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In fuel cells, a homogeneous distribution of gas flow is 
desirable for optimal performance. The gas diffusion layer (GDL) 
often used in PEM-like fuel cells is one of the key elements 
responsible for a uniform distribution under channels and ribs. To 
assess this ability of GDL-materials, characteristic numbers, e.g. 
the permeability, are often introduced. In this paper, we simulate 
one and two component gas flow through a virtual GDL material 
under operating conditions of a HT-PEFC. We observe the 
influence of discretization and viscosity choice on the macroscopic 
output of the Lattice-Boltzmann algorithm we apply. To achieve 
this, we first study their effects on empty square channels and 
finally transfer our interpretation to the output of a GDL simulation. 

 
Introduction 

 
The electrochemical reaction in a fuel cell takes place at the three-phase boundary of its 
electrodes. Hence, the gas supply of this area is crucial for its effectiveness. In a PEM-
like fuel cell, this supply is often supported by the Gas Diffusion Layer (GDL), which is 
connected to the electrode either directly or separated through a Microporous Layer 
(MPL). On both sides of this Membrane Electrode Assembly (MEA), gas channels of the 
bipolar plates provide the GDL with gas. The GDL's purpose is then to distribute the gas 
evenly over the full surface of the electrode under channels and ribs of the bipolar plates. 
Its permeability determines the quality of both the horizontal and the vertical gas supply 
at the electrode’s surface.   

Although all the single elements function as one cell, their geometrical structures are 
remarkably distinct and range from the mm scale (flow fields) over µm (GDL) to nm 
(electrode). A fuel cell model focussing on the mm scale often leads to a simplification or 
parameterization of the low scale regions. In contrast, models of microscopic regions are 
often limited in size and the simulated region does not reach the macroscopic size of a 
fuel cell. The dimension of the simulated region also influences the choice of the model. 
In order to simulate fluid flow in stacks for example, CFD simulations are often used (1). 
On the nanometer scale, implementations of continuum models are suitable options (2). 

In this paper, the modeling concept and results of one and two component gas flow 
through the GDL is presented. The implemented boundary conditions are based on the 
operating conditions of a High-Temperature Polymer Electrolyte Fuel Cell (HT-PEFC). 
The stochastic model of the paper based GDL that we use in our simulations was 
developed by Thiedmann et al. (3, 4). In their model, the randomly arranged fibers are 
virtually reconstructed by statistical methods. In this virtual material, we apply the 



Lattice-Boltzmann method to simulate gas transport (5, 6). The combination of these two 
approaches enables us to dissolve the material to the microscopic scale in the simulation. 
The use of the Lattice-Boltzmann method makes the implementation of an unequal 
distribution of fibers possible and beyond that massively favors the parallelization of 
computer code. The results from the simulation are macroscopic density and velocity 
fields of the gas. For the analysis, we calculate characteristic numbers (permeability, 
tortuosity) that connect these results with the implemented fuel cell boundary conditions. 

Before simulating fluid flow in the complex GDL structure, we start with the 
simulation of an empty square channel. Besides validation issues, this simulation is 
particularly done to analyze the influence of the discretization δx and the collision 
parameter ω on the physical output. A similar approach was successfully chosen in (7). In 
a second step, our methods are applied on the virtual GDL. Possible influences caused by 
the discretization and the collision parameter are identified.  We can use the characteristic 
numbers as a first evaluation of how well the modeled GDL serves its purpose of a 
homogenous distribution of gas at the electrode’s surface. Finally, the comparison of the 
simulated permeability with experimental results leads to a first validation of our 
combined models.    

 
Methods and Models 

 
GDL Model 

 
In this section, we present a brief description of the GDL model. The idea of the 

model is to virtually rebuild a paper type Toray material, which may be used in PEM like 
fuel cells as a gas diffusion layer. In Figure 1 we illustrate a 2D section of this material. It 
consists of irregularly arranged straight fibers. In the manufacturing process these fibers 
are piled in layers on top of each other, held together by a binder material. 
  

                          
 
Figure 1.  SEM picture of TGP 060, which is used to virtually build a virtual 3D GDL 
model as described in (3, 4).  
 

