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A general framework is proposed for the study of the charge transport properties
of materials via Random Walks in Random Environments (RWRE). The material
of interest is modelled by a random environment and the charge carrier is modelled
by a random walker. The framework combines a model for the fast generation
of random environments that realistically mimic materials morphology with an
algorithm for efficient estimation of key properties of the resulting random walk.
The model of the environment makes use of tools from spatial statistics and the
theory of random geometric graphs. More precisely, the disordered medium is
represented by a random spatial graph with directed edge weights, where the edge
weights represent the transition rates of a Markov Jump Process (MJP) modelling
the motion of the random walker. This MJP is a multiscale stochastic process.
In the long term, it explores all vertices of the random graph model. In the
short term, however, it becomes trapped in small subsets of the state space and
makes many transitions in these small regions. This behaviour makes efficient
estimation of velocity by Monte Carlo simulations a challenging task. Therefore,
we use Aggregate Monte Carlo (AMC), introduced in Brereton et al. (2014), for
estimating the velocity of a random walker as it passes through a realisation of
the random environment. In this paper, we prove the strong consistency of the
AMC velocity estimator and use this result to conduct a detailed case study, in
which we describe the motion of holes in an amorphous mesophase of an organic
semiconductor, dicyanovinyl-substituted oligothiophene (DCV4T). In particular,
we analyse the effect of system size (i.e. number of molecules) on the velocity of
single charge carriers.

Keywords: Stochastic model, spatial graph, Markov chain, nearly completely decomposable,
Monte Carlo, segmentation, graph-theoretic decomposition, hole transport, mobility, estima-
tion, consistency, organic semiconductor, random walk, random environment
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1. Introduction

Random Walks in Random Environments (RWRE) are fundamental models in many branches
of the physical sciences (see, for example, Hughes (1996)). Generally, the random environment
models a disordered system and the random walker represents the motion of a single particle
through this system. The RWRE formalism allows for the study of numerous mathematically
and physically interesting properties of disordered systems. Continuous time versions of these
random walks are particularly important in materials science, where they provide a basis for
the study of the transport properties of materials. Much of the discussion of RWRE has
focused on mathematically tractable models, often in infinite settings (e.g., Zeitouni (2004)).
These models have been very successful in describing important physical phenomena. In
practice, however, it is often necessary to consider more complex environments. An example
is when the morphology of an organic semiconductor plays an important role in determining
charge transport characteristics.

The main quantity of interest when studying charge transport is the average velocity with
which charges traverse the random environment at a given external field (inducing a drift
to the charges), which corresponds to charge mobility when normalised by the field. A key
feature of many RWRE is the presence of ‘traps’ in the random environment, where the
random walker becomes stuck for long periods of time. These traps have a significant impact
on the average velocity of the random walker. In addition, trap regions present considerable
difficulties in obtaining numerical solutions of the Markov Jump Process (MJP) modelling
the random walk. This is because the resulting stochastic process is effectively multiscale. At
long timescales, the random walker moves between trap regions, exploring the state space.
At short timescales, the walker moves about within trap regions. In the theory of numerical
solutions of (embedded) Markov chains, such processes are said to have the property of being
nearly completely decomposable.

In this paper, we propose a novel framework to study charge transport properties of mate-
rials via random walkers in disordered random media. This framework combines a stochastic
model for the fast generation of random environments that realistically models material mor-
phology with an algorithm for efficient estimation of key properties of the resulting random
walk. This algorithm, called Aggregate Monte Carlo (AMC), was originally introduced in
Brereton et al. (2014) and is a method for estimating the velocity of a random walker as
it passes through a realisation of the random environment. The algorithm works by first
identifying, then aggregating, problem regions in the random environment. We show that we
are able to do this in such a way that our estimator is strongly consistent. Our stochastic
morphology model represents the disordered medium as a random spatial graph with directed
edge weights, where the edge weights represent the transition rates of a MJP modelling the
motion of the random walker and extends the spatial graph model introduced in Baumeier
et al. (2012). It makes use of tools from spatial statistics and the theory of random geometric
graphs. A particular strength is that it allows efficient simulation of large-scale molecular
systems.

We then present our methodology. We describe a model of an example which illustrates an
amorphous mesophase of an organic dye, used as an electron-donor in organic solar cells; see
Figure 1. Here, the random environment represents a molecular morphology, and the random
walker describes the movement of a charge (hole) through the morphology. More specifically,
we adjust the parameters of the model to the electronic properties of dicyanovinyl-substituted
oligothiophene (DCV4T) molecules in a small (microscopic) system. The fitted model can be
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Figure 1: Left: large-scale morphology of DCV4T gained by microscopic simulations; right:
corresponding 3D graph extracted from DCV4T morphology (cut-out), where ver-
tices are displayed in red and edges are marked in yellow

used to predict the mobility of holes in a morphology of DCV4T molecules. Such a model
can be of use for better understanding solar cells, as it allows for larger scale (experimentally
relevant) modelling of such microscopic structures.

The stochastic approach presented here is not limited to the particular organic semicon-
ductor (DCV4T) we have used as a test system. In fact, the majority of host materials in
organic light emitting diodes have large energetic disorder (deep traps) and are therefore
challenging to model using small systems and the conventional variable step size method ; see
Rühle et al. (2011), May et al. (2012a;b). Stochastic modeling helps to increase the size of the
system, while AMC provides an efficient way of evaluating its properties, e.g., charge carrier
mobility. Moreover, the developed techniques are not restricted to organic semiconductors.
Similar problems are encountered, for example, when studying surface reactions (catalysis)
(see Jansen (2012)) or hydrogen and oxygen transport in biological systems (see Wang et al.
(2011)).

The paper is organised as follows. In Section 2, we introduce our model of random en-
vironments. Section 3 deals with estimation of the random walker’s velocity, describing the
standard estimation technique and the AMC approach. We give a proof that the AMC pro-
vides a strongly consistent estimator of the random walker’s velocity. In Section 4, we use our
framework to analyse charge transport properties of DCV4T molecules for a number of differ-
ent realisations of the stochastic morphology model and different system sizes. Conclusions
are given in Section 5.

2. A Stochastic Model of Disordered Media

The random environment that we propose is a random spatial graph with directed edge
weights, where the edge weights describe the transition rates of a MJP governing the motion
of the random walker. This model has been designed primarily as a tool for the study
of charge transport. However, note that the graph model introduced in the following has

3



Figure 2: The first two stages in generating the random environment model. First: the ver-
tices are generated using the dominance-competition model (left); second: the edges
are placed according to the model detailed in Section 2.3 (right)

numerous other potential applications (see, e.g., Hughes (1996), Chapter 5).
The random graph model consists of spatially distributed random vertices and random

weighted edges. More precisely, the random geometric graph can be described by a triple
G = (V,E,W ), with V being the set of random vertices, E the set of random edges and W
the set of random edge weights. We divide our modelling approach for the random 3D graph
G into three parts: the modelling of the set of vertices, the modelling of the set of edges and
the modelling of the set of edge weights. The procedure for generating the graph (without
edge weights) is illustrated in Figure 2.

As stated above, this model has been designed primarily as a tool for charge transport
studies. In this context, note that every material system in the real world is of finite spatial
extent. The active layer of an organic solar cell, for instance, consists of a blend of electron-
donor (e.g. DCV4T) and electron-acceptor molecules and has a thickness of around 100 −
200 nm. Thus, it is reasonable to simulate a random environment not in an infinite, but in
a finite setting. Therefore, the random graph model will be simulated in a bounded (cubic)
observation window A = [0, ax] × [0, ay] × [0, az] ⊂ R3, ax, ay, az > 0. In particular, in our
case study (see Section 4), we analyse the effect of system size (i.e., the volume of A) on the
transport properties of single charges. It turns out that the system size has a significant effect
on transport properties. Although we define the stochastic morphology model for bounded,
cubic observation windows, the model could be defined on R3. In particular, if defined on
R3, the model has the properties of stationarity and isotropy which allow the application
of important structural (point process and image) characteristics. Restricting a model to a
bounded observation window means that boundary effects may be an issue. In this paper,
we avoid boundary effects by imposing cyclic boundary conditions (see Section 2.1). This
essentially means changing the distance metric, as explained below.
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2.1. Cyclic Boundary Conditions

