
3D reconstruction of grains in polycrystalline materials using a

tessellation model with curved grain boundaries
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A compact and tractable representation of the grain structure of a material is an
extremely valuable tool when carrying out an empirical analysis of the material’s mi-
crostructure. Tessellations have proven to be very good choices for such representa-
tions. Most widely used tessellation models have convex cells with planar boundaries.
Recently, however, a new tessellation model — called the generalized balanced power
diagram (GBPD) — has been developed that is very flexible and can incorporate fea-
tures such as curved boundaries and non-convexity of cells. In order to use a GBPD to
describe the grain structure observed in empirical image data, the parameters of the
model must be chosen appropriately. This typically involves solving a difficult optimiza-
tion problem. In this paper, we describe a method for fitting GBPDs to tomographic
image data. This method uses simulated annealing to solve a suitably chosen opti-
mization problem. We then apply this method to both artificial data and experimental
3D electron backscatter diffraction (3D EBSD) data obtained in order to study the
properties of fine grained materials with superplastic behavior. The 3D EBSD data
required new alignment and segmentation procedures, which we also briefly describe.
Our numerical experiments demonstrate the effectiveness of the simulated annealing
approach (compared to heuristic fitting methods) and show that GBPDs are able to
describe the structures of polycrystalline materials very well.

Keywords: microstructural characterization; grain boundaries; polycrystalline
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annealing

1. Introduction

Scientific advances that allow for the production of high quality tomographic images
have opened up many avenues of research in materials science. For example, the
availability of detailed 3D images has made possible the empirical investigation of
grain boundaries in polycrystalline materials. Grain boundaries are of great scientific
interest as they play a significant role in determining many material properties; see,
e.g., [1, 2].

When working with empirical data on grain boundaries, it is convenient to have
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a compact and tractable representation of the grains. This representation should
provide an idealized description of the observed material, retaining information
about key quantities such as the topology of the grain structure and the curvature
of the grain boundaries, while removing extraneous information such as noise arising
in the imaging process. Ideally, this representation will aid in the description and
estimation of quantities such as grain volumes and curvatures. An additional aim of
any such representation is to provide a form of data compression, describing large
voxel-based data sets using a much smaller number of parameters. Such compression
is of increasing importance with the advent of four dimensional data, which records
the evolution of grain structures over time. Note that such a representation often
has no relation to the physical processes driving grain formation and growth.

Tessellations present a class of mathematical models that divide space into non-
overlapping cells. These have proven to be very good representations of grain struc-
tures. As a result, they have been used extensively to model the microstructures of
polycrystalline materials; see [3] for an early reference and [4] for a general overview.
Most classical tessellation models (including the widely used Voronoi and Laguerre
tessellations) have cells with planar boundaries and can only model convex grains.
This limits their ability to describe many important features of grain structures.
Recently, however, a number of models have been developed for tessellations with
non-convex grains; see, for example, [5, 6] and [7]. The generalized balance power
diagram (GBPD), described in [8], is a very general tessellation model that is able
to describe typical grain structures very well. In particular, it is able to model grain
structures with a wide range of curved boundaries.

In order to use a model such as the GBPD to describe empirical image data, the
parameters of the model must be chosen to fit the data. A number of automatic
fitting procedures have been successfully developed for Laguerre tessellations and
range from heuristic approaches (see [9]) to more sophisticated approaches that use
computational tools to solve an optimization problem; see [10]. Stochastic methods
have proven to be particularly effective at solving such optimization problems, which
tend to be high dimensional and multi-modal; see, for example, [11] and [12]. Fitting
GBPDs is a more difficult problem, because the number of parameters to be fitted
is considerably larger. Much of current work on GBPDs uses a heuristic method
to fit the tessellation to data; see, e.g. [5] and [7]. In [8], linear programming was
successfully used to fit a GBPD by solving an optimization problem, obtaining
extremely good fits. However, the methods proposed are limited to relatively small
image sizes because the memory and time requirements grow very quickly in the
number of grains and voxels.

In this paper, we propose a fast stochastic optimization based method for fitting
GBPDs to tomographic image data. This method works for large image sizes and
results in significantly better fits than the heuristic method. In addition, it is simple
and easy to implement, making it more straightforward for practitioners to use
GBPDs as modeling tools. We focus on an application of our method to image data
obtained using 3D electron backscatter diffraction (3D EBSD), which is an often
used imaging technique; see, e.g., [13–15].

The structure of the paper is as follows. We begin by introducing a number
of classical tessellation models, explaining how they relate to GBPDs. We then
formulate the problem of fitting GBPDs to image data as an optimization problem,
describing efficient methods for calculating the cost function, which are key to the
effectiveness of our method. Next, we introduce simulated annealing, which is the
basis of our fitting methodology, and describe the specifics of our implementation.
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The experimental data, which is a series of 3D EBSD images of an aluminum alloy,
is then introduced. We describe a number of novel pre-processing steps used to
segment and align this data in preparation for model fitting. Finally, we demonstrate
the effectiveness of our method by applying it to both artificial image data and the
experimental image data, comparing our results to those obtained using heuristic
fits.

2. Generalized balanced power diagrams

2.1. Tessellations

A tessellation, T , in R3 is a division of the space into non-overlapping sets, called
cells or grains. More formally, it is a countable collection of closed sets, T = {Ci ⊂
R3}, such that

(1) C̊i ∩ C̊j = ∅ for all i 6= j, where C̊i is the interior of the set Ci,
(2)

⋃
iCi = R3,

(3) T is locally finite (i.e., #{Ci ∈ T : Ci∩B 6= ∅} <∞ for all bounded B ⊂ R3).

For more details, see, e.g., [6], [16] and [17]. Note that some definitions of a tessel-
lation require that the cells should be convex. However, we consider a more general
class of tessellations that includes those with non-convex cells.

Many tessellations can be generated by a locally finite (possibly marked) point
pattern, P. The points of P are called the seeds or generators of the tessellation. The
best studied such tessellation is the Voronoi tessellation, for which P is a collection
of unmarked points (i.e., P = {xi} ⊂ R3). In a Voronoi tessellation, each seed in P
generates a non-empty cell. The cell corresponding to a given seed, xi, is defined to
be all points in R3 that are closer to xi than to any other seed in P with respect to
the distance measure given by

dV(y,x) = ‖y − x‖,

where ‖ · ‖ is the Euclidean norm in R3. That is,

Ci = {y ∈ R3 : dV(y,xi) ≤ dV(y,x′) for all x′ ∈ P}.

The cells of a Voronoi tessellation are convex polyhedra; see, e.g., [17].
The Voronoi tessellation can be extended by modifying the distance measure. One

of the most widely used modifications is the Laguerre tessellation or power diagram.
In this case, the generating seeds form a marked point pattern, P = {(xi, wi)} ⊂
R3 ×R. The Laguerre distance measure, called the power distance, is defined to be

dL(y, (x, w)) = ‖x− y‖2 − w.

