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Abstract Random tessellations are well suited for probabilistic modeling of
three-dimensional (3D) grain microstructures of polycrystalline materials. The
present paper is focused on so-called Gibbs-Laguerre tessellations, in which
the generators of the Laguerre tessellation form a Gibbs point process. The
goal is to construct an energy function of the Gibbs point process such that
the resulting tessellation matches some desired geometrical properties. Since
the model is analytically intractable, our main tool of analysis is stochastic
simulation based on Markov chain Monte Carlo. Such simulations enable us
to investigate the properties of the models, and, in the next step, to apply the
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knowledge gained to the statistical reconstruction of the 3D microstructure of
an aluminum alloy extracted from 3D tomographic image data.
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1 Introduction

In materials science, discovering and quantifying relationships between mi-
crostructure and bulk properties of materials is one of the most important
research goals [8]. The traditional approach is to analyze samples of real ma-
terials. Whereas this method arguably returns the most realistic results, it is
time consuming and demanding to produce, image and investigate the speci-
mens. With the increase in readily available computing power, it is possible to
support such investigations today with in silico experiments, which drastically
reduce the time spent in the lab, see, e.g., [20,24]. An effective approach for
this is building parametric stochastic models of the microstructure that provide
realistic virtual samples whose physical properties can be computed numeri-
cally. Based on these results, it is then possible to study relationships between
geometrical characteristics and descriptors of macroscopic physical properties,
and, as a consequence, reduce the lab experiments needed to validate these
relationships. On the other hand, when experimental datasets are available,
one can generate further samples using the ideas of statistical reconstruction,
see [9].

In the present paper, we study 3D polycrystalline microstructures, which
are interpreted as space-filling tessellations. There are various ways to model
the latter [3,15]. We will focus on parametric 3D models of tessellations gener-
ated by stationary point processes. There are several types of such models. The
basic Voronoi tessellation [15] is often too simple to be used for fitting the grain
boundaries of polycrystals [18]. The more general Laguerre tessellation [12],
on the other hand, became quite popular for the modeling of microstructures
with approximately convex grains [13,23]. More complex models exhibiting
anisotropy or curved boundaries [1,22] rely on higher-dimensional marks and
are thus more difficult to handle.

When starting with the Poisson point process we obtain the Poisson-
Voronoi or the Poisson-Laguerre tessellation [11,15], depending on whether
we use a Voronoi or a Laguerre tessellation. More interesting random tessella-
tions are obtained by replacing the Poisson point process with a Gibbs point
process [3]. The Ord process [16] is one of the first references to this type of
model. The crucial idea is to choose parametric potentials that allow us to
control the geometrical properties of the tessellation in a prescribed manner.
In [7] Gibbs-type Delaunay-Voronoi tessellations were investigated in 2D. In
particular, methods of parameter estimation and goodness-of-fit testing have
been suggested in [7] and applied to simulated data.
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Our aim is to extend the ideas of [7] in several ways in order to obtain
new stationary models for grain microstructures of polycrystalline materials.
Since the models are analytically intractable, our main tool of analysis will
be stochastic simulation based on Markov chain Monte Carlo (MCMC). Such
simulations enable us to investigate the properties of the models, which are
presented mostly by histograms or kernel density estimates of distributions
of basic geometrical characteristics. When going from 2D to 3D the compu-
tational demands increase, and advanced algorithmic tools of computational
geometry must be employed. Apart from that, we extend the model presented
in [7] in two directions. First, the Gibbs-Laguerre tessellation is formally in-
troduced and discussed. Secondly, we investigate a broader class of potentials,
which allows us to control certain characteristics of the tessellation geometry.
The goal is to provide clues to practitioners that allow to build stochastic
models matching desired properties of geometrical characteristics that are im-
portant for applications. Examples could include the edge lengths in open-cell
foams or the numbers of faces and vertices of grains in polycrystalline materi-
als.

The present paper is organized as follows: In Section 2 we give some theo-
retical background of Gibbs point processes and Laguerre tessellations. Then
various potential functions are defined and the properties of the correspond-
ing Gibbs-Laguerre tessellations are investigated. In Section 3 we present a
simulation algorithm for Gibbs-Laguerre tessellations and explain our idea of
statistical reconstruction. This is followed in Section 4 by a simulation study
with numerical results concerning the tessellation properties. In Section 5 the
results of the previous sections are applied to the polycrystalline grain struc-
ture of an aluminum alloy sample obtained by synchrotron X-ray tomography
[17]. First, we discuss the parameter estimation using standard methods for
Gibbs processes. Then, as the main result of this paper, the statistical recon-
struction of the microstructure of the sample based on a Gibbs-Laguerre model
is presented. A discussion of the simulation outcome and concluding remarks
are presented at the end of Section 6. Several complements and extensions
to the paper are provided in online supplementary material, as mentioned
throughout the text.