In the model of Thiedmann et al., a SEM picture of the GDL is examined and the 
upper layer of fibers is identified and digitalized (3, 4). This data is analyzed to produce 
statistical equivalent layers of fibers. These layers are piled up to create a three 



dimensional geometry while the diameter of the fibers is chosen to match the size of the 
fibers in the original material. In the virtual version of the fibers, their perpendicular cross 
section is assumed to be squared rather than circular like in the original material. With 
this aggregation of fibers, it is possible to model a three dimensional GDL material 
without binder. The binder that physically connects the fibers is added in the next step 
like in the original material. There are different scenarios of possible binder modeling in 
the constructed GDL. In our study, we use the “completely filled” scenario. In this model 
statistically determined geometries built by crossing fibers are completely filled with 
binder material one after another until the porosity of the original material is reached (4). 

 
Gas-Transport Model 
 

The gas transport through the virtual GDL is modeled with the Lattice-Boltzmann-
BGK method. The main part of its algorithm in its discretized form is the following 
equation:  
 

   [1] 
 

Originally, this formula stems from the well known Boltzmann equation, a general 
description of gas and fluid flow set up by Ludwig Boltzmann. A derivation of Equation 
[1] can be found in (6). 

The quantities f in Equation [1] relate to a number of particles high enough to 
guarantee continuity. For this group of particles, f may be interpreted as a function that 
gives the probability to find a particle at a position r and a velocity v. The index i is the 
discretization index for the probability function. We use a standard D3Q19 lattice (each 
lattice nodes has 18 neighbors in 3 dimensions). For simplicity, external forces like 
gravity or electromagnetic fields are neglected.  

A general interpretation of the Lattice-BGK algorithm is the connection of gas 
transport and molecule collisions. The left side of Equation [1] describes the transport of 
molecules from one lattice node to its neighboring node in a time-step δt. The velocity ξ 
is the unit-molecule velocity whose definition guarantees that the molecules travel 
exactly the space discretization δx during that time. We find the collision term on its right 
side, an approximation of the integral in the original Boltzmann equation assumed by 
Bhatnagar, Gross and Krook (8). It implies that any disequilibrium f relaxes towards a 
local Maxwell-distribution at each time and place. Here, ω is the collision frequency and 
δt the time-step between two relaxations. Its first two velocity moments determine the 
macroscopic values of the probability function. In their analytical form, these moments 
are invariant under collision (6, 9) and the following discretized versions are equally 
defined for the velocity u    
 

   [2] 
 
and the density ρ 
 

 .   [3] 
 

The algorithm we use in this paper carries out a collision and a transport step based 
on Equation [1] and calculates new macroscopic values in each iteration loop. In the post-
process the pressure is often calculated through the pressure-density relation of gas 
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kinetics             (6). Another connection of the algorithm’s microscopic quantities 
with the macroscopic input is the relation of the collision frequency ω and the viscosity ν 
of the fluid. For this relation derived in a Chapman-Enskog expansion of Equation [1] we 
find (6): 

    [4] 
 

According to Equation [4], the higher the viscosity, the shorter the time scale τ = 1/ω 
on which a fluid relaxes towards equilibrium. The isothermal speed of sound                 
sets the magnitude of the molecular velocity ξ in the pre-process of the simulation. Here 
R denotes the specific gas constant and T the temperature of the fluid. When 
characterizing the fluid in the following, we will mostly refer to ω, which is inversely 
proportional to the viscosity.  
  
 
Characteristic numbers 

 
In fluid mechanics, dimensionless quantities are introduced to compare different 

scenarios of fluid flow. The Reynolds number is the ratio of inertial to viscous forces in a 
fluid, while         is a reference velocity and L the macroscopic (reference) length of the 
material:   

[5] 
       

Fluids with the same Reynolds number have the same streaming behavior. This makes it 
possible to replace the fluid being analyzed with a physical equivalent one. When 
modeling fluid flow, usually numerical advantages are the reason to change the viscosity 
and velocity in a way that their ratio stays the same.  