Like the Voronoi tessellation, the Laguerre tessellation has convex cells. However,
Laguerre tessellations can produce tessellations with much more variation in terms of
both cell size and aspect ratio than Voronoi tessellations; see [6] and [7]. Indeed, any
normal tessellation in three dimensions can be described by a Laguerre tessellation;
see [18] and [19].
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A limitation of both Voronoi and Laguerre tessellations is that they have planar
cell boundaries. Curved boundaries have often been regarded as a negative feature of
tessellations in the literature, due to the computational burdens they impose. How-
ever, from a modeling perspective, the ability to describe curved grain boundaries
is of great value. In particular, much of the physics of polycrystalline materials can
be described by the geometry of the grain boundaries; see, for example, [1] and [20].
Tessellations with curved boundaries (and, thus, non-convex cells) can be obtained
in a number of different ways. Johnson and Mehl proposed a non-convex tessellation
that models crystal growth by considering grains that grow isotropically from nuclei;
see [3]. A closely related model is the additively weighted Voronoi tessellation. In
this case, as for the Laguerre tessellation, the generating point pattern is a marked
point pattern, P = {(xi, wi)} ⊂ R3 × R. The additively weighted Voronoi distance
measure is given by

dW(y, (x, w)) = ‖x− y‖ − w.

Although the resulting cells can have curved boundaries, the range of curvatures
that can be obtained is limited. In particular, the boundary between two cells with
differing weights is convex for the cell with the smaller weight and concave for the
cell with the larger weight; see [5].

The Voronoi, Laguerre and additively weighted Voronoi tessellations are all ex-
amples of isotropic tessellations. In [16], a modification of the Voronoi tessellation,
called the Voronoi-G tessellation, was proposed. This replaces the Euclidean metric,
dV, with the anisotropic distance measure

dG(y,x) =
√

(y − x)>G(y − x),

where G is a positive definite matrix. The resulting tessellations have planar cell
boundaries. Note that if G is the identity matrix, this metric reduces to the Voronoi
metric. A similar idea is considered within the framework of Riemannian geometry
in [21]. In this case, tessellations with curved cell boundaries can be obtained.

The idea of using positive definite matrices to define metrics is extended in [6],
where each cell of the so-called local Voronoi tessellation is defined using a local
metric. This is achieved as follows. Let M be the space of 3× 3 real-valued positive
definite matrices. The tessellation is then generated by P = {(xi,Mi)} ⊂ R3 ×M.
The metric associated with the ith generator, (xi,Mi), is given by

dM(y, (xi,Mi)) =
√

(y − xi)>Mi(y − xi),

with the cell corresponding to (xi,Mi) given by

Ci = {y ∈ R3 : dM(y, (xi,Mi)) ≤ dM(y, (x′,M ′)) for all (x′,M ′) ∈ P}.

In [5], different choices of local metrics are considered. In particular, a squared local
distance is considered. This distance measure takes the form

dP(y, (xi,Mi)) = (y − xi)
>Mi(y − xi),
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where the {Mi} are again real-valued positive definite matrices. The local metric
model is further extended in [8] to obtain the generalized balanced power diagram
(GBPD), so called because it generalizes the Laguerre (power) diagram. This is a
tessellation generated by a set P = {(xi,Mi, wi)} ⊂ R3×M×R. The local distance
measure is of the form

dGB(y, (xi,Mi, wi)) = (y − xi)
>Mi(y − xi)− wi.

Note that this distance measure includes the Laguerre distance measure as a special
case (when each Mi is taken to be the identity matrix).

As stated above, Laguerre tessellations provide good approximations of the struc-
ture of many polycrystalline materials. However, they are unable to model non-
convex grains and curved boundaries. Johnson-Mehl tessellations also provide good
approximations of many grain structures, but they are not always able to describe
the curvature of cell boundaries properly; see [5]. The GBPD combines the advan-
tages of both these models and also allows for a much wider range of curvatures than
can be obtained using the Johnson-Mehl model. Thus, the GBPD is an ideal choice
for describing non-convex grains with curved boundaries, especially when studying
phenomena such as grain growth in 3D, where the geometry of the grains is very
important. For a comparison of fits obtained by a number of tessellation models,
which demonstrates the potential of local metric models such as the GBPD, see [5].

2.2. Representation and properties of GBPDs

It can be difficult to work directly with the matrices defining the GBPD. Fortu-
nately, however, these matrices can be represented in terms of ellipsoids centered at
the locations of the generators. By working with the ellipsoid representation, it is
possible to make changes to the matrices that ensure they remain positive definite.
In addition, the ellipsoid representation provides clear intuition about how to make
small perturbations to these matrices (which will be useful when fitting the model
to data).

Recall that a positive definite matrix,M , can be thought of as an ellipsoid centered
at the origin; see, e.g., [22]. The eigenvectors of M correspond to the principal axes
of the ellipsoid and the reciprocals of the eigenvalues give the squared lengths of
the semi-axes. Such an ellipsoid can be described by six parameters. Three values,
a1, a2, a3 ∈ R+, describe the lengths of the semi-axes of the ellipsoid. Three values,
φ ∈ [0, 2π], θ ∈ [0, π] and ψ ∈ [0, 2π], are Euler angels, describing the orientation
of the ellipsoid. These describe, respectively, a rotation about the z-axis by φ, a
rotation around the x-axis by θ, and another rotation about the z-axis by ψ. The
eigenvectors of the matrix M are given by the column vectors of the resulting
rotation matrix

R =

cosφ cosψ − cos θ sinφ sinψ − cosψ sinφ− cosφ cos θ sinψ cosφ sin θ
cosψ sinφ+ cosφ cos θ sinψ cosφ cos θ cosψ − sinφ sinψ − cosφ sin θ

sin θ sinψ cosψ sin θ cos θ

 .
Note that we order the axes by their lengths, so that a1 gives the length of the longest
axis, a2 gives the length of the second longest axis and so on. Using this description
of M , each generator of the GBPD can be described by 10 parameters: the location
of the generator, (x, y, z); the semi-axes lengths of the ellipsoid, (a1, a2, a3); the
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Euler angles, (φ, θ, ψ); and the weight, w. That is, the generators can be thought of
as a marked point pattern of the form

P = {(xi, yi, zi, a1,i, a2,i, a3,i, φi, θi, ψi, wi)} ⊂ R3×R3
+× [0, 2π]× [0, π]× [0, 2π]×R.

