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Abstract

The effect of the morphology of open-cell foam structures on their functional

properties is investigated. A stochastic microstructure model is used to generate

representative 3D open-cell foam structures, where morphological properties are

systematically varied. Subsequently, permeability of these virtual, but realistic

microstructures is determined using the finite volume method. This procedure,

which is called virtual materials testing, has recently been employed to inves-

tigate the effect of the variation of cell sizes on permeability. In the present

paper, we introduce a stochastic microstructure model that can be used to gen-

erate structures with varying distribution of (open) face sizes between cells. It

turns out that this characteristic strongly influences the so-called constrictivity,

a measure for bottleneck effects, which, in turn, has a strong impact on the

resulting permeability. Moreover, we show how the virtual materials testing

approach can be applied to derive empirical formulas between descriptors of 3D

morphology and functionality. Additionally, an experimental validation of the

simulation results is performed by printing three of the virtual structures using

selective laser melting and subsequent experimental measurement of pressure

drop, which allows calculation of the permeability using Darcy’s law.
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1. Introduction

Open-cell foams offer a wide range of possible applications, e.g. as filters

[1], as materials for heat exchangers [2], or as catalyst supports [3]. For an

overview, we refer to [4]. Depending on the application, different functional

properties are desirable and the identification of foam structures that optimize5

functionality is an important goal. It is known that the microstructure of open-

cell foams has a strong influence on their functional properties, see, e.g., [5].

There are many experimental studies which investigate this relationship, see,

e.g. [6, 7, 8] for the effect of porosities and pore densities on pressure drop in

open-cell alumina foams. However, laboratory experiments require huge efforts,10

which involve manufacturing, tomographic imaging, quantification of structural

characteristics and analysis of functional properties.

A way to facilitate the materials design process is to use modeling and sim-

ulation. An early approach to express functional properties in a formula by

geometric parameters can be found in [9]. There, permeability is considered as15

a functional property, which is expressed as a function of geometric parameters

under certain assumptions of the underlying geometry. To be more precise, the

flow phase is assumed to consist of non-intersecting tubes canted at a given angle.

It is shown that the function correctly predicts the order of magnitude of per-

meability also for more complex systems, however, the exact value is misjudged20

already by a factor of 2 for random lattice networks. Extensions of this work

are presented in [10] and [11], where sound absorption properties are related to

morphological characteristics. Still, an idealized structure is considered, i.e., a

so called unit-cell. This approach neglects more refined morphological proper-

ties. An overview on further modeling approaches for thermal conductivity and25

hydraulic properties in open-cell foams can be found in [12] and [13].

In the present paper, in contrast to analytical models and models for ide-
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alized structures, we propose a different approach, which is purely data-driven,

where data is gained from simulated, realistic 3D microstructures. The idea is

to generate a wide spectrum of virtual, but realistic microstructures, and to an-30

alyze functional properties using, e.g., the finite volume method (FVM) or finite

element method (FEM), see, e.g., [14]. As, in many materials, different regions

in the same piece of material can have slightly different microstructures, which

are, however, similar in a statistical sense, stochastic microstructure models are

used for generating 3D microstructures as input information for the simulation35

of functional properties. These models capture the local heterogeneity of the

material, but reflect its overall statistical properties, see, e.g., [15, 16]. The

whole procedure, which is called virtual materials testing, can then be used to

derive relationships between morphological and functional properties, which fi-

nally allows one to identify structures with preferable functional properties. This40

has, e.g., successfully been done in [17] for predicting effective conductivity in

materials dedicated to fuel cell applications. While the resulting formulas are

not directly deduced by arguments from theoretical physics, the procedure has

two main advantages. On the one hand, instead of idealized unit cells, realistic

3D structures are considered, where the stochastic modeling approach ensures45

that the local randomness of the structure within materials is captured. On the

other hand, the formulas that are derived typically lead to a high prediction

accuracy [17].