2 Point processes and tessellations

2.1 Gibbs point processes

The microstructure of the materials that we intend to investigate is globally
homogeneous. We are therefore interested only in stationary Gibbs point pro-
cesses. The existence of such processes will be discussed in a separate paper
using methods of [6]. However, we observe the microstructure in a bounded
window and, when taking an appropriate boundary condition, the finite volume
Gibbs point process, cf. [5], can be seen as an approximation of a stationary
process. Therefore, in this paper we deal with finite point processes in the
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sense of [14]. Let d > 1 be an arbitrary fixed integer and Λ ⊂ Rd a bounded
convex sampling window with |Λ| > 0, where | · | is the d-dimensional Lebesgue
measure. Let πzΛ denote the distribution of the restriction of a homogeneous
Poisson point process on Λ with intensity measure ν given by

ν(B) = z|B|, for each Borel set B ⊂ Rd, (1)

where z > 0 is called the intensity, cf. [3] for further details. If z = 1, then we
will write πΛ = π1

Λ for short. Let N be the family of all locally finite point
configurations in Rd and N = σ({x ∈ N : card(x ∩ B) = m}, B ⊂ Rd Borel,
m ∈ N∪ {0}) the appropriate σ-algebra. Here, card(x) denotes the number of
points in x. Further, Nf is the family of all finite point configurations in Rd
equipped with the trace σ-algebra N f of N , i.e., N f = {Nf ∩ N : N ∈ N},
and Nf,k ⊂ Nf is the family of configurations with exactly k points. Finally,
NΛ is the family of all finite point configurations in Λ. An energy function
is a measurable function E : Nf −→ R ∪ {+∞}, and we assume that it is
nondegenerate, i.e., E(∅) < +∞. The energy function E is said to be stable if
there exists a constant A ∈ R such that

E(x) ≥ A · card(x) for every x ∈ Nf . (2)

A finite Gibbs point process on Λ with activity z and energy function E is a
finite point process Φ having a density with respect to πΛ of the form

f(x) =
1

ZΛ
zcard(x) exp (−E(x)) for x ∈ NΛ, (3)

where

ZΛ =

∫
NΛ

zcard(x) exp (−E(x))πΛ(dx)

is a normalizing constant.
Analogously we define the notion of a marked Gibbs point process. Consider

marks from a finite interval I = (0, R0] for some fixed R0 > 0, a reference
probability distribution γ on I and the Poisson process with distribution πzΛ×I
on Λ × I and intensity measure ν ⊗ γ, where ν is given in (1). The sets NI ,

Nf
I , Nf,k

I are defined analogously. Then a finite marked Gibbs point process is
given by the density (3), but with respect to πΛ×I , where x ∈ NΛ×I are finite
configurations of points in Λ × I, and analogously in the formula for ZΛ one
integrates over NΛ×I .

2.2 Voronoi and Laguerre tessellations

A tessellation in Rd is a locally finite system of space-filling closed sets, called
cells, which are nonempty and have mutually disjoint interiors. We consider the
tessellation T(x) generated by x = {x1, x2, . . .} ∈ N or by x = {x1, x2, . . .} ∈
NI . The cell Ci corresponding to the generator xi,i ∈ N, is defined with respect
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Fig. 1 Illustration of the power distance given in (5). All three points P, Q, R have the
same power distance with respect to circles with centers S, T and radii s, t, respectively. ∆
is the square root of the power distance

to some distance ρ : D→ R+, where D = Rd×Rd if x ∈ N or D = Rd×(Rd×I)
if x ∈ NI , as

Ci = {x ∈ Rd : ρ(x, xi) ≤ ρ(x, xj) for all xj , i 6= j}. (4)

Nonempty cells: The definition of a tessellation allows only nonempty cells.
Therefore, we assume that all generators of x create nonempty cells. Otherwise,
we consider only the subset of x that generates nonempty cells, i.e., generators
creating empty cells are excluded.

In particular, the choice of ρ(y, x) = ‖x− y‖, x, y ∈ Rd, where ‖·‖ denotes
the Euclidean norm, results in the so-called Voronoi tessellation V (x), cf. [15].
In this case no empty cells can arise.