On the right side of Equation [5], the Mach number Ma is a measure for the 
compressibility, the Knudsen number Kn for the collision density of the fluid. With the 
adjustment of the velocity, the viscosity (or ω respectively) and hence Knudsen and Mach 
number are changed to maintain the same Reynolds number. In doing so, it is important 
to notice that for a discretized Boltzmann approach Ma << 1 and Kn << 1 should still be 
valid to avoid large discretization errors and unphysical results (6, 9). Simply varying the 
discretization of our lattice is another method where the same macroscopic fluid flow 
conditions are present. To observe both effects in our algorithm, we vary the collision 
frequency ω and the space discretization δx for the same physical situation. The influence 
of these parameters on the physical output of a square channel is under study in this paper. 
Then these results are taken into account when the GDL material is analyzed and their 
effect on the behavior of physical quantities is observed once again. 

The calculated physical quantities that help us to assess our simulation results will be 
the tortuosity Τ and the permeability κ. The tortuosity in its most common definition is 
the ratio of the flow path length through a porous material to the direct distance between 
the material’s two ends. Since the fluid’s macroscopic velocity is the quantity gained 
from the Lattice-Boltzmann simulation, our definition of the tortuosity is set to be 

 
,                   [6] 

 
in which x is the main flow-direction vertical to the electrode’s surface. This definition 
we use throughout this paper. Consequently, for the gas flow through a channel without 
obstacles the tortuosity will be exactly 1. 
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 For the permeability, we refer to the definition in (10): 
 
                                     [7] 
 
With this equation, the permeability for a fluid flow through a certain material of length 
Δx can be determined. In our simulation, the fluid properties density, viscosity, and the 
average velocity for the first layer of Δx determine the simulated pressure on the output 
in Equation [7]. The permeability depends on the material properties observed but also on 
the main streaming direction of the gas flow. In a fuel cell like the HT-PEFC, the in-plane 
permeability characterizes the GDL’s ability to spread the gas evenly under channels and 
land while the through-plane permeability determines how well the electrode is supplied 
with gas. In this paper, we only consider the through-plane permeability of the GDL.    

A fundamental study of the viscosity dependence of the permeability can be found in 
(7). The viscosity dependence of the permeability for various Lattice-Boltzmann 
algorithms and different lattice-resolutions was observed. For the underlying geometry, 
Pan et al. used an accumulation of spheres. The basic idea of our paper is similar, though 
the inspected geometry is the GDL. In our virtual counterpart, a large 3D section of it is 
needed so that statistical relevance is reached. By simulating realistic macroscopic 
dimensions of a HT-PEFC, this requirement is fulfilled. To achieve this magnitude, we 
use the standard Boltzmann algorithm with simple bounce back boundaries as a first 
approach throughout this paper. Another difference to Pan et al. is the reference and 
validation we use for the permeability. In our work, we first validate our implementation 
for an empty square channel. The observed effects are discussed and will be compared 
with the corresponding effects in the virtual GDL. Finally, the results of the GDL studies 
are compared with experimental results for real materials.  
 

Results and Discussion 
 

The input variables for all our simulations are chosen according to the operating 
condition of a HT-PEFC: The temperature is set to 160 °C, the viscosity and density of 
hydrogen at this temperature are assumed for the one-component flow. We choose Zou-
He boundary conditions of a homogenous velocity profile for the inlet and a uniform 
pressure for the outlet (11). The inlet velocity’s magnitude is motivated by Faraday’s law. 
The main flow stream is in x-direction in our simulations hence vertically towards the 
GDL. Parallel to the surface of the electrode, in y- and z-direction, wall nodes close up 
the ends of the channel with a square cross section. At these points, standard bounce back 
conditions are applied; fibers and binder of the virtual GDL are treated alike.  

The discretization size is 5 lattice points for the diameter of a fiber, which 
corresponds to 7.5 µm on the macroscopic scale. All simulations have been checked on 
convergence and on mass conservation.  
 