A special case of the GBPD is obtained when the ellipsoids describing the genera-
tors are non-overlapping and the weights are set to zero. In this case, the GBPD can
be interpreted as being generated by growing ellipsoids, with the centroids of the
ellipsoids acting as nucleation sites. All grains begin growing at the same time. The
velocity with which a grain grows in a given direction can be parametrized by the
Euler angles and semi-axis lengths of the corresponding ellipsoid. When two grains
come into contact with one another, they stop growing at that point. Note that
the general GBPD model cannot be described in this fashion, as the weights are
typically non-zero and the ellipsoids may be overlapping. However, the ellipsoidal
growth model provides some intuition about how the parameters of the GBPD re-
late to the resulting tessellation. For example, grain shapes and sizes are closely
related to the shapes and sizes of the corresponding ellipsoids. A heuristic fit for the
parameters of the ellipsoidal growth model can be obtained by approximating each
grain by an ellipsoid (using an approach that is described in detail in Section 3.3.1).
We use such a fit to choose the initial parameters for our GBPD approximation
(i.e., we begin with non-overlapping ellipsoids and all weights set to zero). We then
carry out our fitting procedure to obtain non-zero weights and to change the sizes,
shapes and orientations of the ellipsoids. For more information on the ellipsoidal
growth model, see [7].

3. Fitting GBPDs to the image data

In order to describe a microstructure observed in tomographic image data by a
tessellation, a set of generators needs to be found such that the resulting tessellation
is a close approximation of the 3D image data. Typically, this 3D image data is
preprocessed before a tessellation model is fitted to it. This preprocessing results
in a segmented image consisting of N grains, which we enumerate as 1, . . . , N . We
treat this image as an array of labeled voxels, I = {I(x, y, z)}, indexed by x, y and z
coordinates. These coordinates are all assumed to lie within a bounded window, W ,
and form a grid W ′ ⊂W . The label of each voxel corresponds to the grain to which
it belongs. So, for example, I(x, y, z) = i indicates that the voxel at coordinates
(x, y, z) belongs to grain i.

Given the image data, the problem of fitting a tessellation model is essentially
an optimization problem. The generators, P, should be chosen to minimize some
measure of discrepancy between the generated tessellation and the tomographic
image data, I. That is, P∗ must be found, where

P∗ ∈ argmin
P

DI(P), (1)

with DI an appropriately chosen discrepancy measure. This is, in general, a very
difficult problem as it is extremely high-dimensional and has many local minima.
This means that local search optimization algorithms, such as gradient descent,
may not be able to find good approximate solutions to the problem; see, e.g., the
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discussion in [12]. Linear programming has been successfully applied to fit GBPDs
to image data; see [8]. However, because the dimension of the problem grows very
quickly in the image size and number of grains, it is restricted to small data sets.
For these reasons, we use a stochastic optimization method, which is able to escape
local minima. Stochastic optimization methods have been successfully used to fit
Laguerre tessellations to 2D slices (see [11]) and tomographic image data; see [12].
Fitting GBPDs is more challenging, because the problem is higher dimensional and
the discrepancy measure is computationally expensive to evaluate.

3.1. Measuring the discrepancy

We adopt a volume-based discrepancy measure, the number of incorrectly assigned
voxels, in order to evaluate the goodness of fit. More precisely, we consider

DI(P) = #
{

(x, y, z) ∈W ′ : I(x, y, z) 6= IP(x, y, z)
}
,

where I is the 3D image data and IP is the voxelized version of the tessellation
generated by P. Although, in many cases, such a discrepancy measure is inadvisable
(see [12]), it makes sense to use this measure in our case for two reasons. The first
is that the methods used in [12] to calculate an interface-based discrepancy do
not translate easily to the GBPD case, where the surfaces separating cells are not
planar. The second reason is that, in each step of our fitting procedure, we only
make local changes to the generator configuration, P. Because each change is local,
we usually only need to evaluate a small number of voxels in order to evaluate the
corresponding change in the discrepancy.

Simulated annealing, the stochastic optimization method used to solve (1), re-
quires a very large number of evaluations of the discrepancy. As such, it is critical
that DI can be calculated extremely quickly. In order to achieve this speed of evalu-
ation, we make a number of assumptions that simplify calculations significantly. In
practice, these assumptions do not always hold. This means that the fits achieved
may not correspond to the best possible fits. However, the resulting fits still sig-
nificantly outperform fits achieved using the heuristic alternative; see Section 5. If
necessary, the fits can be improved by removing some of the assumptions, which
will be marked as such below. However, the resulting increases in computational
cost may be prohibitive.

In practice, we do not need to calculate the discrepancy of a given generator set,
P, but rather ∆DP,P ′ = DI(P ′) − DI(P), the difference in discrepancy between P
and an alternative generator set, P ′, where just one generator has been changed. In
order to calculate ∆DP,P ′ , we only consider voxels in the immediate vicinity of the
grain whose generator has been changed. We do this by using a cube that roughly
approximates the boundaries of this grain. When calculating the discrepancy, we
begin by considering voxels on the surface of this cube. We count the number of
voxels that have changed to be correctly assigned and the number of voxels that
have changed to be incorrectly assigned. We then move outside this cube, adding
layers of voxels and counting voxels that have been changed, until we reach a layer
where no voxels have changed. Likewise, we move inside the cube, subtracting layers
of voxels, until we reach a layer where no voxels have changed. The change in
discrepancy, ∆DP,P ′ , is then given by the total number of voxels that have changed
to be correctly assigned minus the total number of voxels that have changed to be
incorrectly assigned. The cubes corresponding to the grains are stored in memory
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and are recomputed every 5× 105 steps of the fitting procedure.
The cube approach significantly reduces computation time. In doing so, it makes

the simplifying assumption that the cell corresponding to each generator is con-
nected. This is not always the case. However, our results suggest that, if discon-
nected cells occur, there are usually only a few voxels separate from the main part
of the cell. If disconnected cells appear to be a significant issue, the shell approach
can either be modified to check voxels in a larger area around the generator or it
can be abandoned altogether.

In computing the change in discrepancy, we make a further simplifying assump-
tion. Initially, for each voxel, a list of the closest Gmax generators is identified using
the GBPD distance measure described in Section 2. This list is stored in memory
during the whole fitting procedure. The closest Gcheck generators from these Gmax

then form the list of generators to be checked in each step. Every Nupdate steps,
the distance of the voxel to each of the Gmax generators is recomputed, and the
Gcheck closest generators form the new list of generators to be checked. Note that
this increases the memory requirements, but decreases computation time signifi-
cantly. We have encountered no memory issues with our implementation, which
uses Gmax = 40, Gcheck = 15, and Nupdate = 5000, on a 8GB RAM system.

3.2. Simulated annealing

Simulated annealing is a widely used stochastic optimization technique, introduced
in [23] and [24], that is able to solve high-dimensional multimodal optimization
problems. It draws its inspiration from the physical process of annealing, in which
a material is heated up to the temperature where its molecules are easily able to
move about, then slowly cooled so that the molecules arrange themselves into a low
energy configuration; see, e.g., [25].