Thus, if a tool is on hand that systematically generates virtual open-cell

foam microstructures with varying morphological properties on the computer,50

numerical simulations can be used to predict the permeability of these virtual

materials. A stochastic model based on Laguerre tessellations induced by a

random packing of non-overlapping spheres is widely used in literature [18, 19].

A Laguerre tessellation divides the region of interest into a system of convex

polytopes. Each polytope is interpreted as a cell of the foam structure, and55

the edges of each cell are considered as a model of the strut system of open-

cell foams. The edges are either dilated to tubes [18] or dilated by spheres with

locally varying size to account for the fact that in real microstructures struts are
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thicker near the junctions than in their middle parts [20]. A great advantage of

the approach via Laguerre tessellations is that it allows for a systematic variation60

of the cell volume distribution, see e.g. [21]. This allows (in combination with

FVM) an investigation of the influence of variations of cell volumes on pressure

drop, see [22]. However, it is well known that the performance of functional

materials is typically influenced by several morphological characteristics, see,

e.g., [17]. The goal of the present paper is to investigate the influence of the65

coefficient of variation of (open) face sizes (where a ‘face’ is the surface between

two cells). For open-cell foams, the faces play an important role, as the transport

paths are passing through them. Note that in [10], the effect of the so-called

‘throat size’, which is related to the face size, has been investigated based on

a single, idealized cell. Here, we consider a realistic 3D system of cells with70

random variation of cell and face sizes, as they occur in real materials. This

allows us to not only investigate the effect of one deterministic face size for all

cells in the system, but the variation of face sizes within each structure.

In order to investigate the influence of the distribution of face sizes, a mod-

eling approach for open-cell foams that allows a systematic variation of the face75

size distribution, while keeping other properties fixed, is needed. The modeling

approach via random Laguerre tessellations based on non-overlapping spheres

can be extended to systems of overlapping spheres, as the tessellation can be

defined in the same manner. This generalization of the modeling approach

enlarges the set of possibly generated structures, giving the option to system-80

atically vary other morphological characteristics. In particular, with increasing

overlap of spheres, the distribution of face sizes can be modified. Moreover, the

stochastic model renders it possible to keep the coefficient of variation of cell

volumes almost constant, while varying the coefficient of variation of face sizes.

This finally enables us to investigate the influence of the face size distribution on85

permeability independently of the influence of the cell volume distribution. It

turns out that the coefficient of variation of the face sizes is strongly correlated

with the so-called constrictivity, a morphological parameter describing bottle-

neck effects [23]. Subsequently, an analysis of permeability of the simulated
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structures is performed using FVM. The results indicate that with increasing90

coefficient of variation of face sizes, the constrictivity increases, which ultimately

leads to an increase in permeability.

An experimental validation of our findings is performed by 3D printing of

three of the virtual structures generated by the stochastic model using selective

laser melting (SLM) [24] and subsequent experimental analysis of pressure drop.95

Permeability is then calculated using Darcy’s law [25].

The outline of this paper is as follows. In Section 2, the applied methods

are introduced. In particular, the stochastic microstructure model is described

in detail in Section 2.1, its usage to generate structures with different morpho-

logical properties is discussed in Section 2.2, fluid flow simulations via FVM100

are described in Section 2.3, SLM for printing virtual structures is explained in

Section 2.4, and the experimental measurement of pressure drop is described in

Section 2.5. In Section 3, an experimental validation of our approach is pre-

sented. Then, in Section 4 the results of our investigations are presented and

discussed. A comparison to structures with a different morphology of the struts105

is shown in Section 5. Conclusions are given in Section 6.