We impose cyclic boundary conditions as follows. More precisely, we measure the signed x, y
and z distances between two vertices, si = (xi, yi, zi) and sj = (xj , yj , zj) by

dsi,sj =
(
dxsi,sj , d

y
si,sj , d

z
si,sj

)ᵀ
, (1)

where

dxsi,sj =


xj − xi if |xj − xi| ≤ ax/2
ax + (xj − xi) if |xj − xi| > ax/2 and xi > xj

−ax + (xj − xi) if |xj − xi| > ax/2 and xi < xj

(2)

and dysi,sj , d
z
si,sj are defined analogously. We can then introduce the metric

δ(si, sj) =

√(
dxsi,sj

)2
+
(
dysi,sj

)2
+
(
dzsi,sj

)2
. (3)

2.2. The Vertex Model

To model the vertex set V of the graphG, we use the dominance-competition model; see Stoyan
(1988), which is based on a thinning of a Poisson point process in R3. The dominance-
competition model, adapted for the simulation in a bounded observation window A, can be

described as follows: first, a set of points, {ξk}L
0

k=1, is generated, where the points are inde-
pendent and uniformly distributed in A, given the total number of points, L0, which follows
a Poisson distribution with parameter λ · ν3(A), with ν3(A) being the volume of A. We re-
fer to λ as being the intensity (average number of points per volume unit) of the random

set of points {ξk}L
0

k=1. Each point ξk is assigned a ball B(ξk, Rk) with midpoint ξk and a

random radius Rk ∼ Gamma(ιmean, ιvar) + rh, where rh > 0. We then thin the set {ξk}L
0

k=1

as follows. A point ξk is only retained if there does not exist another point, ξj , such that
ξk ∈ B(ξj , Rj) and the volume of B(ξj , Rj) is bigger than the volume of B(ξk, Rk). The

random set of remaining points, {Si}Li=1, where L is the total number of remaining points, is
called a dominance-competition process; see Stoyan (1988) for more details. Note that each
‘surviving’ point Si has a distance of at least Ri ≥ rh from its nearest neighbour. For any
fixed parameters ιmean, ιvar and rh of the radii distribution, the maximum intensity that can
be obtained by this point process model is limited (see, for example, Chiu et al. (2013) for
the case that Ri = rh). The intensity, however, can be increased by further iterations. More
specifically, in each step a dominance-competition process is generated independently of all
preceding processes. Points from this new process are added to the existing process provided
that they do not ‘interact’ with any existing points (i.e., they are not included in the sphere
of any existing point and no existing point is included in their sphere). See Baumeier et al.
(2012) for more details. The dominance-competition model has a broad range of applications.
This is because it provides a large degree of control over many important properties of point
processes.

1. The intensity can be adjusted by changing λ, the intensity of the underlying Pois-
son process. Large intensities can be obtained by further iterations of the dominance-
competition process.
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2. The hard-core distance rh sets a minimum distance between neighbouring points. This
is important because particles can not overlap in most physical models (e.g., grains and
molecules).

3. The distribution of the distances between points can be controlled by changing the
parameters ιmean and ιvar of the Gamma distribution and the hard-core distance rh.

4. It is possible to adjust the degree of regularity. A highly ordered point process can
be obtained by combining a high intensity (optionally by applying further iterations
of the dominance-competition process) with a large hard-core distance and a Gamma
distribution with small variance. In contrast, a more disordered point process can be
obtained by increasing the variance of the Gamma distribution.

This model is parsimonious but captures the ‘hard-core’ nature of molecules and allows
considerable control over the degree of regularity of the point process (which is important when
modelling irregular systems). Models with fewer parameters were considered but where unable
to combine a flexible distribution for the distances between centres of mass with sufficient
control over the regularity of the resulting system. The parsimony of the model means that
it is relatively easy to fit to experimental data. In addition, dominance-competition point
processes are stationary and isotropic if defined on the entire of R3, allowing the use of many
important point process characteristics; see Section 4.2.

2.3. The Edge Model

Given a set of vertices V = {si}`i=1, we place edges between neighbouring vertices to generate
a 3D spatial graph. The edge model, presented in the following, has four important features:

1. Edges are placed between all sufficiently close vertices: those less than rmin apart.

2. No edges are placed between vertices that are more than rmax distant from one another.

3. The probability of an edge being put between two vertices decreases as the distance
between the vertices increases.

4. In so far as possible, a minimum vertex degree of dmin is obtained.

These features allow considerable control over the connectivity properties of the graph.

Algorithm 2.1 (Edge Placement Algorithm). For each vertex, si ∈ V ,

1. Find Nmax
i = {j ∈ N : sj ∈ V \ {si} and δ(si, sj) < rmax}.

2. Find Nmin
i = {j ∈ N : sj ∈ V \ {si} and δ(si, sj) < rmin}. Place edges between si and

all sj , j ∈ Nmin
i . Put N rem

i = Nmax
i \ Nmin

i . Let Ki = |Nmin
i |. If Ki ≥ dmin go to step 4.

3. Let Mi = |Nmax
i |. If Mi < dmin, then connect si to all the remaining nearest neighbours

less than rmax away and terminate the algorithm. Otherwise, place dmin − Ki edges
between si and vertices in N rem

i . This is done as follows.

i. Set k = 0.

ii. Select a vertex sj , j ∈ N rem
i with probability

f(δ(si,sj))∑
l∈N rem

i
f(δ(si,sl))

, where f : [0,∞) →

[0, 1] is a suitably chosen, monotonically decreasing function.
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iii. Place an edge between sj and si, set N rem
i = N rem

i \ {j}, and set k = k + 1.

iv. If k ≥ dmin −Ki, terminate. Otherwise, go to step ii.

4. Put an edge between si and each remaining sj , j ∈ N rem
i , with probability αi,j , where

αi,j = min

(
1,

cf (δ(si, sj))∑
l∈N rem

i
f (δ(si, sl))

)
.

The parameter c > 0 controls the average number of edges being added.

2.4. The Edge Weight Model

The set of directed edge weights W is generated according to the high-temperature limit of
non-adiabatic transfer (Marcus theory, see Marcus (1993)) with the transfer rate given by

wij =
2π

~
J 2
ij√

4πλijkBT
exp

[
−(∆ηij − λij)2

4λijkBT

]
, (4)

where T is the temperature, ~ the reduced Planck constant, and kB Boltzmann’s constant.
The quantities on the right-hand side of (4) that are specific to pairs of vertices are the
reorganisation energy, λij , the electronic coupling element (or transfer integral), Jij , and the
energy difference, ∆ηij = ∆ηel + ∆ηext. The energy difference consists of the difference in
electrostatic site-energies, ∆ηel = ηi − ηj , and the influence of an externally applied electric
field F ∈ R3, ∆ηext = q〈F,dsi,sj 〉, where q is the charge of the carrier and 〈 , 〉 denotes the
scalar product.

In this paper, we model the two most important pair-specific components: electrostatic
site-energies ηi and electronic coupling elements Jij . The reorganisation energy, λij , is taken
to be constant.

In charge transport, transfer rates depend exponentially on energy differences between
neighbouring molecules. A key feature is that the energy of each molecule is strongly positively
correlated with the energies of neighbouring molecules. To reproduce these correlations,
we use a flexible moving-average type model for these energies. In addition, we model the
distribution of electronic coupling elements between molecules. Given the molecular energies
and the electronic coupling elements, we are able to calculate transfer rates using (4).

We associate an energy ηi to each vertex si. The {ηi}`i=1 are generated according to a process
similar to that used by Baumeier et al. (2012). We generate two independent sequences of
independent and N(0, σ2

η)-distributed random variables, {εi}`i=1 and {ε̃i}`i=1. Let

N k
i =

{
j1, . . . , jk ∈ {1, . . . , `} : max

k∈{1,...,k}
δ(sjk , si) ≤ min

l∈{1,...,`}\{j1,...,jk}
δ(sl, si)

}
be the indices of the k nearest neighbours of vertex si (including index i). Then, we set

ηi =
√
ωεi +

√
1− ω
k

∑
j∈N k

i

ε̃j + µη , i = 1, . . . , `, (5)

where µη > 0 is a constant chosen to fit empirical data. The number K controls the range of
the spatial correlation and the weight ω ∈ [0, 1] controls the magnitude of the spatial corre-
lation. The resulting energies, {ηi}`i=1, are N(µη, σ

2
η)-distributed with the desired correlation

structure.
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Roughly speaking, the electronic coupling elements, {Jij}`,`i=1,j=1,i 6=j , describe the quality
of the connections between molecules. The quality of the connection between a molecule at
si and a neighbouring molecule at sj is highly dependent on the distance between the two
vertices. We model the squared electronic coupling elements as lognormal random variables
with parameters that are distance dependent. That is, for each i and j, i 6= j, we set
J 2
ij = exp {Xij}, where Xij ∼ N

(
µJ (δ(si, sj)), σ

2
J (δ(si, sj))

)
. Both µJ (·) and σ2

J (·) are
polynomial functions. For i = j, we set Jij = 0.

