to the
resulting morphological reconstruction, yielding a particle-discrete segmentation S, visualized
in Figures 3c and 3f.



7

3.3. Validation via laser diffraction measurements. From the segmented image S : Z3 →
{0, 1, 2, . . .} we readily obtain a particle size distribution by counting the number of voxels that
belong to each particle. Formally, this corresponds to counting the number of elements in each
of the pre-images S−1({i}), i ∈ N = {1, 2, . . .}. The quality of the segmentation S is assessed by
comparing this distribution to that obtained via laser diffraction measurements for both quartz
and glass particles.

For this, the particles are dispersed in a 1 g/L aqueous TNPP solution (C45H69O3P) and
ultrasonicated for 2 min. Three laser diffraction measurements were taken and the resulting
distributions (Fraunhofer approximation) were determined using Sympatec HELOS/Qixel-R5,
which has a measuring range of 4.5 to 875 µm. Note that the particle size determined in this
way is the diameter of the diffraction equivalent sphere.

Figure 4 shows the distributions of particle sizes, expressed by means of their volume-
equivalent diameters, which have been acquired via image segmentation and laser diffraction
measurements, for both quartz and glass particles. We observe that there is a high agreement
between the distributions obtained by image segmentation and laser diffraction measurement for
glass particles, and a slightly larger discrepancy between these distributions for quartz particles.
It is worth noting that particle size distributions determined by laser diffraction measurements
assume particles to be perfectly spherical, which can be part of the reason for the deviations
observed in Figure 4 for the more aspherical quartz particles.

volume equivalent diameter in µm

p
d

f

Figure 4. Probability density functions (pdf) of volume-equivalent diameters
determined by laser diffraction (solid lines) and image segmentation (dashed
lines).

4. Single particle model

In this section we describe the methods used to derive a stochastic model for the outer
shape of individual quartz and glass particles. Our model is based on a spherical harmonics
representation for generating random particle shapes as described in Section 4.1 below. This
parametric model is calibrated separately to the tomographic image data of quartz and of glass
particles, obtaining two distinct sets of parameters that correspond to the very different shapes
of quartz and glass particles. The goodness of model fit is evaluated in Section 4.2. Afterwards,
the two model instances are combined into a single model, where the size and shape of generated
particles is controlled by a rejection sampling scheme. The advantage of this approach is that we
can simulate particles of a desired size and sphericity distribution without the need to recalibrate
the parameters of the spherical harmonics expansion. Instead, we can virtually vary the shapes
of particles solely through the rejection sampling. This is greatly beneficial for subsequent
(virtual) structural scenario analyses, where no tomographic image data is available for model
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calibration, while varying the target distribution in rejection sampling is feasible without new
tomographic measurements of different particle systems.

More precisely, the two initial model instances are combined by drawing on average half of the
realizations from the model instance calibrated to quartz particles, and on average the other
half from the model instance calibrated to glass particles. For this, the joint distribution of
volume and sphericity for both tomographic image data and model realizations of quartz and
glass particles is represented using a parametric copula fit, which is introduced in Section 4.3.1.
The usage of copula functions allows us to model the dependency between particle sizes and
shapes accurately while maintaining a high flexibility for the choice of parametric families for the
univariate marginal distributions. Based on these fits, the joint probability density of volume
and sphericity for the mixture of the two model instances is given as a linear combination of
the individual joint probability densities. This linear combination is then used as the source
distribution of the rejection-acceptance method, which allows us to reject or accept the drawn
samples based on the desired joint distribution of particle volume and sphericity, as described
in Section 4.3.2.

4.1. Spherical harmonics representation. The stochastic 3D model for single particles of
both quartz sand and glass particles is based on the theory of spherical harmonics, following the
approach developed in [29]. For this, we assume that the individual particles are star-shaped,
which means that every particle has a so-called star point, from which the line segment to any
other point of the particle is fully contained within the particle. Formally, we require that for
every particle P ⊂ R3, there exists a point s ∈ P , such that for any other point t ∈ P , and any
λ ∈ [0, 1], it holds that s+λ(t−s) ∈ P . The outer shell of such a particle can then be described
by a radius function r : S2 → [0,∞), where S2 = {u ∈ R3 : ∥u∥ = 1} is the unit sphere. For any
direction u ∈ S2, the value r(u) is the distance from the star point to the particle boundary
in direction u. In order to stochastically model the outer shell of the individual particles, it
suffices to determine random functions from S2 to [0,∞) which behave statistically similar to
the radius functions of observed particles. For this, we use a suitably chosen family of random
fields X = {X(u) : u ∈ S2} on the unit sphere S2 [43]. In particular, we assume that X is the
mixture of motion-invariant, i.e., stationary and isotropic, Gaussian random fields [28]. The
assumption of stationarity and isotropy leads to great reductions in model complexity, which
simplifies the estimation of model parameters. On the other hand, by considering mixtures
of Gaussian random fields we ensure flexibility that allows us to accurately represent a wide
spectrum of particle shapes through the model, without adding significant complexity to model
calibration. Formally, for any fixed integer k > 1, a mixture of Gaussian random fields is given
by k (stochastically independent) Gaussian random fields X1, . . . , Xk on S2 and probabilities

p1, . . . , pk ∈ [0, 1] such that
∑k

i=1 pi = 1. Then,

X =


X1, with probability p1,
...