2. Methods

2.1. Stochastic microstructure model

As already mentioned above, random Laguerre tessellations based on systems

of overlapping spheres are used for the stochastic microstructure model of open-110

cell foams. A Laguerre tessellation is formally defined as follows. Given a system

of marked points {(xi, ri), xi ∈ R3, ri > 0, i ≥ 1} in R3, the 3-dimensional

Euclidean space is divided into convex sets, so-called cells {ci, i ≥ 1}, where a

point x ∈ R3 belongs to the cell ci ⊆ R3 if

||xi − x||2 − r2i ≤ ||xj − x||2 − r2j for all j 6= i. (1)

Here, ||a − b|| denotes the Euclidean distance between two points a, b ∈ R3.115

Intuitively, this means that a point x ∈ R3 belongs to the cell ci induced by xi,
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if its distance to xi is not larger than to any other xj , j 6= i, where a weighted

version of the Euclidean distance is taken as a distance measure. For more

details, we refer to [26] and [27].

Note that a system of spheres in R3 can be considered as a marked point120

pattern, where the centers of spheres define the coordinates of the points and

the radii are considered as their marks. Thus, systems of spheres can be used as

generators for Laguerre tessellations. A 2D visualization of generating spheres

and the corresponding tessellation can be found in Figure 1(a), where each cell is

labeled using the same type of color as its inducing sphere. The struts of a foam125

structure are then modeled as the dilated edges of the facets of the Laguerre

cells. Such a facet between two spheres is shown as a 3D sketch in Figure 1(b)

together with the corresponding dilated edges. The Laguerre facet (red area)

depicts a face of the open-cell foam structure, through which transport is taking

place, while the dilated edges depict the struts. In Figure 1(c) a strut system130

induced by several spheres is shown.

(a) (b) (c)

Figure 1: (a) Laguerre tesellation in 2D induced by a system of overlapping spheres. Cells

are labeled using the same type of color as their inducing spheres. (b) 3D view of a Laguerre

facet (red area) between two spheres and the corresponding dilated struts (red tubes). Further

generating spheres of the tessellation are not shown to enhance visibility. (c) Strut system

induced by several spheres.

A well-known algorithm for the generation of non-overlapping spheres is the

force-biased algorithm [28, 29]. Based on an initial configuration, it pushes
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spheres away from each other until there is no more overlap. This algorithm

can be slightly modified to generate systems of overlapping spheres as described135

in [30]. The idea is as follows.

We consider a bounded sampling window W ⊂ R3. The packing density ρ is

defined as the volume of all spheres divided by the size of the sampling window.

In a first step, the initial configuration of spheres is generated, such that a

predefined packing density ρ is achieved, i.e., spheres are thrown at random140

into the sampling window until the volume of all spheres divided by the volume

of the sampling window is equal to ρ. Note that periodic boundary conditions

are applied, so no edge correction has to be performed. The radii of the spheres

follow some predefined distribution. Such an initial configuration is visualized

in Figure 2(a). Then, each sphere is scaled by a so-called core-shell ratio c,145

where 0 < c ≤ 1. In case c = 1, the algorithm described here is identical to

the force-biased algorithm for packing of non-overlapping spheres. An example

for c = 0.5 is shown in Figure 2(b). Then, the force-biased algorithm is applied

to the system of scaled spheres. This results in a system of non-overlapping

(small) spheres, see Figure 2(c). These small spheres are then scaled back to150

their original size, i.e., their radii are divided by c. The result is a system

of slightly overlapping spheres, see Figure 2(d), where the degree of overlap

depends on c, i.e., the smaller c, the higher the degree of overlap. Based on

this system of spheres, the corresponding Laguerre tessellation is constructed.

The edges of its facets are shown in red color in Figure 2(e). These edges are155

dilated with some radius r > 0 to model the struts of an open-cell foam. The

final output of the algorithm is visualized in Figure 2(f). A simulated open-cell

foam structure with the same size as considered in all further steps throughout

this paper is shown in Figure 3.