If an edge exists between si and sj , then the weights between them are given by wij > 0
and wji > 0 as defined in (4). Otherwise wij = wji = 0. Note that the random geometric
graph constructed in this way is connected as unconnected realisations are rejected.

3. Aggregate Monte Carlo

A fundamental quantity in charge transport is the charge mobility. This corresponds to the
average velocity of a charge carrier under the influence of an external electric field normalised
by the magnitude of the field. The difficulty in calculating charge mobility lies in calculating
the velocity of the charge carrier. In our case, this corresponds to calculating the velocity
of a random walker in the appropriately chosen random environment. The continuous time
random walk approach which directly describes the microscopic motion of carriers, was pi-
oneered in Scher and Lax (1973) and Scher and Montroll (1975) (see also Movaghar et al.
(1980)).

Tractable closed form expressions for the velocity of random walkers in random environ-
ments are only available for very simple models. In complex models, such as that presented
above, the velocity must be estimated statistically. In order to estimate the velocity, a realisa-
tion or a number of realisations of the stochastic morphology model are generated and Monte
Carlo simulations are performed by simulating random walks on these realisations. The two
algorithms we describe for estimating charge mobility do not rely on a particular shape of the
density of states (DOS), but on rates only. This means the algorithms are generally applicable
and can be used for any DOS. Time, field and temperature dependencies all enter the rates
and are fully incorporated into all resulting calculations.

A key feature of RWRE models is that the velocity of the random walker tends to be slower
than it would be in an equivalent environment without random distribution of energies. This
is because of the presence of energetic traps in which the random walker becomes stuck for
long periods of time. In the charge transport context, these regions can be thought of as
‘valleys’ in the energy surface. These traps present significant difficulties to the estimation
of random walker velocity, as the random walker exhibits multiscale dynamics: over larger
time scales it moves between trap regions; over shorter time scales it moves about within
trap regions. In many cases, the MJP governing the motion of the random walker is nearly
completely decomposable. An MJP with this characteristic causes a number of numerical
difficulties, see the discussion in Brereton et al. (2012). In particular, when the random
environment is large many standard techniques for computational solutions of Markov chains
fail (see, e.g. Stewart (1994)).

We have developed an algorithm, AMC, that is particularly efficient in estimating the
velocity of random walks in environments with traps (see, Brereton et al. (2014)). It uses
aggregation techniques similar to those used to approximate steady state solutions to nearly
completely decomposable Markov chains: problem regions are aggregated into single states in
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such a manner that the velocity estimator remains consistent. Because velocity is a quantity
that is much more dependent on the long-run dynamics of the MJP than it is on the short-
run dynamics, this estimator gives considerable efficiency gains over standard techniques. It
is important to stress that this estimator does not result in any loss of information when
calculating charge mobility, as all pertinent information is preserved during the aggregation
step. In particular, the AMC algorithm does not reduce the system size or replace multi-
ple states with single states, whose sojourn times are approximated by exponential random
variables. Instead, we replace a stochastic process on the fine state space (an MJP) with a
qualitatively different process on the coarsened state space (a discrete time Markov Chain).
This second process completely captures the long-run properties of the original MJP. In the
case of estimating charge mobility, we make this explicit by providing a proof of consistency;
see Theorems 3.1 and 3.2.

We begin by describing the standard process by which the velocity of a continuous time
random walker is estimated, either for a realisation of a random environment model, as above,
or for a completely deterministic environment. We call this approach, used extensively in the
physics literature (see, for example, Tessler et al. (2009), van der Holst et al. (2011)) the
Crude Monte Carlo (CMC) approach.

3.1. Crude Monte Carlo

3.1.1. CMC Estimator for the Velocity

Consider a finite connected graph with directed edge weights, G = (V,E,W ) in the bounded
window A. We take the edge weights to be the transition rates of a MJP, M = {Mt}t≥0,
with state space V . We set ` = |V | and label the vertices from 1 to `; that is, we identify
vertex si with state i, for i ∈ {1, . . . , `}. The generator matrix {qi,j}i,j∈V of the MJP is given

by qi,j = wij for i 6= j and qi,i = −qi = −
∑

j 6=i qi,j . We define M̃ =
{
M̃n

}
n≥0

to be the

embedded Markov jump chain whose transition matrix is denoted by J = {pi,j}i,j∈V , with
pi,j = qi,j/qi, i 6= j. The associated sequence of waiting times is given by {Tn}n≥0. Let Nt be
the random number of transitions up to time t > 0.

The average velocity of the random walker is the vector quantity defined by

v = lim
t→∞

1

t

Nt−1∑
n=0

d
M̃n,M̃n+1

. (6)

We will see later that the limit in (6) exists almost surely (a.s.) and, moreover, that v is
a.s. constant given the weighted graph G = (V,E,W ). This immediately gives the following
natural estimator of the velocity

v̂cmc(t) =
1

t

Nt−1∑
n=0

d
M̃n,M̃n+1

. (7)

This estimator is straightforward to implement in the bounded window A.

Algorithm 3.1 (Crude Monte Carlo Estimation of Velocity).

1. Select M̃0 uniformly from 1, . . . , `. Put t = 0 and d = 0. Put n = 0.
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2. Put M̃n+1 = i with probability q
M̃n,i

/q
M̃n

.

3. Put t = t+ τ , where τ ∼ Exp
(
q
M̃n

)
.

4. Put d = d + d
M̃n,M̃n+1

.

5. Put n = n+ 1 and repeat from step 2 until t > t0.

6. Return the estimator v̂cmc(t) = d/t.

3.1.2. Asymptotic Properties of the CMC Estimator

Note that the MJP M is irreducible, as we require our graph to be connected, so there exists
a unique stationary limiting distribution π = {πi}`i=1. This yields an alternative definition of
the velocity in terms of the stationary distribution of the random walker that is used in the
following asymptotic result.

Theorem 3.1. Let ṽ =
∑

s,s′∈V πsqs,s′ds,s′. Then v = limt→∞ v̂cmc(t) = ṽ a.s. and in L1.

The velocity ṽ defined above has the following heuristic interpretation. Asymptotically, the
fraction of time the MJP M spends in state s ∈ V is given by πs. When the walker is in state
s it moves to state s′ ∈ V at the infinitesimal rate qs,s′ with an associated displacement vector
given by ds,s′ . This yields an instantaneous velocity of qs,s′ds,s′ . Averaging these velocities
over all possible transitions results in the expression ṽ =

∑
s,s′∈V πsqs,s′ds,s′ .

Note that Theorem 3.1 follows easily from the standard ergodic theorem for MJP (Norris
1998, Theorem 3.8.1). Some minor complications arise from the observations that the sum
in (7) is associated with the (embedded) jump chain, while the average in (7) is considered in
the continuous time variable t and that the distances appearing in (7) have to be considered
as functionals of a related bivariate Markov chain. To be more precise, in order to apply the
ergodic theorem for MJP it is convenient to consider the intermediate estimator

vc,1(t) =
1

t

∑
s,s′∈V

Ts,s′(t)qs′ds,s′ , t > 0,

where Ts,s′(t) denotes the time the MJP M spends in state s′ with state s being the previously

visited state. That is, for s, s′ ∈ V , Ts,s′(t) = ν1

(
t′ ∈ [0, t] : M̃Nt′−1 = s, M̃Nt′ = s′

)
, where

ν1 is the one-dimensional Lebesgue measure. In the appendix we show that

lim
t→∞

(v̂cmc(t)− vc,1(t)) = 0

with probability 1; see Lemma A.1.
Next, we show that P (limt→∞ vc,1(t) = ṽ) = 1. For this purpose it is convenient to

introduce the bivariate process M sub =
(
M sub

1,t ,M
sub
2,t

)
t≥0

defined by M sub
1,t = M̃Nt−1 and

M sub
2,t = M̃Nt . Here we choose M̃−1 to be an arbitrary neighbour of M̃0. Then M sub forms

an irreducible MJP on the subset V sub of V 2 consisting of those (s, s′) ∈ V 2 with qs,s′ > 0.
We denote the stationary limit distribution of M sub by {πsub(s,s′)}(s,s′)∈V sub and observe that the

ergodic theorem for MJP (see (Norris 1998, Theorem 3.8.1)) implies

P

 lim
t→∞

vc,1(t) =
∑

(s,s′)∈V sub

πsub(s,s′)qs′ds,s′

 = 1. (8)
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In order to represent πsub(s,s′)qs′ds,s′ in terms of the stationary distribution of the original chain(
M̃n

)
n≥0

, we first note that the generator
(
qsub(s,s′),(s′,s′′)

)
(s,s′),(s′,s′′)∈V sub

of M sub is determined

by qsub(s,s′),(s′,s′′) = qs′,s′′ for s′ 6= s′′. Hence, for every (s′, s′′) ∈ V sub,∑
s∈V \{s′}

πsqs,s′q
sub
(s,s′),(s′,s′′)/qs′ =

∑
s∈V \{s′}

πsqs,s′qs′,s′′/qs′ = πs′qs′,s′′ =
πs′qs′,s′′

qs′′
qsub(s,s′′).