Xk, with probability pk.

(3)

The number of components k, the mixing probabilities p1, . . . , pk as well as the parameters
of each of the k Gaussian random fields X1, . . . , Xk have to be estimated from image data.
For more information on Gaussian random fields themselves and the estimation of parameters
for mixtures of Gaussian random fields, we refer to [29]. In practice, any realization of the
random field X needs to be discretized. This means that in order to generate a realization
of X we first randomly choose one of the Gaussian random fields X1, . . . , Xk according to the
probabilities p1, . . . , pk and then evaluate the chosen Xi at a certain number m > 1 of grid
points u1, . . . , um ∈ S2, which corresponds to generating a realization of the m-dimensional
(normally distributed) random vector

(
Xi(u1), . . . , Xi(um)

)
.
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The model is calibrated separately to the datasets of quartz and of glass particles, yielding two
distinct instances of the model with different parameter values, see Figure 5. In the following,
we will denote the mixtures of Gaussian random fields calibrated to tomographic image data of
quartz and glass particles by XQ and XG, respectively.

4.2. Evaluating the fitted mixtures of Gaussian random fields. In order to validate
the fitted mixtures of Gaussian random fields XQ and XG, we consider the volume and the
sphericity of each particle. Note that the sphericity is a quantity that measures the deviation
of particle shape from that of a sphere. It is defined as the ratio between the surface area of
a sphere with the same volume as the considered particle and the surface area of the particle.
Since the sphere has the lowest ratio of surface area to volume, the sphericity always takes
values between 0 and 1, where it is equal to 1 if the particle is a sphere and smaller than 1 for
particles with non-spherical shapes.

Thus, both the volume and the surface area are needed in order to compute the sphericity
of measured and simulated particles. By evaluating the mixed Gaussian random fields XQ and
XG at gridpoints u1 . . . , um ∈ S2, we obtain a triangular mesh of the unit sphere, where each
triangle is defined by some triplet (ui1 , ui2 , ui3). Summation of the areas of these triangles yields
an estimator for the surface area of particles. An estimator for the volume of particles is obtained
by summing up the volumes of the tetrahedra defined by the quadruple (ui1 , ui2 , ui3 , o), where
o = (0, 0, 0) ∈ R3 denotes the origin. In Figures 5a and 5b univariate probability densities of
(number weighted) particle volume and sphericity are visualized for model realizations as well
as for particles observed in tomographic image data.

p
d
f

vol. eq. diam. in µm

(a)

p
d
f

sphericity

(b)

vol. eq. diam. in µm

(c)
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Figure 5. Number-weighted distributions of volume equivalent diameter and
sphericity of measured and simulated particles of both glass and quartz particle
systems: the univariate probability densities of (a) volume-equivalent diame-
ter and (b) sphericity, and (c) their joint bivariate probability densities. For
tomographic image data, 155890 glass and 57977 quartz particles have been con-
sidered. For simulated data, 50000 particles were generated in each case.

It turned out that the distribution of particle volumes observed in tomographic image data
is nicely represented by the model for both the quartz and glass data sets, see Figures 5a.
However, while the sphericity of the largely spherical glass particles is also well reproduced,
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the sphericity of the aspherical quartz particles is less accurately captured by the model, see
Figure 5b. Although the overall shapes of the density functions are similar, the distribution of
the sphericity of simulated quartz particles is shifted towards higher values. We believe that a
reason for this discrepancy might be the fact that particle shapes with rough edges are typically
difficult to mimic accurately by means of the spherical harmonics approach. Moreover, Figure 5c
shows that the dependency between the size and shape descriptors is not correctly reproduced
by the model, in both cases. In the following, we therefore combine the model presented in
Section 4.1 with a rejection sampling scheme.

4.3. Copula-based rejection sampling. As explained in Section 4.2, the mixtures of Gauss-
ian random fields introduced in Section 4.1 are not able to represent the shape of the aspherical
quartz particles sufficiently well. We therefore combine this modeling approach with a copula-
based rejection sampling scheme [30, 31]. In the case of quartz particles, this will allow us to
discard model realizations of particles which are too spherical, and only accept those realizations
which exhibit a realistic sphericity value.

More precisely, we can readily sample particles whose volume and sphericity follow the bi-
variate probability density visualized in Figure 5c by solid blue contour-lines, where the samples
are drawn from the random field XQ, as explained in Section 4.1. However, we would like the
volume and sphericity of our samples to follow the bivariate probability density of particle de-
scriptors observed in tomographic image data, visualized by the dashed orange lines in Figure 5c.
This can be achieved by repeatedly drawing samples from the random field XQ (the volume
and sphericity of which follow the bivariate density depicted in blue) and rejecting or accepting
a sample with an appropriate probability, depending on the particular sphericity and volume
of that sample. In order to determine the correct probability of rejection or acceptance, it is
convenient to have an analytical representation of all involved probability densities. Therefore,
we first fit a parametric function to the bivariate probability density of sphericity and volume
for all cases, i.e., for samples drawn from the models XQ and XG as well as for the tomographic
image data of both quartz and glass particle systems. When modeling such multivariate dis-
tributions, a copula-based approach allows us to model the univariate marginal distributions
and the correlation structure of the underlying one-dimensional particle descriptors separately.
In this way, we are not restricted to the limited choice of conventional parametric families of
bivariate probability densities.