Empty Channel Analysis 
 

To validate our code, we simulate the gas transport for an empty square channel and 
compare the results with the well known analytical solution. The dimension of the 
channel is 1000 x 100 x 100 lattice nodes, which corresponds to 1.5 x 0.15 x 0.15 mm in 
our discretization. The collision frequency in lattice units is set to be ω = 1 l.u., which 
determines the value for the velocity via Equation [4].  
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We monitor the pressure drop in our simulation area. Its experimental solution with 
the diameter d of the square cross section, and an experimental constant φ is found to be 
(12) 

.        [8] 
 

We calculate the average pressure for each layer of x in the simulation area. The 
reference pressure is set to be at x = 500 l.u.. We calculate the pressure difference of the 
first, second, third... x-layer with the reference point and compare this result with the 
calculated pressure of Equation [8].  In Figure 2 we illustrate the result. The deviation 
from the reference value pref is plotted over an area of 200 lattice nodes of the coordinate 
in stream direction x for inlet (left) and outlet (right). The deviation stays at ~ 3% for the 
most part of the plot and hence is in good agreement with Equation [8]. The boundary 
conditions cause that the profile is not fully developed on the inlet due to the fixed 
velocity on the boundary. This influence is noticeable up to 40 lattice sites. For the GDL 
simulations, this fact suggests to add an empty channel area quite large in front of the 
GDL geometry, the actual object under study. 

   

 
 
Figure 2. This Figure illustrates, how the simulated pressure for an empty channel of the 
size 100 x 1000 x 1000 l.u. deviates from its experimental value calculated. An area of 
200 nodes in streaming direction is shown for the inlet (left) and outlet (right).      

 
Furthermore, the tortuosity and permeability of this channel can be calculated and 

checked for plausibility. The tortuosity for this empty channel is Τ = 1.0009 and hence in 
very good agreement with the reference value of 1. Basically, the full macroscopic 
velocity is oriented in streaming direction in the empty channel. The permeability is 
κ = 801.3 D (D = 1 Darcy = 9.87 x 10-13 m2). Its error is influenced by the only simulated 
quantity in Equation [7], namely the pressure drop analyzed above. With more obstacles 
(like a GDL) in the middle of the channel, one would expect the value for the 
permeability to drop. As described above, we can vary the velocity and viscosity of the 
simulation if the Reynolds number stays the same. Substituting Equation [8] in 
Equation [7], we obtain a reference permeability for the empty channel: κref  = 800.5 D, 
very close to the simulated value above. The resulting equation is independent of ρ, ν and 
u. Discretization issues and the variation of the input parameter ω may nevertheless 
restrict this prediction. 
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Figure 3. This figure illustrates Hagen-Poiseuille velocity profiles for an empty square 
channel. The analytical and simulated solution for a 1000 x 100 x 100 l.u channel are 
shown and, in accordance with the macroscopic geometry, various smaller discretizations 
with a diameter of 3, 5 and 10 l.u. In this simulation we set ω = 1. A 2D section of the 3D 
simulation area is shown in z-direction. The z-coordinate has been transferred to the 
corresponding 100x100 cross section. X- and y-coordinate are set to half the total 
macroscopic length. 
 

We run the simulation of the empty channel for a various number of lattice-
resolutions to analyze the discretization influence. With the same macroscopic conditions 
as before, we simulate the fluid flow in a square channel for various discretizations. The 
diameter of the square tube is chosen to be 3, 5 or 10 lattice nodes and ω is set to be 1. 
For the qualitative examination, we plot the Hagen-Poiseuille profiles of the simulated 
areas and compare them with the analytical result (13). In Figure 3, 2D sections of the 3D 
geometry for x = 0.5 L and y = 0.5 d can be observed. The velocity shown on the y-axis 
is normalized with the initial velocity according to its discretization. All z-coordinates of 
the different curves are transferred to their corresponding coordinates on a 100x100 
square channel. The latter is also plotted as a reference and shows excellent agreement 
with the analytical result. For the smaller resolutions, a strong dependence on the 
discretization can be observed: The height of the profile massively decreases with lower 
resolution as seen in Figure 3. Hence, when ω is set to 1, the pores with a resolution of 
less than 5-10 lattice nodes in the GDL are expected to be responsible for velocity profile 
differences between simulation and analytical result.  