Another tessellation model can be defined for generators with marks. For
x ∈ NI and (x, r) ∈ x, the power distance of a point y ∈ Rd with respect to
the sphere B(x, r) with center x and radius r is given by

ρ(y,B(x, r)) = ‖y − x‖2 − r2. (5)

The interpretation of the power distance is as follows: for each y ∈ Rd outside
the sphere B(x, r), the value ρ(y,B(x, r)) equals the squared length of the
tangent line segment from y to the sphere, cf. Fig. 1. The distance ρ(y,B(x, r))
equals 0 if y is on the boundary of the sphere, and it is smaller than 0 if y is
inside the sphere. The Laguerre tessellation L(x) is defined by choosing the
power distance in the formula (4), cf. e.g., [11]. If a further generator (x′, q) ∈ x
overlaps with (x, r) over the center (i.e., x′ ∈ B(x, r)), it can happen that either
the cell corresponding to marked point (x′, q) does not cover x′ or even that
there is no cell at all (in this case the generator is omitted). Note that the
Laguerre tessellations are invariant under transformations of radii of the form
r 7→

√
r2 + t, where t ∈ R is fixed such that all radii remain positive. In the

case that all radii are equal, the Laguerre tessellation reduces to the Voronoi
tessellation. The cells of both Laguerre and Voronoi tessellations are convex
polytopes, we denote Cd system of all convex polygons in Rd.
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2.3 Random Gibbs-type tessellations.

In this paper we focus primarily on random tessellations in 3D Euclidean space,
i.e., we set d = 3 in the following, briefly C3 = C. The system of generators
forms a random point process. For stationary Poisson point processes with
Euclidean distance, we obtain Poisson-Voronoi tessellations, for which closed
analytical formulas are available for the moments of geometrical characteris-
tics of cells, such as volume, number of faces, surface area, etc., cf. [15]. For
stationary Poisson point processes and the power distance given in (5), we
obtain Poisson-Laguerre tessellations considered, e.g., in [11]. The aim of the
present paper is to investigate Gibbs-Laguerre tessellations. The marked point
process of generators will be a finite marked Gibbs point process in a bounded
convex set Λ ⊂ R3 with marks coming from the interval I. Using periodic
boundary conditions we obtain an approximation of a stationary model. Note
that Gibbs-Voronoi tessellations in R2 were studied in [7]. In a 3D tessella-
tion we deal with m-dimensional facets, m = 0, 1, 2, 3 - namely, with vertices,
edges, faces of cells, and the cells themselves. The energy function E given in
(3) is built as a sum of potentials (potential functions), see [2], Def. 4.2. A

potential function V is a measurable symmetric function, V : Nf
I → R∪{∞}.

In particular, Vk : Nf,k
I → R ∪ {∞} is a potential function of order k, where

k = 1, 2, . . . , n, n = card(x), and x is a finite configuration of generators
in Λ × I. We distinguish two types of potential functions. We speak about
soft-core potentials if they are finite. On the other hand, hard-core potentials
take on only one of the values 0 or +∞. In the rest of paper, when writing
arguments of a potential function, we identify cells of tessellation with their
generators.

2.4 Periodic configuration

Because of the bounded sampling window, edge effects have to be corrected,
which requires knowledge of the process outside the window. This can be cir-
cumvented by employing periodic boundary conditions. Without loss of gen-
erality, we assume

Λ = [0, 1]3, x ∈ NΛ×I , x̃ = ∪(x,r)∈x ∪i∈Z3 (τi(x), r),

where x̃ is the periodic configuration on R3 × I and τi : R3 → R3 denotes the
shift by i, i ∈ Z3. In the periodic setup a potential function of k-th order is
summed over k-tuples of neighboring cells in the periodic domain such that
each periodic k-tuple makes a unique contribution. In other words there is
only one contribution to the potential from all periodic images {(τi(x), r) :
x ∈ C1 ∪ . . . ∪ Ck}, i ∈ Z3, of every k-tuple of neighboring cells C1, . . . , Ck.
For instance, for k = 1, 2, 3 this is satisfied if the barycenter of the union of
the k-tuple of cells belongs to the bounded set Λ. In general, a periodic energy
function Ẽ : Nf

I → R∪{∞} can combine different potentials of several orders
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and can be written in the parametric form (case of different orders)

Ẽ(x) = Vhard + θ1
∑

C∈T(x̃)

bar(C)∈Λ

V1(C) + θ2
∑

C1,C2∈T(x̃);C1,C2∼2
bar(C1∪C2)∈Λ

V2(C1, C2) + . . .