Formally, simulated annealing is a Markov chain Monte Carlo (MCMC) technique.
In our setting, it works as follows. Suppose that we wish to minimize a function,
D : X → R, defined on some general state space X . Further, suppose that this
function is reasonably well-behaved and has at least one global minimum. Then,
the idea of simulated annealing is to sequentially sample from a family of densities,
{πT }, on X , indexed by temperature, T , where

πT (x) =
exp (−D(x)/T )∫

X exp (−D(y)/T ) dy
for all x ∈ X ,

A considerable body of mathematical research has shown that samples from πT will,
with high probability, be very close to global minimizers of D when T is small; see,
e.g., [26] and [27]. In practice, however, it is difficult to sample directly from πT for
low values of T . Instead, an MCMC sampler is used to sample from a distribution
whose temperature is gradually lowered. This is done according to a cooling schedule,
{Tn}, with Tn ≥ Tn+1 for all n ≥ 1. In the following, we use a Metropolis-Hastings
sampler with proposal kernel Q(x,x′). Here, the proposal kernel can be thought of as
a conditional probability density given x, from which the proposed next state x′ of
the chain is sampled. Note that, in the classical version of simulated annealing, the
proposal kernel is symmetric, i.e., Q(x,x′) = Q(x′,x), which means the likelihood
of proposing a move from x to x′ is the same as the likelihood of proposing a
move from x′ to x. However, in our version of the algorithm, the proposal kernel is
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not symmetric. Because of this, the acceptance probability calculated below differs
slightly from the one found in standard simulated annealing algorithms. Given initial
conditions, xinit, the procedure is as follows:

(1) Set x0 = xinit. Set n = 1.
(2) Sample x′ from the density given by Q(xn−1, ·).
(3) Simulate U from a uniform distribution on (0, 1). Calculate the acceptance

probability

α
(
xn−1,x

′) = min

{
exp

(
−D(x′)−D(xn−1)

Tn

)
· Q(x′,xn−1)

Q(xn−1,x′)
, 1

}
.

If U < α (xn−1,x
′), set xn = x′. Otherwise, set xn = xn−1.

(4) Stop if a prespecified stopping condition is met. Otherwise, set n = n+ 1 and
repeat from 2.

The factors controlling the performance of the simulated annealing algorithm are
the initial conditions, the cooling schedule, the choice of proposal kernel and the
stopping conditions. If the cooling schedule is chosen appropriately, it can be shown
that xn converges in distribution to the uniform distribution on the set of global
minima as n→∞; see, e.g., [28] and [29]. In practice, such a slow cooling schedule
is not feasible. However, simulated annealing performs very well with much faster
cooling schedules; see, e.g., [30].

3.3. Fitting GBPDs with simulated annealing

In order to fit a GBPD to the image data, simulated annealing is used to minimize
DI(P). The proposal is generated by modifying one generator. The probability dis-
tribution, p(P), according to which the generator is chosen depends on the current
configuration of generators, P. At the nth step, we first choose a generator randomly
according to the distribution p(Pn−1), then update the parameters in a symmetric
fashion (i.e., such that the likelihood of changing the parameters from x to x′ is the
same as the likelihood of changing the parameters from x′ to x). Because only one
generator is changed in each step, we can use the procedure for calculating ∆DP,P ′
described in Section 3.1. Given initial conditions, Pinit, the fitting algorithm is as
follows:

(1) Set P0 = Pinit. Set n = 1.
(2) Choose the generator, i, to modify according to the distribution given by

p(Pn−1) = (p1(Pn−1), . . . , pN (Pn−1)).

Update the values of the chosen generator in a symmetric fashion. This results
in a new configuration, P ′.

(3) Simulate U from a uniform distribution on (0, 1). Calculate the acceptance
probability

α
(
Pn−1,P ′

)
= min

{
exp

(
−

∆DP,P ′
Tn

)
· pi(P ′)
pi(Pn−1)

, 1

}
.

If U < α (Pn−1,P ′), set P = P ′. Otherwise, set Pn = Pn−1.
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(4) If a prespecified stopping condition is met, stop. Otherwise, set n = n+ 1 and
repeat from 2.

The key features in this approach are: the choice of initial conditions; the choice
of generator to be updated; the method used to update the generator; the choice of
cooling schedule; and, the choice of stopping conditions.

3.3.1. Initial conditions

A good choice of initial conditions increases the speed of convergence of the simu-
lated annealing algorithm and helps ensure that it finds a configuration of generators
as close as possible to a global optimum. In our procedure, we first set the weights
of the generators to zero (i.e., we set wi = 0 for i = 1, . . . , N). Then, we follow the
heuristic approach used in [8] and [5], fitting an ellipsoid to each grain in the image
data. In this approach, the component voxels of each grain in the image data are
treated as a sample of points in R3. The component-wise average of these points
provides an estimate for the center of mass of the corresponding ellipsoid. The ellip-
soid is then obtained using principal components analysis (PCA). First, C, the 3×3
covariance matrix of the sample points, is estimated. Then, normalized eigenvectors
of C are calculated, such that UCU> = Λ, where U is the matrix with the eigenvec-
tors as columns and Λ = diag(λ1, λ2, λ3) is the diagonal matrix of the corresponding
eigenvalues. These normalized eigenvectors give the principal axes of the ellipsoid.
The reciprocals of the eigenvalues, λ1, λ2 and λ3, give the corresponding squared
semi-axis lengths of the ellipsoid. These are rescaled such that the volume of the
ellipsoid matches the volume of the corresponding grain. For more details on the
link between PCA and ellipsoids, see, e.g., [31].

3.3.2. Choice of generator to update

The choice of generator to update in each step helps determine the efficiency of the
simulated annealing procedure. In order to maximize the speed of convergence, it is
desirable to concentrate the computational effort on generators that appear to be
a long way from their optimal values (i.e., generators corresponding to grains that
do not fit the image data well). At the same time, it must be possible to change
the values of any generator, because escaping a local minimum may involve shifting
generators away from locally optimal values. We consider three different approaches
for randomly sampling the generator to modify.

S1: Select the generator uniformly at random. In this case, pi(P) = N−1 for all
i ∈ {1, . . . , N}.

S2: Select the generator from a distribution with probabilities depending on the
number of incorrectly assigned voxels in the corresponding grains. In this case,
pi(P) is proportional to the number of incorrectly assigned voxels of the ith
grain in the tessellation generated by P.

S3: Select the generator from a distribution with probabilities depending on the
fraction of incorrectly assigned voxels in the corresponding grains. In this case,
pi(P) is proportional to the fraction of incorrectly assigned voxels in the ith
grain of the tessellation generated by P.

Note that with S2 the algorithm is comparatively more likely to choose the gener-
ator of a large grain, as large grains contain many more voxels (and, thus, are more
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Figure 1. Performance of the sampling schemes. Left: proportion of incorrectly assigned voxels obtained

using the different sampling schemes (as a function of the number of iterations). Right: histogram showing
how the different sampling schemes favor different cell sizes.

likely to contain more incorrectly assigned voxels). In contrast, with S3 it is more
likely to choose the generator of a small grain, as just a few misaligned voxels may
correspond to a large percentage of the voxels in such a grain. This behavior can be
observed in the histogram in Figure 1.