Moreover, this approach allows us to combine the models XQ and XG into a single model
for the individual particle shapes, which is able to produce particles that meet a wide range
of predefined joint distributions of volume and sphericity. In this way, it is not necessary to
recalibrate the model to tomographic image data of newly measured particles. Instead, one can
generate virtual particles and, subsequently, virtual filter cake structures by merely defining the
desired joint distribution of volume and sphericity. To this end, we will sample from the models
XQ and XG with a probability of 0.5 each. That is, we consider the combined model XQ,G

which is given by

XQ,G =

{
XQ, with probability 1

2 ,

XG, with probability 1
2 .

(4)

Note that the bivariate probability density of sphericity and volume for samples drawn from
XQ,G is a linear combination of the corresponding bivariate probability densities associated
with XQ and XG, respectively. Based on this mixed sampling approach, we employ rejection
sampling in order to reproduce the desired joint distribution of sphericity and volume, for both
the quartz and glass datasets.

Therefore, we first present some basic background of copula theory in Section 4.3.1, including
how copulas can be utilized to derive and fit multivariate parametric probability distributions
to data. Then, in Section 4.3.2, we show how the obtained parametric fits can be deployed for
rejection sampling.
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4.3.1. Copula fits. The parametric modeling approach that we deploy in this paper is based on
the theory of copulas [30]. In this way, any probability density of a multi-dimensional random
vector can be decomposed into a product of its univariate marginal probability densities and an
appropriately chosen copula density, which captures information on the dependencies between
the underlying one-dimensional random variables.

In the following, we will explain the copula approach specifically for the two-dimensional
case, although it generalizes in a straightforward way to arbitrary dimensions. The idea is that
instead of modeling bivariate densities directly, the fitting procedure is split into two steps.
In the first step, the univariate densities are modeled by a parametric fit. The correlation
structure of the underlying one-dimensional particle descriptors is then represented by a copula,
which is modeled in a second fitting step by comparing the goodness-of-fit between a wide
range of parametric copula families [44]. Finally, the univariate distributions and the copula
are combined into a parametric model of the bivariate probability density. Such a modeling
approach allows for great flexibility in modeling various types of dependency structures without
restricting the modeling of the univariate distributions.

Formally, a bivariate copula C : [0, 1]2 → [0, 1] is the (joint) cumulative distribution function
of a random vector U = (U1, U2) such that the marginal distributions of its components U1

and U2, are uniform on the unit interval [0, 1]. Sklar’s representation theorem (cf. Theorem 1.1
in [30]) states that for any bivariate distribution function F : R2 → [0, 1] of a 2-dimensional
random vector there exists a copula C such that F can be written in terms of its marginal
distribution functions Fi, i = 1, 2, and C as

F (x1, x2) = C
(
F1(x1), F2(x2)

)
, for all x1, x2 ∈ R. (5)

Moreover, if the distribution function F has a bivariate density f : R2 → [0,∞), the following
differential version of Eq. (5) holds:

f(x1, x2) = c
(
F1(x1), F2(x2)

)
f1(x1)f2(x2), for all x1, x2 ∈ R, (6)

where fi : R → [0,∞) is the univariate probability density corresponding to the distribution
function Fi, i = 1, 2, and the so-called copula density c : [0, 1] → [0,∞) is the bivariate proba-
bility density corresponding to C. In particular, if C is differentiable, then the copula density
c is given by

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
, for all u1, u2 ∈ [0, 1]. (7)

In the present paper, a modeling approach in the sense of Eq. (6), using parametric fits for
the univariate probability densities f1, f2 and the copula density c, is employed for the bivariate
probability density of sphericity and volume of particles computed from tomographic image data
as well as for samples drawn from the models XQ and XG introduced in Section 4.1. The re-

sulting parametric fits for the bivariate probability densities are denoted by f tomo
Q , f tomo

G , fmodel
Q

and fmodel
G , for tomographic image data of quartz and glass particles, and for the realizations of

XQ and XG, respectively. The specific parametric families used to model the bivariate proba-
bility densities for each case are provided in the appendix, see Tables A4 and A5. Furthermore,
visualizations of these densities are given in Figure A1.

4.3.2. Rejection sampling. In order to reproduce the densities f tomo
Q and f tomo

G computed from
from tomographic image data by means of samples drawn from the combined model XQ,G, we
deploy rejection sampling [31]. In general, rejection sampling is one of the most accessible and
widely applicable methods to sample from a desired target distribution, given that it is possible
to sample from a so-called source distribution that is reasonably close. The idea is to sample
repeatedly from the source distribution, and either reject or accept the obtained realization
with a probability that depends on the ratio of two probability densities.
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More precisely, let f, g : R2 → R be the probability densities of the source and target distri-
bution, respectively. At first, a normalization constant M ≥ 1 is chosen such that

g(x)

Mf(x)
≤ 1, (8)

for all x ∈ R2. Note that for the existence of such an M , it is necessary that the support of the
target probability density g is contained within the support of the source probability density f ,
i.e., if for some x ∈ R it holds that f(x) = 0, then also g(x) = 0. In our case, this condition
is even sufficient, as the densities which appear in our modeling approach are all bounded with
bounded support. The procedure of drawing a sample from the probability density g is then
given as follows:

(i) Draw a sample x ∈ R2 from the source probability density f .
(ii) Draw a uniformly distributed pseudo-random number u between 0 and 1.