Regarding the GDL, this means that small resolutions in narrow parts may add up to 
produce discretization errors in the physical output. If the velocity in these channels is too 
small, the pressure loss according to Equation [8] will be equally small and the 
permeability in Equation [7] will increase. To observe this directly, the geometry 
dependence of a normalized κ is illustrated in Figure 4. Here the results from the velocity 
profile are confirmed and κ increases for smaller lattice resolution. The limit of a good 
agreement with its reference value depends on the choice of ω. For a choice of ω = 0.2 l.u. 
the influence is noticeable up to a cross section of d = 50 l.u., while for the choice of 
ω = 1 l.u. we observe, as before, a significant dependence up to d = 10 l.u..  We stress 



that for all simulations mass conservation is still valid. While the pressure loss in the 
channel decreases, its absolute value increases, and the product of velocity and density 
stays the same for each x-layer when convergence is reached.     

 
 
Figure 4. The dependence of the normalized permeability κnorm on the disccretization 

resolution of an empty square channel are illustrated and compared. The results for the 
values ω = 0.2, 0.6 and 1.0 are plotted over the diameter d of the square channel, which is 
represented in lattice units and corresponds to the same physical geometry.  

 
We further simulate the velocity profile of the 30 x 3 x 3 l.u. resolution for three 

different values in Figure 5 to understand its dependence of ω. The simulated results 
illustrate the effect in the diagram. The curve for ω = 0.2 l.u. is almost the same as the 
planar profile set on the inlet. Since the viscosity for this curve is very high, the main 
force the fluid encounters are the collisions with other molecules. The influence of the 
bounce back boundary conditions at the wall is too small to form a profile. Again, the 
influence on the permeability is to be analyzed. Figure 6 shows that the influence of ω 
causes the permeability to raise for small resolutions. A choice ω > 1 l.u. seems to be 
appropriate even for the largest discretization. For d = 3 x 3 l.u. deviations occur over the 
full range of ω. For a resolution of 100 x 100 l.u., the influence of ω is still weakly 
noticeable. Since the discretization for this choice is obviously large enough, a pure 
viscosity influence can be suspected.  

As described above, two influences on the instability of permeabilities have been 
observed. The discretization resolutions in the empty channels have a massive effect on  
the physical output of the simulation. This effect heavily depends on the collision 
parameter chosen. To decrease the effect, our results suggest a resolution of 5-10 lattice 
nodes for the smallest pore space with an ω between 1 l.u. and 1.5 l.u.. As described in 
(7), more sophisticated choices of the LB-model and the boundary conditions should 
have a positive effect on these influences in return for more processing power. In the next 
section, we analyze this effect on the simulation of the virtual GDL material. 

 



           
 
Figure 5. Hagen-Poiseuille velocity profile of an empty square channel is shown. The 

analytical solution is compared with a 3 x 3 l.u. cross section for the values ω = 0.2, 1.0 
and 1.4 l.u.. A 2D section of the 3D simulation area is shown in z-direction. The z-
coordinate has been transferred to the corresponding 100 x 100 l.u. cross section and the 
points are connected in favor of clarity. X- and y-coordinate are set to half the total 
macroscopic length. 

 

               
 
Figure 6. We simulated the gas flow in an empty square channel for various 
discretizations of the diameter d. All channels correspond to the same physical size of the 
channel. The calculated normalized permeability κnorm is plotted over the collision 
frequency ω for the different discretizations. The points are connected in favor of clarity. 
 
 
 



 
GDL simulation 

 
Figure 7. We illustrate a 2D xz-section of the simulated gas flow in a virtual GDL with a 
geometry of 130 x 512 x 512 l.u.. The macroscopic velocities at each lattice node are 
colored corresponding to their value. Binder and fiber material is colored in white.   
 

In the HT-PEFC, the width of a channel is in the mm scale, the GDL’s thickness of 
approximately 200 µm. With our choice for the discretization, a typical macroscopic 
GDL geometry under the channel of magnitude 0.7 x 0.7 x 0.1 mm corresponds to 
512 x 512 x 70 l.u. and is in the region of a the real material used in the HT-PEFC. We 
have added a large section of free channel on the inlet/outlet to minimize the effect of the 
inlet/outlet that we observed in Figure 2. In Figure 7 we exemplarily see a horizontal xz- 
slice of the velocity distribution for the simulated region at y = 65 l.u. (30 l.u. empty 
inlet/outlet area). 

As we would expect from mass conservation, in narrow spaces the fluid velocity has 
its highest values. The white area at x = 85 l.u. is mainly binder material that blocks the 
fluid at x = 80 l.u., locally redirects it and causes the velocity changes. Hence, a detailed 
investigation of different binder models seems to be appropriate but lies beyond the scope 
of this paper.  