Sampling schemes S2 and S3 are not symmetric because the probabilities of choos-
ing the generators change in each step of the simulated annealing algorithm. This is

corrected for in the algorithm using the pi(P ′)
pi(Pn−1) term in the acceptance probability.

In order to identify the best scheme for sampling the generator, we carried out
numerical experiments. These experiments fitted GBPDs to sample B from the
empirical image data described in Section 4 using the different sampling schemes.
The results illustrated in Figure 1 show that sampling scheme S2 outperforms the
other two schemes. Observe that S2 increases the probability with which large grains
are chosen to be modified. Intuitively, it makes sense that this is a more effective
sampling scheme. The larger grains share boundaries with many other grains and
these boundaries have large areas. Thus, changes to the generators of these grains
should have a large effect on the overall goodness of fit. It should be noted, however,
that concentrating on the larger grains can increase the computational cost since it
takes longer to evaluate ∆DP,P ′ for large grains.

3.3.3. Updating the generator

When modifying a generator, the modification should not be too large, as propos-
ing slight perturbations of the existing configuration helps the algorithm find local
minima. However, if the perturbations are too small, the algorithm is either unable
to escape local minima or does not move quickly enough towards a global minimum.
We generate perturbations as follows. When a generator is selected to be modified,
we modify either its position (given by x, y, z), its weight (w), the orientation of
its ellipsoid (φ, θ, ψ), or the semi-axis lengths of its ellipsoid (a1, a2, a3). The choice
of which of the four to modify is made uniformly at random. Depending on which
parameters are chosen to be modified, the perturbation is made according to the
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rules given below.

• Position: If we choose to modify the position, this is done by shifting it
by an amount uniformly drawn from a ball with center (0, 0, 0) and radius

w̄ = cp(a
(0)
1 a

(0)
2 a

(0)
3 )1/3, where a

(0)
1 , a

(0)
2 and a

(0)
3 are the semi-axis lengths of

the generator’s ellipsoid in the initial configuration. Shifting the points in
this fashion ensures that changes are symmetric, as a shift from (x, y, z) to
(x′, y′, z′) has the same likelihood as a shift from (x′, y′, z′) to (x, y, z). Note
that 2w̄/cp is a rough estimate of the mean width of the grain. We take a
value of 0.1 for the constant cp. Thus, we shift the position by up to 5% of
the mean width each time we make a change. This shift is large enough that
the simulated annealing algorithm can escape local minima but small enough
that it explores points close to its current position.
• Weight: If the weight is chosen to be modified, the new weight is produced

by randomly shifting the existing weight by a value uniformly sampled in the
interval [−cw, cw], where we take cw = 0.1.
• Orientation: If the orientation is chosen to be modified, each Euler angle

is shifted by a random amount. The shift of φ is uniformly selected from
the interval [−π/4, π/4], the shift of θ is uniformly selected from the inter-
val [−π/8, π/8], and the shift of ψ is uniformly selected from the interval
[−π/4, π/4]. Note that these random shifts are sampled independently from
each other. Furthermore, they are performed modulo the range of the corre-
sponding angle. The ranges for the possible shifts are again chosen so that
reasonably large shifts are possible but many small shifts are also made.
• Semi-axis lengths: If we choose to modify the semi-axis lengths, we do so by,

for i ∈ {1, 2, 3}, randomly shifting ai by an amount uniformly drawn from the
interval [−caw̄, caw̄], where w̄ is as defined above and ca = 0.1. If necessary,
we truncate these shifts, in order to ensure that ai > 0 for all i ∈ {1, 2, 3} and
that a1 ≥ a2 ≥ a3.

Note that, with the exception of some issues that may arise with truncation, the
kernels corresponding to all of these changes are symmetric. That is, the likelihood
of reversing a perturbation is the same as the likelihood of making the perturbation.
This means that the acceptance probability in the simulated annealing algorithm
does not need to be adjusted to take the likelihoods of making various moves into
account.

3.3.4. Cooling schedule

The cooling schedule of the simulated annealing algorithm is critical to its perfor-
mance. If the temperature is cooled too quickly, then the algorithm can become
trapped in a local minimum. However, if the temperature is not cooled sufficiently
fast, the algorithm will take too long to find a sufficiently good local minimum. We
use a modified geometric cooling schedule of the form

Tn = T0κ
bn/kc,

where k and κ are parameters controlling the cooling speed and T0 is the initial
temperature. This cooling schedule only reduces the temperature every k steps.
This allows the algorithm to approach the stationary limit distribution for a given
value of T before the temperature is reduced again. We take k to be 12 times
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the number of grains (i.e., k = 12N). As, at each step of the simulated annealing
algorithm, one of 4 possible changes is made to a generator (either the position
is changed, the orientation is changed, the semi-axes are changed or the weight is
changed), this allows every parameter of each generator to be modified roughly 3
times before the temperature is reduced again. This appears to be enough steps for
the MCMC sampler to get close to stationarity before the temperature is reduced
again. For the cooling factor, we take κ = 0.9. The initial temperature is chosen
such that approximately 50% of the modifications of the initial configuration are
accepted. This is estimated by generating k perturbations of the initial configuration
with one generator modified (exactly as in the simulated annealing algorithm), and
then choosing T0 so that 50% of these modifications would be accepted.

3.3.5. Stopping conditions

The criteria for choosing a stopping condition in our case are somewhat different
to those typically required in the simulated annealing literature (see, for example
[32]), as we do not require our algorithm to converge to a global minimum. This
is because the computing time required to reach a global minimum is far too large
to be practical but local minima that provide sufficiently good fits can be found
within much shorter time frames. Given the cooling schedule, which ensures that
the algorithm can escape local minima that correspond to bad approximations, the
stopping condition should ensure that the algorithm does not run for an unnec-
essarily long time and, at the same time, ensure that it does not terminate while
significant reductions in the cost function are still possible. Taking both these goals
into account, we halt our algorithm when no reduction in the cost function occurs
within k moves, where k is the number of moves carried out at each temperature
level.

4. Experimental image data

In order to validate our methodology, we consider tomographic images of an alu-
minum alloy subjected to severe plastic deformation. These images were produced in
order to investigate the properties of fine grained materials with superplastic prop-
erties. The tomographic data was acquired using 3D electron backscatter diffraction
(3D EBSD). The raw image data presents a number of challenges, particularly in
terms of alignment and segmentation. Our methods for overcoming these are briefly
described below.