Additionally,
∑

(s,s′)∈V sub πsqs,s′/qs′ =
∑

s′∈V πs′ = 1, so that πsub(s,s′) = πsqs,s′/qs′ . This com-

pletes the proof of the a.s. convergence in Theorem 3.1. The proof of L1-convergence is
provided in the appendix (see Lemma A.2).

3.2. AMC

The CMC estimator performs very poorly in many settings (see, for example, Brereton et al.
(2014)). This is because the realisations of the random environment can contain traps in which
the walker becomes stuck. The walker then spends a very large number of steps moving around
in a small region before it is able to escape and explore more of the environment. Simulating
all of these steps is computationally very expensive. However, because velocity is a long-
run quantity its value is largely unaffected by the short-run behaviour of the random walker
within trap regions. The idea of the AMC algorithm is to replace these traps with single states
so that the random walker can explore the entire random environment much more rapidly.
Because the expected time spent in each problem region and the probabilities of moving into
and out of problem regions can be calculated exactly, this procedure results in a velocity
estimator that is strongly consistent. In comparative studies, see Brereton et al. (2012) and
Brereton et al. (2014), this estimator has been found to be between 100 and 1000 times faster
than the CMC estimator (that is, to achieve equally accurate answers using CMC, a sample
size 100 to 1000 times larger would be required).

The AMC approach consists of 3 steps:

1. Identifying the problem regions in a given environment.

2. Aggregating these problem regions into single states.

3. Carrying out a simulation of the random walk on the resulting coarsened environment.

3.2.1. Identifying the Problem Regions

We wish to define a partition {Vj}Lj=1 of the state space V , such that traps in the original
state space are contained within single elements of the new partition, where L denotes the
number of ‘superstates’. In order to identify the problem regions in the state space, we
consider the embedded jump chain M̃ . This is because the computational cost in simulating
the random walker does not depend on the physical time spent in each state but rather the
number of transitions between states required to adequately explore the state space. The
problem regions are regions within which the walker moves with high probability but from
which it escapes with low probability. The walker quickly reaches almost stationarity within
these regions but takes much longer to reach stationarity over the whole environment.

We use a clustering algorithm given in Choi and Szyld (1996) for partitioning nearly com-

pletely decomposable Markov chains. Consider the weighted directed graph G̃ = (Ṽ , Ẽ, W̃ )
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which is derived from J , the transition matrix of M̃ , in the following way. The set of vertices,
Ṽ , represents the states of M̃ , which is simply V . The edge set, Ẽ, represents the possible
transitions. The set of edge weights, W̃ , represents the transition probabilities. The idea
is to partition G̃ into subgraphs based on connectivity properties. We begin by placing all
the vertices of Ṽ in a set C. The algorithm works by taking a vertex, s, of minimal vertex
degree in C. It uses this vertex as the basis of a super-state S. The algorithm considers all
vertices adjacent to S. For each adjacent vertex, s′, if the subgraph of G̃ formed by s′ and S
satisfies certain criteria, then s′ is added to S. The process continues until no more vertices
can be added to S. At that stage, the vertices in S are removed from C and classified as a
super-state and the algorithm begins again, considering the remaining unclassified vertices.

The criteria that the subgraph of G̃ defined by the vertex set {s′} ∪ S must satisfy are the
following.

1. Either a completeness criterion or a fullness criterion.

(i) The completeness criterion requires that
φ{s′}∪S

φS
> α for some α > 0, where φG is

the ratio of the number of edges in the graph G to the number of edges that G
would have if it were complete.

(ii) The fullness criterion requires that s′ is adjacent to at least a proportion β of
vertices in S, for some β > 0.

2. A threshold criterion. This requires that at least one transition probability from s′ into
a state in S is bigger than γ and that at least one transition probability from S to s′ is
bigger than γ, for some γ > 0.

The algorithm can be summarised as follows.

Algorithm 3.2 (Graph-theoretic decomposition of the jump chain).

1. Put C = V . Set j = 1.

2. Put S = S′ = ∅.

3. Choose from C a vertex s of minimal degree, mark it and add it to S.

4. Move to S′ all vertices adjacent to s.

5. Choose a vertex s′ in S′.

6. If the fullness or connectivity criterion is satisfied and the threshold criterion is satisfied,
then move s′ to S and add to S′ all vertices in C adjacent to s′. Otherwise, move s′ to
C.

7. If S′ 6= ∅, repeat from step 5.

8. Put aside the vertices in S as superstate Vj .

9. If C 6= ∅, set j = j + 1 and repeat from step 2.

We choose the parameters α, β and γ so that the superstates are quite small, but contain all
problem regions. A discussion of how to choose these parameters is given in Brereton et al.
(2014). In practice, we try a number of different parameter combinations and choose the
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Figure 3: Left: super states, with outer states identified in red. Right: the possible transitions
for the Markov chain on the outer states. Note that states 1 and 2 are not adjacent
in the original state space V , but on V̊ they are.

one that gives the best tradeoff between performance (measured, for example, by the average
amount of physical time achieved by the algorithm in a fixed number of steps) and the fineness
of segmentation. Note that the spatial extent of the superstates must be considerably smaller
than the size of the observation window in order to avoid problems in calculating distances
travelled by the random walker. To be more precise, in the following we assume that for every
j ∈ {1, . . . ,L} there exists s ∈ Vj with δ(s, s′) ≤ min(ax, ay, az)/4 for all s′ ∈ Vj and all s′

adjacent to an element of Vj .

3.2.2. Aggregating the Problem Regions

Given a partition, {Vj}Lj=1, of the state space V , we calculate the expected time spent in
each superstate and the transition probabilities from superstates to adjacent superstates.
These quantities are dependent not only on the current superstate but also on the state (in
the original state space) from which it was entered. Thus, in order to retain the Markov
property, we adopt a finer state space than the {Vj}Lj=1. We define our state space to be the
states on the boundaries of the superstates. We call these states the outer states and denote
them by V̊ ⊂ V . More precisely, a state s ∈ Vj is contained in V̊ if and only if there exists
s′ ∈ V \ Vj such that M can move from s to s′ with a positive transition rate. We are able
to model the random walker as it moves from an outer state of one superstate to an outer
state of another superstate in such a way that the process is Markovian and the expected
times spent in superstates and transition probabilities between superstates can be calculated
exactly.

For each state s ∈ V̊ and each adjacent state s′ ∈ V̊ of another superstate, we calculate
p̊s,s′ , the probability of the walker moving from s to s′, and τ̊s,s′ , the expected time that the
walker spends in the superstate before it moves from state s to state s′. Note that since we
consider the transitions between super states, in resolution of the outer states, s and s′ can
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be adjacent although they are not adjacent in the original graph G (see also Figure 3). The
quantities p̊s,s′ and τ̊s,s′ are calculated by treating the states of a superstate as the transient
states of a MJP, with the adjacent (outer) states acting as absorbing states. That is, for
j ∈ {1, . . . ,L} we denote by V ′j the union of Vj and all outer states V̊ which can be reached
from a state in Vj with positive probability. Then for each j ∈ {1, . . . ,L} we consider a MJP

M (j) =
{
M

(j)
t

}
t≥0

on the state space V ′j whose transition rates are determined as follows.

The rate of moving from a state s ∈ Vj to a state in s′ ∈ V ′j is given by the transition rate from
state s to state s′ in the original MJP M . Additionally, every state in V ′j \ Vj is absorbing.