Throughout this paper, we choose the packing density to be ρ = 0.63, as160

this gives a good balance between computational feasibility and high volume

fraction of spheres. The system of struts is discretized on a voxel grid with 5123

voxels and a voxel size of approximately 68 µm, i.e., the sampling window W is

W=([0, 35] mm)3. The radii of spheres follow a Gamma distribution with rate
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(a) (b) (c)

(d) (e) (f)

Figure 2: Overview of the modeling approach for a small example structure. (a) Initial sphere

configuration. (b) Initital spheres with radii scaled by the core-shell ratio c. (c) Scaled spheres

after applying the force-biased algorithm. (d) Spheres with radii scaled back to the original

values. (e) Edges of the Laguerre tessellation generated by the spheres are shown in red. (f)

System of dilated edges.

Figure 3: Simulated open-cell foam structure.
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parameter 1 and shape parameter chosen such that, in expectation, there are 500165

spheres in W when the packing density is reached. Finally, the dilation radius

is chosen as r = 308 µm, which corresponds to 4.5 voxel, leading to porosities

between 92.7% and 93.3% in our simulation outcomes. The parameter c is varied

to generate structures with different morphological properties. This is discussed

in Section 2.2.170

Real open-cell foams do often not exhibit struts with a constant diameter,

but the struts are thicker closer to their end points. This can be modeled using

dilation with locally varying radii of spheres, see [20]. However, we restrict our-

selves to the simple strut model with constant diameter, in order to keep the

number of model parameters (and therewith the number of possible variables175

influencing morphological and functional properties) as small as possible. Nev-

ertheless, to show that our analysis based on the simple strut model still leads

to reasonable results, we modify three of our virtually generated structures such

that struts are thicker at the end points, and compare their permeability with

those of the original structures, see Section 5.180

2.2. Generation of structures with different morphological properties

We make use of the stochastic microstructure model described in Section

2.1 to generate structures with different morphological properties. Remember

that in recent studies the influence of the so-called coefficient of variation of cell

volumes cv(V ) has been investigated, where V is a random variable describing185

the volume of the (typical) cell in an open-cell foam, and

cv(V ) =
sd(V )

E(V )
(2)

is the ratio between the standard deviation sd(V ) and expectation E(V ) of V .

In the same manner we can define the coefficient of variation cv(A) for the

area of the (typical) face A in an open-cell foam. It turns out that varying

the core-shell ratio c leads to structures with rather different values of cv(A),190

while keeping cv(V ) in a small range, thus allowing for a systematic analysis of

the influence of cv(A). The different values of cv(A) in turn influence the so-
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called constrictivity, which describes bottleneck effects in complex structures.

It is defined as follows. Let rmax be the maximum radius such that 50% of the

volume of the porous phase can be covered by (possibly overlapping) spheres195

with radius rmax, which do not intersect with the solid phase. Furthermore, let

rmin be the maximum radius such that 50% of the volume of the porous phase

can be covered by spheres with radius rmin intruding from a pre-defined side of

the material. For isotropic structures, the expectation of this (random) value

is independent of the chosen direction. Note that the intrusion of spheres is200

limited on bottlenecks, and it holds rmin ≤ rmax. Then the constrictivity β is

defined via

β =
r2min

r2max

. (3)

Obviously, 0 ≤ β ≤ 1, and the smaller β is, the more and stronger bottleneck

effects occur. A 2D sketch describing the meaning of rmin and rmax can be found

in Figure 4. For more details, we refer to [23].205

Figure 4: 2D sketch illustrating the definition of constrictivity. Left: The radius rmin is defined

as the maximum radius for which 50% of the porous phase (blue) can be covered by spheres

(which do not intersect with the complementary phase) intruding from the left side. All the

parts of the porous phase that can be covered are shown in green color. Right: The radius

rmax is defined as the maximum radius for which 50% of the porous phase can be covered by

spheres (which do not intersect with the complementary phase) that are placed in the porous

phase without having to intrude from a pre-defined side to their position.

We generated realizations of the model for five different core-shell ratios,

10



namely c1 = 0.3, c2 = 0.475, c3 = 0.65, c4 = 0.825 and c5 = 1, with ten repli-

cations for each setting, resulting in a data base of 50 structures in total for

the analysis of relationships between morphological and functional properties.