4.1. Sample treatment and imaging

The experimental data we consider was obtained from an aluminum alloy with
nominal composition Al-3wt.%Mg-0.2wt.%Sc. The alloy was prepared by induction
melting of Al 5N, a master alloy with composition Al-2wt.%Sc, and Mg 3N in a
graphite crucible in an argon atmosphere (vacuum furnace Balzers VSG02). The
alloy was then cast into a 14 × 14 × 120 mm3 ingot. It was homogenized for 24 h
at 753 K in air, then solution treated for 1 h at 863 K and, finally, water quenched.
After thermal treatment, the ingot was machined into a specimen with a cross
section of 10 × 10 mm2 and an approximate length of 55 mm. The specimen was
then processed by 8 passes via equal-channel angular pressing (ECAP); see, e.g.,
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Figure 2. Left: illustration of the ECAP process. ID denotes the insert direction; ED denotes the extrusion

direction; and TD denotes the transverse direction. In each pass of the ECAP procedure, the sample is
pressed through the L-shaped channel. Right: schematic illustration of the set-up of the dual beam FIB-

SEM system for tomographic data acquisition.

[33] for a full discussion of this procedure, which is sketched in Figure 2. After each
pass of ECAP, the specimen was rotated by 90◦ around the axis given by the insert
direction (ID). This procedure is known as route BC. The ECAP processing was
carried out at room temperature. After all the passes were finished, the specimen
was annealed at 400◦C for 1 hour.

The microstructure of a material changes significantly when it is annealed after
ECAP. These changes are caused by a number of processes, such as static recrystal-
lization, grain growth and decreasing dislocation density; see [34]. These complex
and interacting processes resulted in a microstructure with well-defined fine grains,
which can be considered as being in a state just before the intended superplastic
deformation.

The imaging was done using a FEI Quanta 3D FEG field-emission scanning elec-
tron microscope (SEM) equipped with a high-speed EDAX/TSL EBSD camera and
focused ion beam (FIB). The 3D observations were obtained by combining EBSD
mapping with micro-milling of the top layer using FIB. The set-up is illustrated
in Figure 2. The resulting images consist of a stack of 2D images of equidistantly
spaced planar sections.

The three data sets of 3D observations — which we label sample A, sample B
and sample C — were taken from the same small region of the material. In order to
better investigate our proposed methodology, each data set was acquired using one of
three perpendicular mapping planes. Sample A was obtained using a mapping plane
normal to the extrusion direction (ED); sample B was obtained using a mapping
plane normal to the transverse direction (TD); and sample C was obtained using a
mapping plane normal to the ID. The sizes of the sub-volumes analyzed by EBSD
are: 22.1 × 24.0 × 12.0 µm for sample A; 27.1 × 20.0 × 15.0 µm for sample B; and
23.1 × 21.0 × 19.0 µm for sample C. The step sizes of the EBSD mapping and the
FIB slicing are all 0.1 µm, resulting in a voxel size 10−3 µm3.

4.2. Alignment of the section planes

The EBSD data consists of 2D images of slices of the material. These slices must be
aligned to form a 3D data set. Because the material is subject to slight shifts during
the imaging process, which are caused by movement of the sample between the
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Figure 3. SEM images of sample A. The mapped area is contained in the green rectangle. Two circles
are milled onto the specimen using FIB so that it can be properly aligned by image recognition software

before each milling or mapping. Note that the dimensions of the mapped area appear distorted because the

material is tilted by an angle of 70◦ to the electron beam. Left: first slice. Right: last slice.

milling and mapping positions and small drifts of the stage during time-consuming
EBSD mapping, the correct alignment is not known. Thus, information from the
2D images must be used to decide how the slices should be aligned.

We first use a similar approach to the one implemented in the “align sections
(misorientation)” procedure in the DREAM.3D software; see [35]. In this approach,
the slices are aligned sequentially, beginning with the bottom slice. At each step,
a slice is placed on top of the current slice and shifted until the discrepancy with
the slice below is minimized, where the discrepancy is calculated by the number of
misorientation angles between voxels in the two layers that are above a specified
threshold.

Although this approach often works very well, the alignments obtained for our
material are not sufficiently good. This can be seen by comparing the shifts required
to obtain the alignments with estimates of the shifts obtained from SEM images of
the scanned area taken for each cross section; see Figure 3. For example, using the
alignment procedure, the estimated shift between the first and the last cross sections
in the ED-direction for sample B is 2.30 µm. In contrast, the estimate using SEM
images taken after each EBSD mapping indicates that no shift occurs.

Anisotropy in the grains of the material can cause the above procedure to fail.
This is because the alignment procedure attempts to shift the layers so that, on
average, the slices of each individual grain are more or less directly above the slices
in the layer below. When a material is isotropic, this will lead to a good alignment.
However, when anisotropy is present in the material, grains will tend to slant in
a particular direction. In this case, the above procedure will artificially straighten
the grains (as it does not recognize they should slant), leading to a bad alignment.
Using methods from stochastic and convex geometry (see, for example, [36, 37]),
we identified significant morphological anisotropy in the material. This anisotropy
can also be seen in inverse pole figure (IPF) maps of the top layers of the material,
which are shown in Figure 4

Because the SEM images are of significantly lower resolution than the EBSD
maps, it is not possible to identify small shifts in the slices with magnitudes of only
a few voxels. For this reason, we use a combination of information from the SEM
images and information from the tomographic image data in the form of EBSD
maps to perform the alignment. The information from the SEM images prevents
misalignment due to anisotropy, while the information based on the misorientation
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Figure 4. Inverse pole figure maps of the top layers of the three 3D samples. The colors represent the

orientation of the crystal c -axis in the inverse pole figure scheme on the left. Note that anisotropy is present

in all of the images and is particularly pronounced in sample C.
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Figure 5. Relative shifts for sample B (with respect to the position of the first slice). Left: ED-direction;

right: ID-direction. Black: the shifts estimated from the SEM images; blue: the shifts obtained using the
alignment algorithm implemented in [35]; red: the shifts obtained using the modified alignment algorithm.

angles between slices in the tomographic data provides information about the align-
ment beyond the resolution of the SEM images. The basic idea for combining this
information is to try to minimize the sum-of-squares distance between our alignment
and the alignment implied by the SEM images. The actual alignment algorithm is
quite sophisticated, and will be the subject of a future paper.

The shifts obtained using the final alignment algorithm are shown in Figure 5,
along with shifts obtained by the initial algorithm and shifts estimated from the
SEM images. Note that the shifts obtained using the new alignment method are
very close to those estimated from the SEM images. However, the corrected shifts
are more accurate, as they use information about the crystallographic orientations
of the individual voxels mapped by 3D EBSD in addition to the lower-resolution
SEM images, whose main purpose is the extraction of a systematic trend in the
shifts.