(iii) If u ≤ g(x)
Mf(x) , then accept x. Otherwise, reject x and repeat from (i).

Note that the probability of acceptance is given by 1/M , see Chapter 3 in [31]. Hence, it
is desirable to choose M as small as possible such that Condition (8) is satisfied, i.e., M =
supx∈R g(x)/f(x). As already mentioned above, in our case a feasible choice of M is possible,
because all parametric univariate densities and bivariate copula densities used for fitting are
bounded.
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Figure 6. Number-weighted distributions of volume-equivalent diameter and
sphericity of measured and simulated particles of both glass and quartz particle
systems: the univariate probability densities of (a) volume-equivalent diameter
and (b) sphericity, and (c) their bivariate joint probability density. Simulated
particles are drawn from the combined model XQ,G using copula-based rejection
sampling. The parameteric fits f tomo

Q and f tomo
G used as the target distributions

of the rejection sampling are indicated by dashed lines. For tomographic image
data, 155890 glass and 57977 quartz particles have been considered. For simu-
lated data, 50000 particles were generated in each case.

We apply the rejection sampling approach described above as follows. Since we draw samples
from the combined model XQ,G, i.e., from both models XQ and XG with equal likelihood, the
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density f of the source distribution is given by a mixture of the parametric densities fitted in
Section 4.3.1, which means that

f(x) =
1

2

(
fmodel
Q (x) + fmodel

G (x)
)
, (9)

for all x ∈ R2. After having drawn a virtual particle from XQ,G, we compute its sphericity and
volume, which constitutes the sampling of a vector x ∈ R2 as in step (i) of the rejection sampling
algorithm stated above. The normalization constant M was heuristically set to 20, which did not
result in any violations of Condition (8). The target density g is then chosen as the parametric
fit of the joint density of volume and sphericity computed from tomographic image data of
either the quartz or glass particle system, given by f tomo

Q and f tomo
G , respectively. Analogously

to Figure 5, the univariate and joint probability densities of (number-weighted) particle volume
and sphericity obtained for simulated particles via rejection sampling are visualized in Figure 6.
While there are still differences between the bivariate densities of glass particles simulated
with rejection sampling and glass particles observed in tomographic image data, we can see a
significant improvement in comparison to Figure 5, especially for the more aspherical quartz
particles.

5. Virtual filter cake model

With the single particle model described in the previous section at hand, we can now simulate
an arbitrary number of particles that meet a given joint distribution of volume and sphericity.
The next step is to arrange these particles in a cuboidal reference volume, which stands for
a representative part of a filter cake. The size of this volume is determined by the desired
porosity of the resulting particle system, i.e., the volume fraction of the pore space. At first,
a fixed number n > 1 of particles is drawn from XQ,G using rejection sampling as described in
Section 4.3.2. The total volume of these particles can be used to determine the necessary size of
the cuboidal sampling window, so that the final porosity of the packed particle system matches
the one observed in tomographic image data. That is, for a given target porosity ε ∈ [0, 1], we
obtain a side length of the cuboidal sampling window of

a =

( n∑
i=1

Vi

1 − ε

)1/3

, (10)

where Vi is the volume of the i-th particle drawn from the combined model XQ,G. In order to
spatially arrange the n generated particles, placeholder spheres with volume-equivalent radii are
initially positioned by sampling their centre coordinates uniformly within the cuboidal volume.
Then, a force-biased algorithm [32, 33] is applied to reduce the overlap of the sphere system
as far as possible. This is done by iteratively moving each sphere according to a force that
is determined by the overlap with neighboring spheres. If a sphere is free of overlaps, it will
not be moved any further, unless the movement of other spheres introduces an overlap in a
later iteration. As the porosities which have been observed in the samples considered in this
paper are above 0.35, we obtain an overlap-free sphere system within reasonable runtime of the
algorithm. Finally, each placeholder sphere is replaced by a discretized version of the corre-
sponding originally simulated particle. For this, the particles drawn from the combined model
XQ,G are discretized along the standard Cartesian coordinate system. Note that since the mixed
Gaussian random fields modelling the outer particle shapes are isotropic, their distribution is
invariant under rotation. Thus, discretizing the particles along a differently chosen orientation
would not affect the distribution of the radius functions. However, this replacement of spheres
by non-spherical particles generated by XQ,G can introduce slight overlaps within the particle
system. A more detailed and quantitative discussion of this effect is given in Section 6.2 below.



14

6. Results and discussion

6.1. Geometric descriptors of pore space. We validate our model for virtual filter cake
structures with respect to various geometric descriptors of the pore space. For this, we simulate
10 virtual filter cakes for both systems of quartz and glass particles, consisting of 5000 particles
each as described in Sections 4 and 5, see Figure 7. From the binary 3D images resulting from
this simulation, a layer of 20 voxels thickness (60 µm) is removed from each side for subsequent
computation of geometric descriptors. The average size of the sampling windows obtained in
this way is 5113 and 3123 voxels for quartz and glass particles, respectively.