The effect of the core-shell ratio on cv(A) is shown in Figure 5(a), where it can210

be clearly seen that with increasing core-shell ratio, the coefficient of variation

of face sizes strongly decreases. Note that at the same time the coefficient of

variation of cell volumes only varies between 0.4 and 0.48. For comparison, in

[22], values between 0.48 and 2.08 have been studied in order to investigate the

influence of cv(V ) on permeability. Thus, the structures described above enable215

the analysis of the influence of cv(A) on permeability independently of cv(V ).

In Figure 5(b), the relationship between cv(A) and constrictivity is shown,

indicating a strong correlation. In the following analysis, we will consider the

relationship between constrictivity and permeability, keeping in mind that, due

to the strong correlation between constrictivity and cv(A), the results reflect220

the relationship between cv(A) and permeability. This choice is made because

constrictivity is a normalized (between zero and one) aggregated morphological

property, and it has turned out that functional properties of microstructures

can even be described by empirical formulas that depend on, among others,

constrictivity [17]. This provides the motivation to consider constrictivity as225

an explanatory variable when permeability is considered as the response vari-

able in the following. Any relationship between constrictivity and permeability

inherently shows a relationship between cv(A) and permeability.

2.3. Fluid flow calculations

ANSYS Fluent, Release 17.0 [31] is applied in order to determine perme-230

ability of the materials under consideration. The Navier-Stokes equations for

the incompressible Newtonian fluid at steady state are solved in order to calcu-

late pressure drop of fluid flowing through the structures under consideration.

The flow across virtual and real structures was simulated with a computational

domain channel of 50 mm length and 35mm x 35mm square cross section in ac-235

cordance with real materials cross section. The size of the specimen was 35mm
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Figure 5: Effect of core-shell ratio c on morphological properties. (a) Boxplot of cv(A) for

model realizations with different core-shell ratios. The boxes show the regions between the

25%- and the 50%-quantiles, the line within each box shows the median value. Dots show

outliers with a deviation of more than 1.5 times the interquartile distance to the median,

vertical lines show the region from minimum to maximum value for each core-shell ratio

(except for outliers). (b) Plot of constrictivity against cv(A).

x 35mm x 35mm. Boundary conditions are indicated in Figure 6. Walls of

the channel and struts of the sample have no-slip ‘wall’ boundary conditions.

The inlet velocity for FVM simulations was 10−5 m/s, which corresponds to a

Reynolds number being equal to 0.35. Based on a mesh convergence study, a240

mesh size of around 12 million elements was found to be optimal for a proper

description of the complex geometries of the samples. Experimental setup con-

ditions have been applied as reference for the setup of the numerical model.

Newtonian fluid flowing through the channel was water at room temperature.

A more detailed description of the applied methodology can be found in [22].245

The pressure drop value obtained from the numerical simulations can be applied

by Darcy’s equation to calculate permeability of the studied material, i.e.,

∆P

∆L
=

µu

Ku
(4)

where ∆P is the obtained pressure drop [Pa], ∆L is the length of the sample

[m], µ is the viscosity of the material [kg/ms], u is the velocity [m/s], and K is

the permeability [m2]. Darcy’s law can be applied for flows with low Reynolds250

number (less than 1), where inertial effects are negligible [32].
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Figure 6: Computational domain with boundary conditions for permeability calculations of

designed structures.