4.3. Segmentation of the grains

The segmentation of a 3D image of a polycrystalline material into grains can be
challenging. One reason is that the requirement that grains are completely enclosed
by well-defined grain boundaries is often in conflict with the requirement that a
grain should be an area with more or less identical crystal lattice orientation. This
is particularly the case in deformed materials, which often exhibit gradual changes
in crystal lattice orientation. When dealing with such materials, common segmen-
tation approaches, which focus on identifying grain boundaries, can produce grains
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Figure 6. Grains obtained using segmentation and clustering. The different colors distinguish the individual

segments used as inputs of the clustering algorithm. Left: a typical grain obtained by clustering two segments.
Right: an unrealistic grain, which is not allowed in our procedure due to the minimum shared surface area

condition.

with very high orientation spreads; see, e.g., [38]. Our approach aims to avoid this
issue. It divides the material into grains by identifying regions where within-grain
deviations in crystal orientation are negligible while between-grain differences ex-
ceed a threshold used for identifying low angle grain boundaries (LAGBs).

The segmentation proceeds in two steps. Firstly, a voxel-by-voxel segmentation
based on misorientation angles is carried out. This builds grains one voxel at a time,
with two neighboring voxels placed in the same grain if their misorientation angle
is below a certain threshold. The segmentation is performed using an exceptionally
low threshold of 0.5◦, which is comparable to the measurement error. This results in
over-segmentation. Secondly, a simple clustering algorithm is applied to combine the
segments into grains. In each step of the clustering algorithm, the two neighboring
segments with the smallest difference in average orientation are identified. If the size
of the shared surface area of these grains is more than 3% of the smaller of the two
grains’ surface areas, then the grains are combined. Otherwise, the segments with
the next smallest difference in average orientation are selected and the procedure is
repeated. The minimum shared surface area condition helps to avoid the production
of unrealistic grain shapes, such as the one shown at the right-hand side of Figure 6.
The clustering process continues until the smallest difference in average orientation
between any two neighboring grains is bigger than 2◦, which is a threshold at which
LAGBs can be reliably identified. The reader is referred to [39] for discussion on
angular resolution and other issues related to the reconstruction of grains from
EBSD data.

After segmentation, sample A contains 3052 grains, sample B contains 2828 grains,
and sample C contains 3598 grains. Thus the number of parameters that need to be
fitted ranges from roughly 28000 to 36000. The sizes of the samples are sufficient for
assessing the qualities of the fits obtained by our procedure, as each sample contains
a large number of grains and several million voxels. We do not address the question
of whether these samples are large enough to be representative volume elements for,
e.g., the analysis of superplastic behavior. However, we note that discussion in [40]
and the references therein suggest the number of grains required for a representative
texture ranges from 1000 to 10000.
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Figure 7. Comparison of the empirical distributions of basic characteristics in sample B (full line) and the

simulated data (dashed line). Left: grain sizes; right: number of grain neighbors.

5. Experimental Results

A number of numerical experiments were carried out in order to evaluate both the
descriptive power of GBPDs and the effectiveness of our fitting procedure. These
were performed using both artificially generated image data and the experimental
image data described in Section 4. The computations were performed on a low-end
workstation with an Intel Xeon E3-1240 processor with four 3.4 GHz cores and
24 GB RAM. For our samples, simulated annealing required roughly 19 hours per
10 million iterations. As a result, the total computation time for each sample was
less than two days. Note that very good fits can be achieved in significantly shorter
time frames (for example, by relaxing the stopping criterion).

5.1. Artificial data

In order to measure the effectiveness of our fitting procedure, we need to be able
to distinguish between errors caused by failings of the fitting procedure and errors
caused by the fact that the GBPD may be an inappropriate model of the material.
For this reason, we first consider an artificial data set that is known to be described
perfectly by a GBPD. This also allows us to measure the effectiveness of our fitting
approach in a setting with no experimental error and no error caused by the GBPD
being an approximative description of the data.

The artificial data is produced in two steps. First we create the generators of a
GBPD. Then, we make a voxelized version of this GBPD. In the first step, we obtain
a packing of ellipsoids using the stochastic microstructure model implemented in
the DREAM.3D software; see [35]. The ellipsoids serve as a basis for our GBPD.
However, in order to obtain a general GBPD, we also need weights. We draw these
weights (which may be negative) from a normal distribution. The parameters of the
normal distribution are estimated from the tessellations fitted to the experimental
data in Section 5.2. We use a normal distribution because the weights in the ex-
perimental data appear to be approximately normally distributed. In the second
step, the voxelized tessellation is produced by assigning each voxel to the cell of the
generator to which it is closest using the GBPD distance measure.

We carried out a number of checks to ensure that the artificial data had similar
characteristics to the experimental data. Two such characteristics — grain size
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Figure 8. Left: a realization of the stochastic model fitted to sample B. The dimensions of the image are

180 × 180 × 180 voxels, corresponding to 18 × 18 × 18µm3. Right: the fitted GBPD obtained using the
simulated annealing methodology.

Table 1. Statistics on quality of fit for the GBPD approximations of the artificial data.

Heuristic Simulated annealing

% of correct voxels 94.48 97.51

% of cells with all neighbors correct 47.94 60.35
% of cells with ≤ 1 incorrect neighbors 79.93 88.28
% of cells with ≤ 2 incorrect neighbors 92.13 96.15

mean number of erroneous neighbours per grain 0.87 0.57

distribution and number of neighbors distribution — are shown in Figure 7, where
characteristics estimated from artificial data are compared to those from sample B.
Thus, the artificial data can be thought of as image data, free of experimental error,
of a microstructure that has similar characteristics to those observed in empirical
data and that is perfectly described by a GBPD. Any error in fitting a GBPD to
this image data can be solely attributed to our fitting procedure.

Our fitting procedure, described in Section 3, was used to fit a GBPD to artificial
image data consisting of 1803 voxels and containing 1894 grains. The parameters
used for the fitting algorithm are as described in Section 3.3. The initial temperature
used was T0 ' 84.3. The initial configuration was obtained using the heuristic proce-
dure described in Section 3.3.1. The results of the fitting procedure are visualized in
Figure 8. The left-hand side of Figure 8 shows artificial image data generated by the
stochastic GBPD model. The right-hand side of Figure 8 shows the corresponding
reconstruction using our simulated annealing method. Visually, the original data
and the GBPD reconstruction appear almost identical.

The results for both the heuristic initial fit and the fit achieved using simulated
annealing are summarized in Table 1. Note that the heuristic fit is already quite
good with 94.48% of voxels correctly assigned. Using simulated annealing, the num-
ber of correctly fitted voxels improves to 97.51%. The neighborhood structure is
reasonably well modeled by the heuristic fit, with 47.94% of cells having all neigh-
bors correct and 92.13% of cells having at most two neighbors incorrectly assigned.
Simulated annealing improves on this considerably, with 60.35% of cells having all
neighbors correctly assigned and 96.15% of cells having at most two incorrect neigh-
bors. Note that, although the simulated annealing algorithm does not result in a
perfect reconstruction, the quality of the fit is impressive given that the optimiza-
tion problem is extremely high-dimensional (and, thus, it is almost impossible to
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Figure 9. Convergence behavior of the simulated annealing algorithm for the artifical data set. Left: the

proportion of incorrectly fitted voxels over time. Right: the proportion of moves accepted as a function of
time (black: total moves accepted; green: proportion of moves accepted that decrease the cost function;

red: proportion of moves that increase the cost function). The vertical lines show the points at which the

temperature changes. Note that only the first 1 million steps are plotted.

find a global minimum corresponding to a perfect fit).
The convergence behavior of the fitting algorithm is shown in Figure 9. The left-

hand side of Figure 9 shows the proportion of voxels that are incorrectly assigned as
a function of the number of steps of the simulated annealing algorithm. Note that,
initially, there is a decrease in the quality of the fit. This is followed by a steady
improvement. The algorithm terminates after approximately 13 million steps at a
point where the cost function appears to have flattened off and where no significant
further improvement seems possible.