The tortuosity we obtain for the 100 x 100 cross section is Τ = 1.26 according to 
Equation [6]. This value does not change significantly when varying the discretization or 
the collision frequency and is in good agreement with (14), in which CFD simulations led 
to an average tortuosity of Τ = 1.2 for the same virtual material. Since our main 
perspective during this paper is the study of parameter influences on the physical output, 
we will concentrate on the permeability in the following.      

For the analysis of the permeability, we take the same approach as before and 
calculate the permeability for different choices of ω (100 l.u. empty inlet/outlet area). 
This dependence is shown in Figure 8. If ω gets smaller than 0.8 l.u. the value of κ 
massively increases. For higher ω the permeability slightly declines. This effect can also 
be observed for the 3 x 3 resolution in Figure 6. Overall, the slope of the curve resembles 
the one for the empty channels analyzed above. We conclude that the deviations of the 
permeabilities, which occur for low-resolution channels with square cross sections, and 
the choice of ω contribute to influence the value for the permeabilities in the GDL.  



 

                
 
Figure 8. The gas flow through a 70 x 512 x 512 l.u. channel was simulated and the 
calculated absolute permeabilities are plotted against the collision parameter ω.  
 

  
As seen above, even for highest resolutions, the choice of a small ω may cause 

unphysical values for κ for the empty channels. This effect is clearly caused by the choice 
of ω. Nevertheless, it is difficult to separate the effect caused by these parameters entirely. 
If the resolution gets smaller, a discretization influence for the full range of ω will be 
observed. This fact is also valid for the GDL simulation where low-resolution pores 
always contribute errors over the full range of ω. In consequence the choice of perfect 
parameters for GDL simulations at this point is difficult to identify. Supported by the 
empty channel analysis and Figure 8, we observe that a choice of ω > 0.8 l.u. is advisable. 
An identification and variation in the number of lattice nodes in pores of the GDL will 
lead to a better understanding of the resolution limits in future works. Here the suggested 
resolution taken from Figure 3 and Figure 4 can only serve as a hint, since our modeled 
GDL is much more complex. We note, however, that the identification of pore spaces 
itself is rather difficult, especially in complex geometries. Furthermore, higher 
resolutions may lead to new small areas of less than 5 lattice nodes in areas of the GDL 
that have not yet been in solution at all before.  

With this in mind, we compare our results with permeabilities from experiments. 
Hussaini et al. measured the permeability for air and water flow through several GDL 
materials according to Equation 7 (10). For the Toray TGP 060, on which the virtual 
GDL model is based on, they measured κ = 20.5, which is in good agreement with our 
simulations in Figure 8.  

A similar study includes another gas-component to be closer to the realistic scenario 
of the HT-PEFC.  In this simulation, we expect further influences on permeabilities and 
tortuosities through the interaction-force between the different molecules. We 
implemented the Shan-Chen model, which contains these interaction-forces (15). As a 
first result, in Figure 9, we illustrate for identical components, how the velocity profile is 
built during our simulation.   

 



 

 
Figure 9. This figure illustrates a simulation for two component gas flow through a 
70 x 512 x 512 l.u. channel. Two identical components stream from opposite directions 
and interact through the Shan-Chen model (15). The picture shows, how velocity profile 
is built during the simulation.  
 

Conclusions 
 
In this study, we analyzed GDL materials under the operating conditions of a HT-

PEM fuel cell. In order to achieve this, we combined the Lattice-Boltzmann approach 
with a virtual GDL material made of statistically arranged fibers. Especially, the stability 
of the simulated permeability and tortuosity with respect to the collision frequency and 
the discretization were observed. The empty channel analysis is suspected to be 
representative for the GDL material and the results are in accordance in many aspects.  
The tortuosity is insensitive to the parameter variations. For the empty channel, the 
permeability shows influences of both discretization change and variation of the collision 
frequency, mainly for the values ω < 1 l.u. and d < 10 δx. We interpret the GDL 
simulation results in a similar way and find a good agreement with experimental results 
for values of ω > 0.8 l.u.. 
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