2.4. Selective laser melting

Three selected samples of the virtually designed porous foams were fabri-

cated by the Realizer SLM-50 3D printer for metals and its alloys using titanium

Grade 2 spherical powder (TLS Metal Powder GmbH, Leipzig, Germany). The255

average grain size of the powder was around 15 − 45 µm while its purity was

99.7 wt.%. (0.11% Fe, 0.13% O, 0.01% C, 0.01% N, 0.001% H, balance Ti). The

layer thickness was 50 µm, while the energy density used for powder consolida-

tion was 45 J/mm3 (scanning speed 375 mm/s and laser power 55 W). During

fabrication, the building platform was heated to 200 ◦C to avoid thermal cracks260

and delamination. The argon inert atmosphere with a slight addition of oxygen

(0.2 – 0.4 vol.%) to improve mechanical properties of fabricated structures was

used [33]. Titanium foams were fabricated with support structures at the bot-

tom and 3 mm from each side of the foam (Fig. 7(a)). The alternating laser

scanning strategy with laser melting of boundaries and with 45◦ rotation of the265
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(a) (b)

Figure 7: Titanium foam with added support structures (a) and scheme of the laser scanning

strategy used during SLM fabrication (b).

laser vector on each layer was used (Fig. 7(b)). Then, based on the sliced STL

(“StereoLithography”) foam model, which is a triangular representation of a 3-

dimensional surface geometry, the first layer was selectively melted by a laser

beam. After consolidation of the first layer the building platform was lowered

by a predetermined thickness according to the designed structure and the next270

layer of the powder was distributed. The process of distributing powder, its

selective melting by the laser beam and lowering of the table was repeated until

the whole structure was fabricated.

2.5. Experimental pressure drop measurements

Experimental determination of permeability of chosen samples has been con-275

ducted using the set-up for pressure drop measurements, see Figure 8. In order

to measure pressure drop the sample is placed in the test channel (see the zoom

in Figure 8) and water is introduced. Note that the water is circulating in

the closed system during the pressure drop measurement. The water flow rate

in the test channel was regulated by valves and circulation pumps (90 Watts280

each). Filters and honeycomb flow straightener were installed in order to avoid

fluctuations of fluid and sustain stable laminar flow during the measurement.

Pressure difference is measured by sensors placed in front and behind the sam-
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Figure 8: Experimental set-up for measuring pressure drop: Circulation pumps (1), water filter

(2), oval wheel flowmeter with impulse output (3), gauge system (4), differential manometer

Kobold DOM A20 with analog output (5), water container (6), honeycomb flow straightener

(7), studied sample (8), auxiliary pneumatic vessels compensating for rapid pressure variations

(9), digital data acquisition system (10). Addtionally, the zoom shows the mounting of the

sample in the measurement channel.

15



ple. LabView software has been applied for data acquisition and control of the

performed analysis. The pressure drop value for the given flow rate is obtained285

from the median of 20 measurements during 20 seconds (1 second each), which

assures repeatable results. Pressure drop of water flowing through a channel

has been measured for the designed structures. The working fluid was water at

room temperature. Permeability of the materials was obtained using Darcy’s

equation (4).290

3. Experimental validation

The method described in Section 2.3 enabled us to compute permeability

for the set of structures with different morphological properties, which has been

generated using the stochastic microstructure model based on Laguerre tessel-

lations induced by sphere systems with different core-shell ratios, see Sections295

2.1 and 2.2. In order to validate the results of the simulation procedure experi-

mentally, three of the simulated structures have been selected for printing with

SLM (as described in Section 2.4) and subsequent experimental analysis of pres-

sure drop (as described in Section 2.5). Note that we selected structures with a

rather different constrictivity (and therewith permeability), but rather similar300

porosity. An illustration showing a printed structure can be found in Figure

9. In Table 1, a comparison of simulated and experimentally gained values for

permeability is shown. We find that the values obtained for permeability using

simulation are slightly smaller than the ones gained experimentally. However,

the difference is on average approximately 3% only. This shows that simulated305

and experimentally gained values are in good accordance with each other.