5.2. Experimental data

The main focus of this paper is on fitting GBPD approximations to tomographic im-
ages of polycrystalline materials. In this section, we examine the effectiveness of this
method by fitting GBPDs to three 3D EBSD images of Al-3wt.%Mg-0.2wt.%Sc al-
loy. The generation and preprocessing of these 3D data sets is described in Section 4.
After alignment, the 3D images are in irregularly shaped windows. To simplify com-
putation and visualization, we have taken cubic cutouts of these images. The cubes
have been chosen to maximize the volume of the cutouts. Each cube contains more
than 75% of the volume of the original 3D image.

GBPDs were fitted to each of the tomographic 3D images using the simulated
annealing methodology. The results are summarized in Figure 10 and Table 2. Fig-
ure 10 shows a 3D image of sample C, together with the GBPD reconstruction
obtained using simulated annealing. Notice that, visually, the fit seems to be almost
perfect, with the GBPD reconstruction a slightly smoother version of the original
image data. Indeed, the statistics given in Table 2 show that the quality of the fits
is good. As in the artificial data case, the use of simulated annealing increases the
number of correctly assigned voxels by 3− 4% in comparison with the heuristic fit.
Note that this improvement is concentrated at the boundaries of the grains. This
is apparent if we consider the results in the immediate vicinity of the grain bound-
aries, which we define to be all voxels in the image data that share a face, edge or
vertex with a voxel from another grain. These voxels comprise roughly 45% of the
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Figure 10. Left: 3D image of sample C. Right: 3D image of the GBPD approximation achieved through

the simulated annealing fitting procedure.

Table 2. Statistics on quality of fit for the GBPD approximations of the 3D data. Here, (H) denotes the

heuristic fit and (S) denotes the simulated annealing fit. A, B and C denote the data sets as introduced

in Section 4.1.

A(H) A(S) B(H) B(S) C(H) C(S)

% of correct voxels 88.18 92.03 88.54 92.32 88.55 92.12

% of correct voxels on grain boundaries 75.43 82.63 75.45 82.62 75.99 82.76

% of cells with all neighbors correct 33.81 35.06 36.59 38.38 32.42 34.35
% of cells with ≤ 1 incorrect neighbors 66.45 67.42 68.37 72.60 63.50 65.86
% of cells with ≤ 2 incorrect neighbors 85.29 86.03 87.58 88.92 82.14 84.12

mean number of erroneous neighbors per grain 1.31 1.26 1.21 1.09 1.42 1.32
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Figure 11. Convergence behavior of the simulated annealing algorithm for sample C. Left: proportion of

incorrectly assigned voxels as a function of the number of steps of the algorithm. Right: the proportion of

moves accepted as a function of time (black: total moves accepted; green: proportion of moves accepted
that decrease the cost function; red: proportion of moves that increase the cost function). The vertical lines

show the points at which the temperature changes. Note that only the first 2 million steps are plotted.

analyzed volume in each sample but make up approximately 90% of the reassigned
voxels. At the grain boundaries, the increase in the percentage of correctly assigned
voxels is roughly 7%.

The convergence behavior of the fitting algorithm is illustrated in Figure 11. As
in the artificial data case, the algorithm terminates at a point where no further
significant improvement seems possible.
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Figure 12. Left: a subsection of a 2D slice of the experimental data. Center: the GBPD reconstruction
obtained using the heuristic fit. Right: the GBPD reconstruction obtained using our procedure. Our fit is

much better able to describe the shape of the light blue central grain than is the heuristic fit.

5.3. Discussion of the experimental results

In all the examples considered above, the numerical results demonstrate an improve-
ment in fit (measured by the percentage of correctly assigned voxels) of approxi-
mately 3% - 4% over the heuristic method of fitting ellipsoids using PCA. Although
this improvement may seem to be small, it is worth observing that this improvement
is almost entirely concentrated at the boundaries of the grains (as the majority of
voxels within grains are already correctly assigned). At the boundaries of the grains,
the percentage of correctly assigned voxels increases by approximately 7% in each
sample. This improvement is quite significant, as the geometries of grain boundaries
play important roles in many physical phenomena. Additionally, the heuristic fits
are not able to fit as wide a range of grain shapes as the improved fitting procedure
considered in the present paper. This seems to be especially the case when fitting
very non-convex grains, as illustrated in Figure 12. Note that, due to the large num-
ber of grains in the samples and the high resolution of the images, it is not possible
to use the linear programming method as in [8] to fit tessellations to the data we
consider.

6. Conclusions and Outlook

GBPDs are a class of tessellations that are able to describe features of polycrystalline
materials, such as non-convex grains and curved grain boundaries, that are not well
described by traditional tessellation models such as Voronoi and Laguerre tessella-
tions. In this paper, we introduced a new method for fitting GBPDs to tomographic
image data. This method uses simulated annealing to solve a suitably chosen opti-
mization problem. We showed how this method can be effectively implemented so
as to achieve very good fits within reasonable time periods. We applied the method
to artificial data generated from a stochastic GBPD model. The high quality of
the resulting fits demonstrated the effectiveness of our method in reconstructing
GBPDs. We then applied our method to experimentally obtained 3D EBSD data
getting extremely high quality fits of much better quality than those obtained using
conventional tessellation models. In addition, we described techniques used to align
and segment our tomographic 3D EBSD data in preparation for fitting the GBPD.

Because grain boundaries play a key role in determining the physics of polycrys-
talline materials, the ability to effectively describe these boundaries using a GBPD
is a promising advance in the empirical study of such boundaries. For example, es-
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timators of important properties such as curvature can be developed that are based
on a GBPD fitted to image data. In order to develop and understand the properties
of such estimators, the theoretical properties of GBPDs must be further studied.
In addition, models could be developed that are able to describe grain information
such as crystallographic orientations and misorientations at grain boundaries. These
models could then be used to develop stochastic models, based on random marked
tessellations, that could be used for virtual materials design.
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[34] K. Dám, P. Lejček and A. Michalcová, Materials Characterization 76 (2013) p. 69.
[35] M. Groeber and M. Jackson, Integrating Materials and Manufacturing Innovation 3

(2014) p. 5.
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