(A)

(a)

(B)

(b)

(C)

(c)

(D)

(d)

Figure 7. 3D renderings of measured and simulated filter cake structures. Top
row: filter cakes based on measured (A) and simulated (B) quartz particles. Bot-
tom row: filter cakes based on measured (C) and simulated (D) glass particles.
For visualization purposes, the renderings in subfigures (A) and (C) only show
small cutouts of the available tomographic image data. Furthermore, two differ-
ent perspectives of single particles are shown for measured (a) and simulated (b)
quartz particles, as well as measured (c) and simulated (d) glass particles.

The simulated filter cakes are then compared to tomographic image data of the correspond-
ing particle system. The geometric descriptors which we consider for this comparison have
been chosen as they showed to significantly influence effective transport-related properties in
functional materials [45].

First, we consider the porosity ε, being the volume fraction of the pore space. This geometric
descriptor is computed by simply counting the number of voxels that belong to the pore space
and dividing it by the total number of voxels in the sampling window. We also consider the
specific surface area SV , i.e., the surface area per unit volume, which is estimated based on
voxelized image data using the algorithm proposed in [46], which considers a weighted 2× 2× 2
neighborhood of each voxel. This quantity is indirectly used for model calibration, as our
rejection sampling approach is designed to reproduce the desired sphericity distribution among
individual particles, and the sphericity of particles is closely related with the surface area of
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pore space. These two descriptors, ε and SV , of the filter cake structure are primarily influenced
by shape factors of individual particles, namely volume and surface area, which are fitted by
design of the single particle model. However, the remaining geometric descriptors that we use
for model validation are not related to the fitting procedure of the single particle model, which
makes them more suitable for validation purposes.

One of these descriptors is the mean geodesic tortuosity τ , which quantifies the length of
shortest paths through the material within the pore space in comparison to the thickness of the
material. We consider paths along the z-direction, as this aligns with the natural flow occurring
in the pore space during filter cake formation. For each pore space voxel of the first slice of
the tomographic image data in z-direction, we compute the length of the shortest path through
the pore space and divide it by the height of the tomographic stack in z-direction. The mean
geodesic tortuosity τ is then estimated by the sample mean of these ratios. We stress that there
are many different notions of tortuosity which differ in the types of paths that they consider.
For an overview of various notions of tortuosity, we refer the reader to [47].

Next we consider the so-called continuous pore size distribution defined as in [48], i.e., the
function CPSD: [0,∞) → [0, 1], which is based on morphological opening [39, 49]. For each
r ≥ 0, the value CPSD(r) is estimated by the fraction of voxels of the pore space which can
be covered by spheres that are fully contained within the pore space. Formally, let P ⊂ W
denote the subset of voxels belonging to the pore space within our sampling window W ⊂ Z3.
Furthermore, for any subset A ⊂ W , by |A| we denote the cardinality of A. The continuous
pore size distribution is then given by CPSD(0) = 1 and

CPSD(r) =

∣∣(P ⊖B(o, r)
)
⊕
(
B(o, r) ∩ Z3

)∣∣
|P |

, (11)

for any r > 0, where ⊖ and ⊕ denote morphological erosion and dilation [39, 49], respectively,
and B(o, r) ⊂ R3 is the open ball in the three-dimensional Euclidean space R3 with radius r
centered at the origin o ∈ R3. An efficient implementation for the computation of CPSD(r) for
r > 0 is given by means of the Euclidean distance transform [39, 50].

Another geometric descriptor of the pore space is the so-called simulated mercury intrusion
porosimetry. Here, similar to CPSD, we consider a function MIP: [0,∞) → [0, 1], which is
related with covering the pore space by spheres of varying radii that are completely contained
within the pore space. However, we now consider spheres that intrude the pore space in W
from a predefined direction. Thus, in contrast to CPSD(r), a position within the pore space is
considered to be coverable in the context of MIP(r) if it is reachable by a sphere of radius r ≥ 0
from the predefined direction. In this way, we can account for and quantify bottleneck effects
within the pore space. Formally, we can write

MIP(r) =

∣∣C(P ⊖B(o, r), H0

)
⊕
(
B(o, r) ∩ Z3

)∣∣
|P |

(12)

for any r ≥ 0, where for any set of voxels A ⊂ W , the set C(A,H0) ⊂ A denotes the subset of
voxels within A that are reachable by a path that is contained in A and starts in a predefined
planar set of voxels H0 ⊂ A. In our case, the planar voxel set H0 is chosen to be aligned with
the (x, y)-plane, so that the direction of simulated mercury intrusion porosimetry is aligned
with the natural flow occurring in the pore space during filter cake formation. However, for
the tomographic image data considered in this paper, different choices of H0 lead to nearly
identical resulting MIP-curves which is a strong indication of isotropy. The computation of the
set C(A,H0) is implemented by means of the Hoshen-Kopelman algorithm [51].