4. Results and discussion

The methods described in Section 2 provide a data basis of open-cell foams,

their constrictivity, porosity and permeability. In Figure 10, the influence of

constrictivity on permeability is shown. A certain correlation between constric-310

tivity and permeability can be observed, although the variability is quite large
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Figure 9: Printed open-cell foam structure using SLM.

constrictivity permeability [µm2] rel. difference

simulated experimental

Structure 1 0.45 450923 461795 2.3%

Structure 2 0.37 428817 446623 4.0%

Structure 3 0.30 410417 423342 3.1%

Table 1: Comparison of simulated permeability with experimentally gained values.
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and the correlation seems to level off for larger constrictivities. This is sim-

ply related with the fact that the porosities of the simulated structures slightly

vary. Even though this variation is rather small, it has a huge impact, because

porosity undoubtedly is the morphological characteristic with the highest influ-315

ence on permeability. In order to show the effect of porosity, the data points

in Figure 10 have been shaded according to their porosity. It turns out that

the relationship between constrictivity and permeability can be described by a

linear model, taking the porosity into account. Consider the formula

κ = α0 + α1β + α2p, (5)

with κ being the permeability, β the constrictivity and p the porosity. Using320

the method of least squares leads to α0 ≈ −8.4 · 106µm2, α1 ≈ 2.8 · 105µm2

and α2 ≈ 9.4 · 106µm2 with an R-squared of more than 0.9. The coefficient of

determination R-squared ranges from 0 to 1 and indicates the goodness-of-fit

of the linear model, with values close to 1 indicating a good fit, see [34] for

details. In order to illustrate the linear relationship between constrictivity and325

permeability for fixed porosity, according to Equation 5 three regression lines for

fixed porosities have been added in the corresponding gray value in Figure 10.

Note the good fit of data points with similar gray values as the corresponding

regression lines, which supports the hypothesis of a linear relationship between

constrictivity and permeability for fixed porosities. Additionally, a 3D plot of330

permeability against porosity and constrictivity, together with the fitted linear

model, is shown in Figure 11.

Note that porosity is only included into the linear model because of its huge

influence on permability, but that the range of porosity values that have been

used to fit the linear model is rather small. Therefore, this relation might not335

be correct for porosities far away from these values. Thus, including porosity

into the linear model is only a technical tool to show the linear relationship

between constrictivity and permeability for fixed porosity. However, note that

the stochastic model described in Section 2.1 can be used to generate structures

for a broader range of porosities, which could then be used to derive more precise340
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Figure 10: Relationship between constrictivity and permeability. Dots show results for the 50

simulated structures, lines indicate linear models for some fixed porosities. The gray values

refer to the porosities of the corresponding structures. The red stars correspond to those

structures that have been chosen for experimental validation.

Figure 11: 3D plot showing the effect of constrictivity and porosity on permeability. Dots

show the results for the 50 simulated structures. Additionally, a fitted linear model is shown.
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empirical formulas. This procedure has succesfully been performed in [17] to

derive an empirical formula expressing effective conductivity by volume fraction,

constrictivity and tortuosity of microstructures related to fuel cells. Tortuosity,

describing the ratio between shortest path length through a material to its

thickness, is not very meaningful for the structures under consideration (as due345

to the very high porosity and the fact that the rather thin struts do not crucially

disrupt transport paths, tortuosity is always very close to 1), but such a formula

could for example be derived for the relationship expressing permeability by

porosity, constrictivity and cv(V ). However, this is beyond the scope of the

present paper, where we introduce and validate the methodology and show that350

there is a linear relationship between constrictivity and permeability for fixed

porosity.

To summarize, it turned out that the permeability of open-cell foams is

strongly influenced by the constrictivity of their structure, which is, in turn,

influenced by the distribution of face sizes. Moreover, it is shown that the355

relationship between permeability and constrictivity can be well described by a

linear model when keeping other structural characteristics fixed.

5. Extension to different strut geometry

Recall that we have chosen to model the struts using tubes, in order to

ensure that the results are not affected by the local geometry of more complex360

strut models. On the other hand, we also want to show that our results have a

more general validity than only for the simple model with tube-shaped struts.