The transition probability from an outer state s to an adjacent outer state s′ from a different
superstate is then given by the probability of absorption in s′, given that the MJP starts in
s. This is calculated by considering the jump chain of M (j), where j corresponds to the
superstate containing s. The transition matrix of the jump chain can be written in the form

J (j) =

(
I 0

J (j),TA J (j),TT

)
, (9)

where J (j),TA is the matrix of transition probabilities from transient states to absorbing states,
J (j),TT is the matrix of transition probabilities from transient states to transient states, I
is an identity matrix of appropriate size and 0 is a matrix of zeroes. The probability of
absorption in state k′, having begun in state k, is then given by (P̃ (j))k,k′ , where P̃ (j) =(
I − J (j),TT

)−1
J (j),TA. The probability p̊s,s′ is the element of this matrix where k corresponds

to s and k′ corresponds to s′.
The conditional expected time to absorption in state s′ starting in state s can be calculated

by considering the generator matrix of M (j), which can be written in the form

Q(j) =

(
01 02

Q(j),TA Q(j),TT

)
. (10)

The matrix of conditional expected absorption times is given by (τ̃ (j))k,k′ = T̃
(j)
k,k′/P̃

(j)
k,k′ , where

T̃ (j) =
(
(Q(j),TT)2

)−1
Q(j),TA. The expected time τ̊s,s′ is the element of this matrix where k

corresponds to s and k′ corresponds to s′. Note that these expected times are then used in
place of the exponentially distributed times used in the original MJP.

3.2.3. Simulating the Random Walk

Given an aggregation of the state space, we consider the Markov chain M̊ =
{
M̊n

}
n≥0

on

V̊ with ˚̀= |V̊ |. We denote the transition matrix of M̊ by J̊ =
(
p̊s,s′

)
s,s′∈V̊ , where p̊s,s′ = 0

when s and s′ are not adjacent or are contained in the same superstate. The AMC estimator
of the velocity is formally defined as

v̂amc(t) =
1

t

N̊t−1∑
i=0

dM̊i,M̊i+1
,

where N̊t = sup{n ≥ 0 :
∑n−1

i=0 τ̊M̊i,M̊i+1
< t}. It is implemented as follows:

Algorithm 3.3 (Aggregate Monte Carlo Estimation of Velocity).
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1. Select M̊0 uniformly from 1, . . . ,˚̀. Put t = 0 and d = 0. Put n = 0.

2. Put M̊n+1 = s with probability p̊M̊n,s
.

3. Put t = t+ τ̊M̊n,M̊n+1
.

4. Put d = d + dM̊n,M̊n+1
.

5. Put n = n+ 1 and repeat from step 2 until t > t0.

6. Return the estimator v̂amc(t) = d/t.

3.3. Asymptotic Properties of the AMC Estimator

In this section we prove a number of consistency results for the AMC estimators v̂amc(t). We
again defer all proofs to the appendix.

Theorem 3.2. It holds that limt→∞ v̂amc(t) = ṽ a.s. and in L1, where ṽ is the limit consid-
ered in Theorem 3.1.

Similarly to the approach used in Section 3.1 it is convenient to consider an interme-
diate estimator {va,1(t)}t≥0 whose precise definition is given below. The proof of Theo-
rem 3.2 is then subdivided into showing limt→0 v̂cmc(t)−va,1(t) = 0 a.s. on the one hand and
limt→0 v̂amc(t) − va,1(t) = 0 a.s., on the other hand. The L1-convergence is an immediate
consequence of the dominated convergence theorem, as v̂amc(t) is bounded from above by

max
s,s′∈V̊

ds,s′/ min
s,s′∈V̊
τ̊s,s′>0

τ̊s,s′ .

To introduce the estimator {va,1(t)}t≥0 we make use of a coupling of M̊ and M in the

sense that we define a Markov chain M̊ c that is defined on the same probability space as the
MJP M and has the same distribution as the Markov chain M̊ ; see Lemma B.1. The idea
for defining M̊ c is to trace the superstate transitions of the jump process M̃ , as illustrated in
Figure 4.

In order to define M̊ c precisely, we will need some notation that allows us to easily switch
between the state space V associated with the CMC algorithm and the state space of V̊
associated with the AMC algorithm. For every s ∈ V denote by σ(s) ∈ {V1, . . . , VL} the
superstate containing s. In order to convert the CMC time scale into the AMC time scale,
we define a function fca : N0 → N0 by

fca(n) =
∣∣∣{i ∈ {1, . . . , n} : σ

(
M̃i

)
6= σ

(
M̃i−1

)}∣∣∣ ,
where N0 = {0, 1, . . .} denotes the set of non-negative integers, i.e., fca(n) counts the number

of superstates visited by M̃ in the first n steps. The function fca can also be considered
as random clock that advances every time a superstate-transition is observed and remains
constant otherwise. Similarly, in order to convert the AMC time scale into the CMC time
scale, we define a function fac : N0 → N0 by

fac(n) = inf
{
n′ ≥ 0 : fca(n

′) = n
}
,
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2

Figure 4: Possible trajectory of the random walker M with outer states identified in red. The
highlighted states M̊ c

0 , M̊
c
1 , M̊

c
2 correspond to the outer states at which M enters a

new superstate.

i.e., fac(n) denotes the number of steps performed by M̃ at the time of the n-th superstate
transition. Thus, the function fac can also be considered as generalised inverse of the random

clock fca. Using these definitions we consider the process M̊ c =
{
M̊ c
n

}
n≥0

given by M̊ c
n =

M̃fac(n).We also put N̊ c
t = fca(Nt) and define the intermediate estimator

va,1(t) =
1

t

N̊c
t−1∑
i=0

dM̊c
i ,M̊

c
i+1
, t > 0 (11)

where we show in Lemma B.2 that P (limt→∞ v̂cmc(t)− va,1(t) = 0) = 1.
Finally, we consider the difference between va,1(t) and the AMC estimator v̂amc(t). Indeed,

|v̂amc(t)− va,1(t)| = 1

t

∣∣∣∣∣∣
N̊t−1∑
n=0

dM̊c
n,M̊

c
n+1
−
N̊c

t−1∑
n=0

dM̊c
n,M̊

c
n+1

∣∣∣∣∣∣
≤ 1

t

∣∣∣N̊t − N̊ c
t

∣∣∣ (ax + ay + az),

where in the first equality we used the fact that the processes M̊ and M̊ c have the same
distribution; see Lemma B.1. Hence, the proof of Theorem 3.2 is completed, once we show
that

P
(

lim
t→∞

1

t

(
N̊t − N̊ c

t

)
= 0

)
= 1.

This is done in Lemma B.3.

4. Application to DCV4T Molecules

A major application of our framework is in describing charge transport in amorphous organic
semiconductors, which are used in organic electronics. In this setting, the random environ-
ment represents a molecular morphology and the random walker describes the movement of
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charges (holes or electrons). In general, organic electronic devices are built from organic
semiconductors such as polymers or small molecules. Examples of organic electronic devices
are organic solar cells and organic light emitting diodes. Organic solar cells are an alternative
to classical silicon-based solar cells, as they are environmentally friendly and mechanically
flexible. In order to build efficient organic electronic devices, it is important to understand
elementary processes (e.g., charge transfer) within the device. It is important, for example,
that holes and electrons (charges) traverse the network at a high velocity, measured via charge
carrier mobility. In this section, we consider the problem of estimating the drift velocity or
charge mobility of a weighted spatial graph corresponding to systems of DCV4T molecules.
DCV4T is a small molecule used as an electron-donor in organic solar cells; see Figure 5
for its chemical structure. To increase the understanding of charge transport processes in
organic semiconductors, there are several physical modelling approaches, one of which is mi-
croscopic simulation. Here, a large-scale molecular morphology is simulated using molecular
dynamics and the network of molecules is represented as a spatial graph, where the vertices
correspond to centres of mass of molecules and edges to possible transitions between neigh-
bouring molecules; see Figure 1 (right). Transition or hopping rates are determined using first
principles calculations. In this section, we fit the stochastic morphology model introduced in
Section 2 to a realisation of a DCV4T graph obtained using microscopic simulation.

Figure 5: Molecular structure of DCV4T

4.1. Microscopic Simulation

We briefly summarise how the molecular morphology of an amorphous system of DCV4T
molecules is obtained by microscopic simulation. An example of such a morphology is given
on the left-hand side in Figure 1. The extracted graph is given on the right-hand side. For
general information on the microscopic approach, see Rühle et al. (2011), where a large-scale
morphology of Alq3 molecules is simulated. For specific details on the microscopic simulation
of DCV4T, we refer to Schrader et al. (2012a;b), Elschner et al. (2013).