Finally, we consider the constrictivity β, which is a geometric descriptor of pore space that
quantifies the strength of bottleneck effects, using information of the functions CPSD and MIP
explained above. In particular, we consider two characteristic radii, denoted by rmax and rmin,
which are defined as solutions of the equations CPSD(rmax) = 1/2 and MIP(rmin) = 1/2,



16

respectively. The choice of the threshold 1/2 in these equations allows us to interpret rmin

and rmax as median pore radii. The constrictivity β of the pore space is then given by β =(
rmin
rmax

)2
[48]. Note that, due to the additional reachability condition considered in Eq. (12),

compared to Eq. (11), it holds that MIP(r) ≤ CPSD(r) for each r ≥ 0. Hence, rmin ≤ rmax and,
consequently, β ∈ [0, 1]. A constrictivity β close to 1 indicates that the additional reachability
requirement in Eq. (12) has little influence on the resulting MIP-curve in comparison to the
CPSD-curve, which implies that there are only few or no constrictions within the pore space.
On the other hand, a constrictivity β near 0 indicates significant bottlenecks along the transport
paths through the pore space. For more information on the definition and estimation of mean
geodesic tortuosity and constrictivity within the formal framework of stationary random closed
sets, see [52].

6.2. Model validation. We now validate both the single particle model introduced in Sec-
tion 4.1 as well as the filter cake model stated in Section 5.

6.2.1. Single particle model. Gerometric descriptors of virtual particles drawn from the single
particle models XQ and XG introduced in Section 4.1 (i.e., prior to the introduction of the
rejection sampling scheme considered in Section 4.3) are compared with those of particles ob-
served in tomographic image data, see Figure 5. While the nearly spherical glass particles are
well presented by the model both in size and shape, the more aspherical quartz particles are
not accurately reproduced, as the sphericity distribution of simulated quartz particles does not
align well with the sphericity distribution of measured quartz particles.

Therefore, we introduced a method for combining the single particle model described in
Section 4.1 with a copula-based rejection sampling scheme, see Section 4.3. This allows us to
reject virtual particles with a probability depending on their size and shape, so that the resulting
joint distribution of volume and sphericity matches the corresponding distribution obtained for
particles observed in tomographic image data. In view of the results presented in Figure 6, we
can claim that this approach is successful, since the joint distribution of volume and sphericity
of measured particles is now accurately reproduced by virtual particles generated by means of
rejection sampling. Note that these fits have been achieved with a single combined model that
uses information of both data sets for quarz and glass particles. However, the plots shown in
Figures 5c and 6c provide just a qualitative comparison of the involved densities. For more
detailed information, we refer to the heat maps provided in Figure A2 of the appendix.

6.2.2. Filter cake model. To validate the structure of simulated filter cakes, we determined the
distribution of various geometric descriptors stated in Section 6.1, both for filter cakes observed
in tomographic image data as well as for simulated filter cakes, see Figure 8. For most of these
descriptors, there is no direct connection to the shape and size of individual particles, so that it
is a priori unclear whether they would show good agreement for virtually generated filter cake
structures and those observed in tomographic image data. Nevertheless, Figure 8 shows that
all geometric descriptors of pore space considered in this paper are accurately reproduced by
the model. Moreover, the morphologies of the pore space in filter cakes consisting of quartz and
glass particles, respectively, differ significantly from each other, both in the case of measured
and simulated filter cakes. Since the packing has been performed in the same way for simulated
quartz and glass particles, we can conclude that there is a clear influence of the size and shape
distribution of individual particles on the 3D morphology of the pore space of corresponding
filter cakes, as was also found in other experimental and numerical studies [53–55].

As stated in Section 5, the virtual quartz and glass particles generated by the rejection
sampling scheme are used to simulate virtual filter cake structures by means of the force-bias
algorithm, where only the particle size distribution and the porosity are taken into account
in this packing algorithm. Thus, the influence of particle shape on the packed particle sys-
tem is neglected. More precisely, the forced-bias algorithm uses volume-equivalent spheres for
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collision/overlap detection. As a result, a system of spherical particles is initially generated.
Then, in a next step, the placeholder spheres are substituted by individually shaped particles,
which does not introduce preferential particle orientations, due to the isotropy of the underlying
Gaussian random field XQ,G, see Section 4.1. However, according to [24], the shapes of indi-
vidual particles and their distribution have a decisive influence on the 3D morphology of filter
cakes, which increases strongly with increasing deviation from the spherical shape, i.e., with
decreasing sphericity. With the measured sphericities between 0.7 and 1.0 for the glass particles
and between 0.6 and 0.9 for quartz, see Figure 6b, the deviations from the spherical shape are
relatively small, and hence the usage of spherical particles in the packing process seems to be
reasonable. Moreover, the good fit of the geometric pore space descriptors shown in Figure 8
justifies this simplifying assumption.
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Figure 8. Geometric pore space descriptors of measured and virtual filter cakes
for both glass and quartz particles, where 10 virtual filter cake structures con-
sisting of 5000 simulated particles each were generated for both particle systems:
(a) porosity ε, (b) surface area per unit volume SV , (c) simulated mercury in-
trusion porosimetry, (d) mean geodesic tortuosity τ , (e) constrictivity β, and
(f) continuous pore size distribution.