In order to do so, we select three of the simulated structures (see red stars in

Figure 10) and consider a modification of the strut model for them, keeping the

positions and lengths of struts fixed but creating struts that are thicker on their365

endpoints.

The idea is as follows. We discretize each structure on the same voxel grid

as before, but with a smaller strut diameter of approximately 100 µm, which

corresponds to 1.5 voxels, resulting in a binary image Istrut, with Istrut(v) = 1 if
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v ∈W belongs to the strut, and I(v) = 0 otherwise. Furthermore, we construct370

a second binary image Ipoint with Ipoint(v) = 1 if the voxel corresponding to

v ∈ W covers an endpoint of a strut. Then we consider the Euclidean distance

map (see [35] for details) of both images, i.e.,

Dstrut(v) = min
v′: Istrut(v′)=1

||v − v′|| (6)

and

Dpoint(v) = min
v′: Ipoint(v′)=1

||v − v′|| (7)

for each v ∈W . Finally, we consider the image375

D(v) =

0, if Istrut(v) = 1,

Dstrut(v) + δDpoint(v), otherwise,

(8)

where it turned out that δ = 0.25 leads to reasonable results. Then we define

the image I of the advanced strut model via

I(v) =

1, if D(v) < t,

0, otherwise,

(9)

where the threshold t ∈ R+ is chosen such that the same porosity as for the

original structure is achieved. Note that putting D(v) = 0 for each v with

Istrut(v) = 1 ensures that no struts are disrupted, i.e., each strut that occurs380

in the simple strut model is also present in the advanced strut model, with a

minimum diameter of 1.5 voxels (corresponding to approximately 100 µm). For

a visual comparison of the simple and advanced strut models, see Figure 12.

We then compute the permeability of structures drawn from the more ad-

vanced strut model using the method described in Section 2.3. The results385

can be found in Figure 13. We observe a monotonous change of permeability,

i.e., permeability increases when passing from structures drawn from the simple

strut model to structures drawn fom the more advanced strut model, but the

relationship between constrictivity and permeability is approximately retained.

Thus, also for the advanced strut model, permeability increases with increasing390
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(a) (b)

Figure 12: Samples drawn from the (a) simple and (b) more complex strut model.

constrictivity. The red dashed line in Figure 13 indicates that a linear relation-

ship between these two characteristics is still realistic. Thus, we can conclude

that our findings are not only true for the simple strut model that we used, but

can also be observed for more complex shapes of struts.

6. Conclusions395

A stochastic microstructure model has been used to systematically gener-

ate virtual, but realistic open-cell foam structures with different coefficients of

variation of face sizes. It was found that the face size distribution influences

the constrictivity, which is a morphological characteristic describing bottleneck

effects. The permeability of these virtual structures has been investigated us-400

ing FVM, and the relationship between morphology and permeability has been

investigated. An experimental validation of the results has been performed by

using SLM to print three selected virtual structures and compare the results

from real laboratory experiments to the ones gained by FVM. Moreover, it has

been shown that the overall relationship between permeability and constrictiv-405

ity is retained also for a more advanced strut model, rather than being true for

the simple tube model only.
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Figure 13: Comparison of computed permeabilities for the selected structures drawn from the

simple and advanced strut model. The blue dashed line shows the permeability predicted by

the linear model (5) for the average porosity of the three considered structures, the red dashed

line is shifted by the mean difference in permeability between the simple and more advanced

strut model.

It has been shown that for a given porosity and coefficient of variation of

cell volumes, there is a linear relationship between the constrictivity and per-

meability. In addition, it is shown how the methodology of virtual materials410

testing can be used to derive empirical formulas for the relationship between

morphological characteristics (e.g. porosity and constrictivity) and functional

properties (e.g. permeability).

Data availability

The raw data required to reproduce these findings cannot be shared at this415

time as the data also forms part of an ongoing study. The processed data re-

quired to reproduce these findings are available to download from

doi.org/10.18725/OPARU-5341.
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