The microscopic model is constructed in two stages. In the first stage, a spatial graph
is obtained which represents the molecular morphology. This is achieved by simulating an
amorphous morphology of 4096 DCV4T molecules using atomistic molecular dynamics. As
an initial configuration, the molecules are placed on a cubic lattice. Then, this system of
molecules is equilibrated for 10 ns using molecular dynamics well above the glass transition
temperature, 800 K. This system is then quenched (i.e., cooled down) to room temperature.
The centres of mass of the molecules for a given snapshot define the vertices of the graph.
An edge is placed between two vertices if the distance between any of the thiophene or
dicyanovinyl groups is less than a threshold of 0.8 nm (see, Schrader et al. (2012b)).

In the second stage, the transfer rates between neighbouring molecules are determined.
For neighbouring molecules, transition rates (i.e., charge hopping rates) are calculated using
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the Marcus transfer rate equation, given as (4), with the pair-specific quantities (the reor-
ganisation energy λij , the electronic coupling element Jij and the site-energy ηi) determined
using electronic structure techniques, polarizable force-fields methods, or a combination of
both(see, Brédas et al. (2004), Coropceanu et al. (2007), Rühle et al. (2011)).

For DCV4T, the reorganization energy of 0.21 eV was used for all molecules. Electronic
coupling elements Jij , are calculated for each pair of neighbouring molecules based on the
semi-empirical ZINDO approach as implemented in the Molecular Orbital Overlap module
of the VOTCA package (see, Rühle et al. (2011), Kirkpatrick (2008)). Site energies ηi are
calculated by using the Thole model (see, Thole (1981)) as implemented in the VOTCA
package (see, Rühle et al. (2011)).

The result of the microscopic approach is a weighted spatial graphGMol = (V Mol, EMol,WMol),
in a bounded observation window A ⊂ R3. The set of vertices V Mol describes the positions
of the centres of masses of the DCV4T molecules. The set of edges EMol describes those
pairs of vertices (i.e., pairs of centres of masses of molecules) between which charge transfer is
sufficiently likely. Charges can only make transitions along the edges of the graph. The edge
weights WMol give the transition rates between neighbouring vertices. Note that the resulting
graph is connected and that all distances are determined using cyclic boundary conditions;
see Section 2.1.

4.2. Model Fitting and Validation of the Random Spatial Graph

We fit the parameters of the random spatial graph model, G = (V,E,W ), introduced in
Section 2, to a system of DCV4T molecules gained by microscopic simulation as explained
in Section 4.1. We make use of similar fitting techniques to those described in Baumeier
et al. (2012). To begin with, the parameters of dominance-competition model representing
the vertex model are fitted to the set of vertices V Mol of the microscopic simulation.

Figure 6: Nearest neighbour distance distribution function (left), spherical contact distribu-
tion function (centre) and pair-correlation function (right) for vertices obtained
using the microscopic approach (black) and vertices from the corresponding reali-
sation of the stochastic model (red)

We use the minimum contrast method (see, e.g, Baddeley (2007)) to fit the parameters
of our vertex model. The parameters are chosen to minimise the discrepancy between the
estimated nearest-neighbour-distance distribution functions of the microscopic model’s ver-
tices and the points of the dominance-competition process; see Figure 6 (left). The nearest-
neighbour-distance distribution function D(r) gives the probability that the nearest neighbour
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of a randomly chosen vertex is within distance r. To check if the set of vertices V Mol of the
microscopic simulation is adequately represented by the stochastic vertex model, the point
patterns are visually compared to each other in Figure 7, where a very good agreement is
found. For a more formal model validation, we compute further structural characteristics
for the vertex set V Mol and realisations of the dominance-competition process; see Figure 6
(centre and right). In particular, we compute the spherical contact distribution function
H : [0,∞) → [0, 1], where the value H(r) describes the probability to reach a vertex from a
randomly chosen point in the observation window within distance r and the pair-correlation
function g : [0,∞) → [0,∞), where the value g(r) is proportional to the relative frequency
of point pairs with distance r. For both characteristics a reasonable agreement is found; see
Figure 6.

Figure 7: Left: 3D vertices obtained using the microscopic approach (cut-out) and a realisa-
tion of the fitted stochastic point-process model (right)

The fitting technique for the vertex marks and edge weights of the random graph is the
same as that described in Baumeier et al. (2012). We give here only a brief summary. The
marks of the vertices are fitted using the minimum contrast method with the mark-correlation
function as the summary statistic. Maximum likelihood as well as least-squares are used to
fit the remaining parameters to the observed edge weights of the microscopic simulation. The
good fit of the mark-correlation functions (which were used for model fitting), is evident in
Figure 8 (left).

To fit the edge model of the random spatial graph to the edge set EMol of the microscopic
simulation, the values of rmin and rmax are estimated by the minimum and maximum edge
lengths observed in the edge set EMol. Furthermore, we estimate dmin as the minimum vertex
degree observed in EMol. Choosing c = 7 yields an average vertex degree dmean = 17.4 for
the stochastic model which can be compared to dMol

mean = 17.0 for the microscopic model. The
function f : [0,∞) → [0, 1] introduced in Section 2.3 is described by a piecewise polynomial
of the form

f(r) =


1 for r ≤ rmin

a1r
2 + a2r + a3 for rmin < r ≤ rmax

0 else ,
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whose parameters a1, a2 and a3 are fitted to match the trend of decreasing edge putting
probabilities observed in GMol; see also Figure 8 (right). The edge length distributions of
EMol and the edge model match very well (see Figure 8, centre). The visual agreement
between the stochastic graph and the microscopic counterpart is also very good; see Figure 9.

Figure 8: Left: mark-correlation function. Centre: density of edge lengths. The black curves
indicate the microscopic approach and the red curves the stochastic model. Right:
edge connection probability estimated from the microscopic model (black) and fitted
polynomial function f (red).

Figure 9: 3D graph by microscopic approach (left, cut-out) and a realisation of the fitted
stochastic model (right)

The transition rates depend on the energies associated with each vertex, {ηi}`i=1, and the

transfer integrals, {Jij}`,`i=1,j=1,i 6=j . The general procedure for generating these quantities is
described in Section 2.4. Before generating the energies, we use minimum contrast estimation
to find the parameters of the energy model, µη = −1.99eV , σ2

η = 0.064eV 2, ω = 0.21 and
k = 15.

Analysis of the distributions of transfer integrals {Jij}`,`i=1,j=1,i 6=j for all pairs of neighboring
molecules of the microscopic model shows that log10(Jij) is Gaussian distributed for molecules
whose distance, r, is within a certain fixed interval, with mean and variance of the Gaussian

20



distribution changing with distance; see Figures 10 (a) and (b). This effectively takes into
account the interplay between the anisotropy of a single DCV4T molecule and the amorphous
morphology. After determining the pairwise distance dependence from the microscopic model,
values are drawn following a Gaussian distribution with the appropriate parameters. Fig. 10
(c) shows the overall frequency of rates after entering site positions, energies and electronic
couplings.

Figure 10: Left: comparison of mean values of log10(Jij) for the microscopic and stochastic
models. Centre: comparison of variances of log10(Jij) for the microscopic and
stochastic models. Right: comparison of relative frequences of transition rates for
the stochastic and microscopic models.

Both the microscopic model GMol and the random 3D graph model G are constructed in
order to estimate the charge mobility in amorphous semiconductors. To check if the fitted
random graph model G describes the reference graph GMol adequately, we calculate the charge
mobility for both models and compare the obtained results. Note that mobility v/|F|, being
the quotient of charge velocity v and strength of the electric field |F| is a three-dimensional
vector. Since the mobility is only non-zero in the direction of the electric field electric F, we
consider ζ = vᵀF/|F|2, the mobility in direction of the electric field.

In Figure 11, we show the mobilities vs. field as computed from GMOL (the microscopic
model) and G (the stochastic model). We first ignore the site-energy disorder, i.e., we put
∆ηelij = 0 in the expression for the rates in (4). In the upper panel of Figure 11, one can
see that the absolute values and a slight decrease with the increasing field strength (inverted
regime) are similar for both models. Taking the energetic disorder into account (lower panel)
reduces the value of mobility by seven orders of magnitude and is due to large disorder in
site energies. Again, both models agree almost perfectly. Note that the mobility is rather
sensitive to deviations in the model. If, for instance, the distances between vertices are too
large, this will result in much lower squared electronic coupling elements and consequently, in
lower mobilities. Thus, the presented stochastic model offers a good description of molecular
networks in amorphous semiconductors.