Interestingly, the deviation between the CPSD curves of simulated and measured filter cakes,
as seen in Figure 8f, is larger for glass than for quartz particles, which is against the intuition
that the clearly non-spherical shape of quartz particles neglected in the packing process could
introduce errors that are not seen for the spherical glass particles. We believe that this effect
could be due to a slight clustering in the artificial filter cake structures consisting of glass
particles. As the porosity of the glass filter cake is higher, the packing is more loose and allows
for some maneuvering room amongst the particles. However, the placeholder spheres are only
moved as far as necessary to receive on overlap-free system, see Section 5, which can lead to
clustered particles on the one hand, and some larger pores on the other hand. This effect can be
seen in Figure 8f, where the simulated glass structure shows a slightly increased fraction of large
pores (≥ 35 µm), and a slightly decreased amount of smaller pores (≈ 20 µm) in comparison to
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the tomographic image data of a measured glass filter cake. Regarding the clustering of glass
particles mentioned above we refer to the 2D slices of both simulated and measured tomographic
image data provided in Figures A3a–A3c of the appendix.

6.2.3. Analysis of particle overlap. As mentioned above, the deployed sphere-packing algorithm
solely minimizes the overlap of the placeholder spheres, whereas the replacement of these spheres
with individually shaped particles may introduce slight additional overlaps, which we now aim
to discuss in more detail. We can already see this effect in Figures 8a and 8b. The porosities of
simulated filter cakes are slightly higher than those of measured ones, which indicates a small
amount of lost particle volume. The same is true for the surface area per unit volume, where
some surface area is lost whenever two particles overlap. In order to obtain a more quantitative
result on this effect, we perform the same particle-discrete segmentation procedure that was
used for the segmentation of the tomographic image data in Section 3 on the binary image data
of virtually generated filter cake structures. The resulting distributions of (number-weighted)
volume and sphericity of the segmented particles are visualized in Figure 9.
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Figure 9. Number-weighted distributions of volume-equivalent diameter and
sphericity of particles in measured and virtual filter cakes of both glass and quartz
particle systems: the univariate probability densities of (a) volume equivalent
diameter and (b) sphericity, and (c) their bivariate joint probability density. For
simulated data, 10 virtual filter cake structures consisting of 5000 particles each
were generated for both particle systems. Based on the resulting binary image
data, a particle-discrete segmentation was performed in the same manner as for
tomographic image data.

In Figure 9a, we observe that the number-weighted volume distributions of both quartz and
glass particles within simulated filter cakes are shifted towards lower values in comparison to
particles observed in tomographic image data. This shift is likely contributed to lost volume due
to overlaps between particles after the force-bias algorithm. Since the probability densities in
Figure 9a are number-weighted and not volume-weighted, the large deviation of the densities for
volumes close to 0 contributes only to a relatively small volume of particles within the considered
filter cakes. In addition, there is a slight shift towards lower values of sphericity for the quartz
particle system. This is likely caused by the segmentation procedure, as the watershed algorithm
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detects boundaries between touching particles as flat faces, which can reduce the sphericity of
particles if even a slight overlap is present, while it would only rarely increase the sphericity of
involved particles. Although the introduced overlaps have visible effect on the distribution of
volume and sphericity of particles after the deployment of the watershed algorithm, we observe
that the impact is only minor and we could not establish that the pore morphology of the
resulting filter cake structure is affected in a significant way.

7. Conclusion

The model presented in this paper for individual particle sizes and shapes is based on a spher-
ical harmonics approach, which is combined with a copula-based rejection sampling scheme. In
this way, typical limitations in the shape of particles generated by means of spherical harmonics
functions can be overcome. Moreover, by modifying the desired target distribution within the
rejection sampling scheme, particles with various sizes and shapes can be generated by simply
modifying the parameters of their copula-based bivariate probability density, without the need
to re-calibrate the model to tomographic image data. Virtual particles generated in this way are
packed into filter cake structures using a force-biased algorithm. The 3D morphology of virtual
filter cakes is validated by comparing their geometric pore space descriptors with corresponding
descriptors determined for filter cakes observed in tomographic image data. The presented ap-
proach sets up a framework for a large scale simulation study in order to quantify the influence
of individual particle shapes on the pore space morphology of the resulting filter cakes. This
provides the necessary understanding to further investigate the influence of individual particle
shapes on effective properties of filter cakes, which ultimately influence the process properties of
cake filtration and downstream processes like de-watering and washing of the porous structure.
Thus, in future research, the copula-based rejection sampling scheme developed in the present
paper will be used to generate particles that follow a wide range of joint distributions of volume
and sphericity.

Data availability

Complete raw data (reconstructed TIFF stacks) of all filter cakes considered in this study is
available by open access via the OpARA online repository of TU Dresden and TU Bergakademie
Freiberg (http://dx.doi.org/10.25532/OPARA-292).
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Appendix

In this appendix, we provide additional information on different aspects of the manuscript.
In Table A1, filtration parameters for the experimental preparation of the filter cakes are pre-
sented. Settings of the XRM measurements used to obtain tomographic image data are shown
in Table A2. Parametric families of univariate probability distributions and bi- variate copulas
used to model the joint distribution of particle volume and sphericity are given in Table A3.
Tables A4 and A5 show the estimated parameters of the model fits obtained for the univariate
(marginal) distributions of volume and sphericity, as well as the copula, modeling their depen-
dency structure for quartz and glass particles, respectively. Figure A1 shows a visualization
of these parametric fits for the bivariate (joint) probability densities of volume and sphericity.
Figure A2 is a more detailed visualization of Figures 5c and 6c of the main manuscript, where
the estimated bivariate probability densities of volume equivalent diameter and sphericity are
shown for particles observed in tomographic image data (A2a, A2b) and particles simulated
separately through the models XQ and XG (A2c, A2d), as well as particles drawn from the
joint model XQ,G (A2e, A2f). Figure A3 shows examples of 2D slices of simulated and mea-
sured 3D image data for both particle systems.

Table A1. Overview of filtration parameters for the experimental preparation
of filter cakes with mass of solid in suspension mS , suspension volume fraction
φ, filtration pressure ∆p and filtration results of the analysis according to VDI
2762-2 [34] for quartz and glass particles. The height specific filter cake resistance
is denoted by rC, while RM denotes the filter media resistance and RM is the
residual moisture after cake filtration.

quartz (BCS201) glass (B70)
mS in g 70 70

φ in m³/m³ 0.40 0.45
∆p in kPa 30 30
rC in 1/m² 5.7 ∗ 1011 1.2 ∗ 1012

RM in 1/m 6.5 ∗ 109 2.6 ∗ 1010

RM in kg/kg 0.14 0.11

Table A2. Parameter settings for the XRM measurements.

quartz (BCS201) glass (B70)
field of view 4 x 4 cm² 4 x 4 cm²
sample size 5 x 5 x 12.4 mm³ 5 x 5 x 12.9 mm³

source filter (ZEISS standard) LE4 LE5
acceleration voltage / power 50 kV/4 W 50 kV/4 W

optical magnification 4x 4x
pixel size 3.98 µm 4.00 µm

exposure time 4 s 8 s
projections 2001(360°) 2001(360°)

camera binning 2 2
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Table A3. Parametric families of univariate probability distributions and bi-
variate copulas used to model the joint distribution of particle volume and
sphericity, where 1C denotes the indicator of a set C ⊂ R, i.e., 1C(x) = 1 if
x ∈ C and 1C(x) = 0 if x /∈ C.

parametric familiy density parameters

GEV
f(x) = (1 + k x−µ

σ )−
(
1+ 1

k

)
k ∈ R , σ > 0,

× exp
(
− (1 + k x−µ

σ )−
1
k

)
1[−1/k,∞)(

x−µ
σ ), x ∈ R µ ∈ R

Weibull f(x) = B
A

(
x
A

)B−1
exp

(
−
(
x
A

)B)
1[0,∞)(x), x ∈ R A,B > 0

Clayton
c(u1, u2) = (1 + ρ)(u1u2)

(−1−ρ)

ρ > −1
×(−1 + u1

−ρ + u2
−ρ)(−2−1/ρ), u1, u2 ∈ [0, 1]

Table A4. Parametric families of univariate probability distributions and bi-
variate copulas, together with fitted parameter values, used to model the joint
distribution of volume and sphericity of quartz particles, based on tomographic
image data and on model realizations, denoted by f tomo

Q and fmodel
Q in the main

text, respectively.

descriptor parametric family fitted parameter values

volume (data) GEV k = 0.0438, σ = 8780.28, µ = 13131.7

sphericity (data) Weibull A = 0.822, B = 17.353

copula (data) Clayton ρ = 0.1911

volume (sim) GEV k = 0.0726, σ = 7745.25, µ = 11078.5

sphericity (sim) Weibull A = 0.885, B = 18.792

copula (sim) Clayton ρ = 0.0025

Table A5. Parametric families of univariate probability distributions and bi-
variate copulas, together with fitted parameter values, used to model the joint
distribution of volume and sphericity of glass particles, based on tomographic
image data and on model realizations, denoted by f tomo

G and fmodel
G in the main

text, respectively.

descriptor parametric family fitted parameter values

volume (data) GEV k = 0.0376535, σ = 138657, µ = 205103

1 - sphericity (data) GEV k = 0.598497, σ = 0.0366298, µ = 0.0455061

copula (data) Clayton ρ = 8.4972 · 10−4

volume (sim) GEV k = 0.0577825, σ = 123180, µ = 166568

1 - sphericity (sim) GEV k = 0.871166, σ = 0.0167278, µ = 0.0256364

copula (sim) Clayton ρ = 3.5464 · 10−5
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Figure A1. Parametric fits of the bivariate joint probability density of volume
and sphericity, for quartz and glass particles, observed in (a) tomographic image
data and (b) simulated image data.
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Figure A2. Bivariate probability density of volume and sphericity for simulated
quartz (top) and glass (bottom) particles drawn from the separately calibrated
models XQ and XG (a,b), for simulated quartz (top) and glass (bottom) particles
drawn from the joint model XQ,G, and for quartz (top) and glass (bottom)
particles observed in tomographic image data (e,f). For tomographic image
data, 57977 quartz and 155890 glass particles were considered. For simulated
data, 50000 particles were generated in each case.
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(a) (b) (c)

(d) (e) (f)

Figure A3. Examples of 2D slices of simulated and measured 3D image data
for simulated quartz particle filter cakes based on model XQ,G (a,b), measured
quartz particle filter cake (c), simulated glass particle filter cakes based on model
XQ,G (d,e), and measured glass particle filter cake (f).