4.3. Numerical Results

One of the primary strengths of our RWRE approach to the modelling of charge transport
properties is that it allows for the fast generation of different realisations of the stochas-
tic network. It also allows for much larger models than those generated using molecular
simulation. To demonstrate the flexibility of our RWRE approach, we generated 10 realisa-
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Figure 11: Average hole mobilities ζ (in direction of the electric field) in dependence of the
electric field for stochastic model (red; averaged over 5 realizations) and micro-
scopic model (black; averaged over six different field directions and five injection
points)

tions of the stochastic DCV4T model in a bounded region A = [0, ax]× [0, ay]× [0, az], with
ax = ay = az ≈ 13.71nm. Each of these realisations consists of approximately 4000 molecules.
We then considered the effect of increasing system size. We did this by considering systems
with 5 and 10 times greater volume. That is, we generated realisations in the bounded regions
A5 = [0, 51/3ax]× [0, 51/3ay]× [0, 51/3az] and A10 = [0, 101/3ax]× [0, 101/3ay]× [0, 101/3az].

For each of these realisations, we calculated the mobility, ζ, along the x direction, ζ =
vᵀF/|F|2, where F = Fe, F = |F| and e = (1, 0, 0)ᵀ for a number of different values of F
(Poole–Frenkel dependence).

We used the AMC algorithm to estimate the mobilities for the various sizes of the ob-
servation window. The segmentation of the state space V was carried out with parameters
α = β = .2 and γ = .02. These values were chosen based on the numerical study done in
Brereton et al. (2014). In the case of the systems in A and A5, we ran the algorithm for
approximately 2.1 × 109 steps. In the case of the system in A10 we ran the simulation for
6.3 × 109 steps. These values were chosen using some pilot runs in order to ensure that the
estimates were sufficiently accurate. We report the average mobilities ζ over all realisations
of each system size in Table 1. We include the standard errors of the estimates of the average
mobilities.

As one can see, the average mobility decreases by several orders of magnitude once the
system size is increased. This is a typical indication of a finite size effect observed when simu-
lating drift-diffusion in systems with rough energetic landscapes (see Lukyanov and Andrienko
(2010)). The reason for this is that periodic (cyclic) boundary conditions are used to mimic
infinitely large systems. Therefore, statistical averages are performed over limited subsets of
distributions available in the periodically replicated box. This results in, for example, larger
average energy of a particle as compared to an infinitely large system. In other words, the
random walker has a higher effective temperature and therefore drift-diffuses with a higher
mobility.

The finite size effects are logarithmic in system size, i.e. the transition between so-called
dispersive and non-dispersive transport occurs for ` which exponentially grows with the square
of energetic disorder in units of kBT (see Lukyanov and Andrienko (2010), Borsenberger et al.
(1993)). It is therefore very important to use adequate system sizes in order to make accurate
estimates of non-dispersive mobilities. This can be achieved by constructing coarse-grained
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Table 1: Average mobilities and standard errors (S.E.) for realisations of DCV4T systems
in A, A5 and A10

A A5 A10

Force (V/cm). ζ (S.E.) ζ (SE) ζ (S.E.)

1× 105 2.1× 10−9 1.0× 10−10 3.8× 10−11

(6.4× 10−10) (4.8× 10−11) (1.6× 10−11)
2× 105 4.1× 10−8 1.4× 10−10 3.8× 10−11

(1.5× 10−9) (8.2× 10−11) (1.7× 10−11)
3× 105 6.4× 10−9 6.2× 10−11 4.8× 10−11

(2.4× 10−9) (2.0× 10−11) (2.4× 10−11)
4× 105 9.5× 10−9 9.9× 10−11 6.0× 10−11

(3.4× 10−9) (4.9× 10−11) (1.5× 10−11)
5× 105 1.5× 10−8 2.9× 10−10 6.9× 10−11

(5.2× 10−9) (2.1× 10−10) (2.2× 10−11)
6× 105 2.5× 10−8 3.2× 10−10 9.3× 10−11

(8.4× 10−9) (1.8× 10−10) (3.3× 10−11)
7× 105 3.5× 10−8 5.7× 10−10 1.3× 10−10

(1.3× 10−8) (3.2× 10−10) (4.6× 10−11)
8× 105 4.5× 10−8 9.6× 10−10 1.9× 10−10

(1.89× 10−8) (4.8× 10−10) (6.3× 10−11)
9× 105 5.6× 10−8 1.5× 10−9 1.9× 10−10

(2.5× 10−8) (6.6× 10−10) (7.2× 10−11)

stochastic models and combining them with the aggregate Monte Carlo scheme, as presented
here.

5. Conclusions

In this paper, we proposed a general toolkit for the study of the charge transport properties of
materials via Random Walks in Random Environments (RWRE). In particular, we presented
a flexible stochastic model for disordered media: a random spatial graph model with directed
edge weights, where the edge weights represented the transition rates of a Markov Jump
Process (MJP) modelling the motion of the random walker. We described the AMC estimator
to efficiently estimate the random walker’s velocity by Monte Carlo simulations. We proved
the strong consistency of the AMC velocity estimator. Thereafter, we applied the presented
toolbox for a detailed case study describing the motion of holes in a network of DCV4T
molecules. In particular, we analysed the system-size dependency of the hole’s velocity and
mobility, respectively.

23



Figure 12: Poole–Frenkel plot of the average mobilities for the various system sizes with error
bars showing ±2 SE
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Appendix

A. Proof of Theorem 3.1

First, we provide details concerning the proof of Theorem 3.1. Note that v̂cmc(t) admits the
representation

v̂cmc(t) =
1

t

∑
s,s′∈V

Ns,s′(t)ds,s′ ,

where Ns,s′(t) denotes the number of times the MJP M jumps from state s to state s′ before

time t. That is, for s, s′ ∈ V , Ns,s′(t) =
∣∣∣{n ∈ {0, . . . , Nt − 1} : M̃n = s, M̃n+1 = s′

}∣∣∣.
Lemma A.1. It holds that P (limt→∞ (v̂cmc(t)− vc,1(t)) = 0) = 1.

24



Proof. First, note that

v̂cmc(t)− vc,1(t) =
∑
s,s′∈V

(
Ns,s′(t)

Ts,s′(t)
− qs′

)
Ts,s′(t)ds,s′

t
.

As Ts,s′(t)/t is bounded from above by 1 it suffices to show

P
(

lim
t→∞

Ts,s′(t)

Ns,s′(t)
=

1

qs′

)
= 1. (12)

To prove (12) we note that Ts,s′(t) −
∑Ns,s′ (t)−1

i=1 σi is contained in the interval
[
0, σNs,s′ (t)

]
,

where the sequence (σi)i≥1 is defined by

σi = sup
t≥0

{∣∣∣{n ∈ {0, . . . , Nt} : M̃n−1 = s, M̃n = s′}
∣∣∣ = i

}
− inf
t≥0

{∣∣∣{n ∈ {0, . . . , Nt} : M̃n−1 = s, M̃n = s′}
∣∣∣ = i

}
.

In other words, σi denotes the waiting time at node s′ when it is visited for the i-th time
coming from state s. By the Markovian structure of M , the times (σi)i≥1 form independent
Exp(qs′) distributed variables, so that (12) follows from the law of large numbers.

Finally, the following uniform integrability result implies L1-convergence.

Lemma A.2. The family of random variables {v̂cmc(t)}t≥0 is uniformly integrable.

Proof. We construct a family {v(t)}t≥0 of L1-convergent random variables such that v̂cmc(t)
is a.s. bounded from above by v(t). Put q0 = maxs∈V qs. When conditioning the waiting

times {Tn}n≥0 associated with the MJP M on the jump-chain M̃ , they form a sequence of
independent and exponentially distributed variables, where the parameter of the n-th waiting

time is given by q
M̃n

. In particular, there exists a sequence
{
T

(1)
n

}
n≥0

of (unconditionally)

independent and exponentially distributed random variables such that T
(1)
n ≤ Tn a.s. and

such that T
(1)
n is exponentially distributed with parameter q0. Writing N

(1)
t = sup{n ≥ 0 :∑n−1

i=0 T
(1)
i < t}, we therefore obtain v̂cmc(t) ≤ v(t), where v(t) = 1

tN
(1)
t (ax, ay, az)

> . Since

the random variables N
(1)
t /t converge to 1/q0 in L1, this completes the proof of Lemma A.2.

B. Proof of Theorem 3.2

In the present section, we provide the proofs for the results given in Section 3.3. In the
following, for ease of presentation, it is convenient to assume M̃0 ∈ V̊ . The reader will have
few difficulties in modifying the subsequent arguments for the general case.

Lemma B.1. The processes M̊ and M̊ c have the same distribution.

Proof. It suffices to show that the conditional distribution of the random variable M̊ c
n given

M̊ c
1 , . . . , M̊

c
n−1 only depends on M̊ c

n−1 and equals the conditional distribution of M̊n given

M̊n−1. Since M̊ c
n−1 = M̃fac(n−1) and since M̊ c

1 , . . . , M̊
c
n−1 are measurable with respect to
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M̃0, M̃1, . . . , M̃fac(n−1) we can further reduce the problem to identifying the conditional dis-

tribution of M̊ c
n given M̃0, M̃1, . . . , M̃fac(n−1). More precisely, we show

P
(
M̊ c
n = s′ | M̃fac(n−1) = s, M̃fac(n−1)−1, . . . , M̃0

)
= p̊s,s′ (13)

for all i ∈ {1, . . . ,L}, s ∈ V̊ ∩ Vi and s′ ∈ V̊ \ Vi. The strong Markov property implies
that the left hand side of (13) equals the probability that the MJP M started at s exits the
corresponding superstate σ(s) via s′. But by definition, the latter probability is just p̊s,s′ .

Next, we compare the asymptotic behavior of v̂cmc(t) and va,1(t).

Lemma B.2. It holds that P (limt→∞ v̂cmc(t)− va,1(t) = 0) = 1.

Proof. Let i ∈ {1, . . . ,˚̀} be arbitrary. From our assumption (see Section 3.2.1) that there
exists s0 ∈ V ′i such that δ(s, s0) ≤ min(ax, ay, az)/4 we deduce ds,s′ + ds′,s′′ = ds,s′′ for all
s, s′, s′′ ∈ V ′i . In particular,

dM̊c
j ,M̊

c
j+1

=

fac(j+1)−1∑
n=fac(j)

d
M̃n,M̃n+1

(14)

for all j ∈ {0, . . . , N̊ c
t − 1}, so that summing over j ∈ {0, . . . , N̊ c

t − 1} yields

v̂cmc(t) =
1

t

fac(N̊c
t )−1∑

n=0

d
M̃n,M̃n+1

+
1

t

Nt−1∑
n=fac(N̊c

t )

d
M̃n,M̃n+1

=
1

t

N̊c
t−1∑
n=0

dM̊c
n,M̊

c
n+1

+
1

t
d
M̃fac(N̊c

t ),M̃Nt
,

where (14) has been used in the last equality. From M̃fac(N̊c
t ), M̃Nt ∈ A we conclude that

|d
M̃fac(N̊c

t ),M̃Nt
| ≤ ax + ay + az. Thus the assertion follows.

Finally, our last result concerns the comparison of the asymptotic behavior of N̊t and N̊ c
t .

Lemma B.3. It holds that limt→∞ t
−1
(
N̊t − N̊ c

t

)
= 0 a.s.

Proof. This auxiliary result is proven by showing that both N̊t/t and N̊ c
t /t converge a.s. to

the same deterministic value 1/b, where

b =
∑
s∈V̊

µs
∑
s′∈V̊
p̊s,s′>0

p̊s,s′ τ̊s,s′ ,

and (µs)s∈V̊ denotes the stationary limit distribution of the Markov chain M̊ c. For s, s′ ∈ V̊
with p̊s,s′ > 0 and n1, n2 ≥ 0 with n1 ≤ n2 we say that F = {n1, n1 + 1, . . . , n2} forms an

(s, s′)-excursion if M̃n1 = s, M̃n2+1 = s′ and M̃k ∈ σ(s) for all k ∈ {n1, . . . , n2}. The family of
all (s, s′)-excursions is denoted by Fs,s′ . Similarly, for s ∈ V̊ we put Fs =

⋃
s′∈V Fs,s′ . For n ≥
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0 and s, s′ ∈ V we write Fs,s′(n) for the set of all F ∈ Fs,s satisfying F ⊂ {0, . . . , fac(n)− 1}.
Furthermore, for n ≥ 0 and s ∈ V̊ we denote by Ns(n) = |{i ∈ {0, . . . , n} : M̊ c

i = s}| the
number of visits in the state s ∈ V̊ during the first n steps of the Markov chain M̊ c. Then

1 ≥ lim sup
t→∞

1

t

Nt−1∑
n=0

Tn

≥ lim sup
t→∞

N̊ c
t

t

∑
s∈V ′

Ns(N̊
c
t )

N̊ c
t

∑
s′∈V
p̊s,s′>0

|Fs,s′(N̊ c
t )|

Ns(N̊ c
t )

∑
F∈Fs,s′ (N̊

c
t )

∑
k∈F Tk

|Fs,s′(N̊ c
t )|

,

where in the second inequality we decompose the path of the particle into its (s, s′)-excursions.
Note that this inequality is strict if Mt is not an outer state. Next, we determine the asymp-
totic behavior of the fractions appearing in the latter expression. As M̃ forms a Markov chain,

for every s, s′ ∈ V̊ with p̊s,s′ > 0 the sequences
{(
M̃k, Tk

)}
k∈F

, F ∈ Fs,s′ are independent

and identically distributed (iid). In particular, the random variables
∑

k∈F Tk, F ∈ Fs,s′ form
iid copies of the time to absorption of the particle started at s and conditioned to be absorbed
in s′. Since N̊ c

t →∞ a.s. as t→∞ the law of large numbers yields

P

 lim
t→∞

∑
F∈Fs,s′ (N̊

c
t )

∑
k∈F Tk∣∣∣Fs,s′(N̊ c

t )
∣∣∣ = τ̊s,s′

 = 1.

Similarly, for every s ∈ V̊ the sequences
{
M̃k

}
k∈F

, F ∈ Fs are iid and for every s′ ∈ V ,

F ∈ Fs the indicator 1F∈Fs,s′ constitutes a Bernoulli random variable with success probability
p̊s,s′ . Therefore another application of the law of large numbers shows

P

 lim
t→∞

∣∣∣Fs,s′(N̊ c
t )
∣∣∣

Ns

(
N̊ c
t

) = p̊cs,s′

 = 1.

Finally, an application of the ergodic theorem for the Markov chain M̊ c (see (Norris 1998,
Theorem 1.10.2)) yields

P

(
lim
t→∞

Ns(N̊
c
t )

N̊ c
t

= µs

)
= 1.

Hence, we obtain lim supt→∞ N̊
c
t /t ≤ 1/b. Very similar arguments can be used to show that

lim inft→∞ N̊
c
t /t ≥ 1/b a.s., but for the convenience of the reader we provide some of the

details. Indeed, noting

1 ≤ lim inf
t→∞

1

t

Nt∑
n=0

Tn

≤ lim inf
t→∞

N̊ c
t + 1

t

∑
s∈V̊

Ns

(
N̊ c
t + 1

)
N̊ c
t + 1

∑
s′∈V
p̊s,s′>0

∣∣∣Fs,s′(N̊ c
t + 1)

∣∣∣
Ns

(
N̊ c
t + 1

) ∑
F∈Fs,s′ (N̊

c
t +1)

∑
k∈F Tk∣∣∣Fs,s′(N̊ c

t + 1)
∣∣∣

=
(

lim inf
t→∞

N̊ c
t /t
)
b
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completes the proof of P
(

limt→∞ N̊
c
t /t = b−1

)
= 1. To show P

(
limt→∞ N̊t/t = 1/b

)
= 1 we

may proceed similarly. Indeed, with probability 1,

1 ≥ lim sup
t→∞

1

t

N̊t−1∑
j=0

τ̊M̊j ,M̊j+1

≥ lim sup
t→∞

N̊t

t

∑
s∈V̊

Ns

(
N̊t

)
N̊t

∑
s′∈V
p̊s,s′>0

∣∣∣Fs,s′ (N̊t

)∣∣∣
Ns

(
N̊t

) τ̊s,s′ ,

where in the second inequality we again decompose the path of the particle into its (s, s′)-

excursions. This yields P
(

lim supt→∞ N̊t/t ≤ 1/b
)

= 1. Finally,

1 ≤ lim inf
t→∞

1

t

N̊t∑
j=0

τ̊M̊j ,M̊j+1

≤ lim inf
t→∞

N̊t + 1

t

∑
s∈V̊

Ns

(
N̊t + 1

)
N̊t + 1

∑
s′∈V
p̊s,s′>0

∣∣∣Fs,s′ (N̊t + 1
)∣∣∣

Ns

(
N̊t + 1

) τ̊s,s′ ,

so that P
(

lim inft→∞ N̊t/t ≥ 1/b
)

= 1.
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