+ θn−1
∑

C1,...,Cn−1∈T(x̃)

C1,...,Cn−1∼n−1

unique contribution

Vn−1(C1, C2, . . . , Cn−1) + θnVn(C1, C2, . . . , Cn),

(6)

where all hard-core potentials are included in Vhard, θ1, . . . , θn are real-valued
parameters, bar(·) denotes the barycenter of a given set and ∼k is the k-
neighborhood relation. For k = 2, 3, neighboring cells are those which share
a common face or edge, respectively. For k = n, the entire tessellation is
considered to be neighboring. It is important that each set of cells makes a
unique contribution to the energy function. Note that there can be several
potentials of the same order. Furthermore, the potential Vhard can be written
as a sum of hard-core potentials, i.e., potentials that can either be equal to
zero or +∞, i.e.,

Vhard =
∑

C∈T (x̃)

bar(C)∈Λ

V1,hard(C) + . . .+ Vn,hard(C1, C2, . . . , Cn).

Both energy function and periodic energy function are defined for x ∈ Nf
I

only. If E(x) < +∞ or Ẽ(x) < +∞ in the periodic setup, we say that the
configuration x is admissible.

2.5 Examples of potential functions

We will deal with the following choices of potential functions. First, we consider
the hard-core potential of first order:

V1,hard(C) =


+∞ if hmin(C) ≤ α,
+∞ if hmax(C) ≥ β,
+∞ if h3max(C) ≥ B|C|,
0 else,

(7)

where hmin(C), hmax(C) denotes the minimum, maximum distance between
the cell barycenter and a face of C, respectively, with 0 < α < β, B > 0. The
parameter α forces the cells to be not too small, while β forces them to be not
too large. The parameter B controls the shape of the cells—the smaller the
value of B, the more regular are the shapes of the cells.

A soft-core potential of k-th order Vk(C1, . . . , Ck) is a symmetric function
of a k-tuple of neighboring cells. In practice, these potentials are often assumed
to be nonnegative and bounded. In case there is no upper bound, an artificial
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bound K > 0 can be used (K is some large constant depending on the partic-
ular potential). In 2D these two properties ensure the stability property (2) of
the energy function, cf. [6] (unfortunately, this implication does not seem to be
generally preserved in higher dimensions). A pair potential function studied
later on is given by

V2,NVR(C1, C2) = NVR(C1, C2) ∧K (8)

with the neighbor-volume ratio (NVR)

NVR(C1, C2) =

(
max {|C1|, |C2|}
min {|C1|, |C2|}

− 1

)1/2

. (9)

When the potential given in (8) is multiplied by a real parameter θ, the sign
of θ is crucial. In the case when θ > 0, the neighboring cells tend to have a
similar volume; on the other hand θ < 0 forces the neighboring cells to have
substantially different volumes.

In the following let s : Ck → Rk yield a vector of values of a geometrical
characteristic assigned to a collection of cells C1, . . . Ck, in particular for k =
1, C ∈ C, s(C) = nof and s(C) = vol stand for the number of faces per
cell and cell volume, respectively. In s we do not distinguish the dimension
of the domain, therefore s(C1, . . . , Ck) = (s(C1), . . . , s(Ck)). Let T : Rk →
R be a functional of the sample s(C1, . . . , Ck), namely T (s(C1, . . . , Ck)) =
s̄(C1, . . . , Ck) stands for the sample mean computed over all cells in Λ, and,
similarly, s2 instead of s̄ means the sample variance; s0 ∈ R is the value we
want T (s(·)) to take.

The potential of n-th order has a very special meaning. Recall that n is the
cardinality of the observed marked point pattern x (i.e., total number of cells)
on the bounded sampling window Λ × I. During simulations/reconstructions
carried out below, this marked point pattern on Λ × I will change its cardi-
nality; thus, n is not constant in time. An example of a potential function of
n-th order is

V sn,T (C1, . . . , Cn) = (|T (s(C1, . . . , Cn))− s0|)1/2 . (10)

Later on, potential functions of the form (10) will be referred to as reconstruct-
ing potentials. A special case of this potential of n-th order (with T (s(C1, . . . , Cn)) =
dsc(Hs(C1,...,Cn), H

′
s) and s0 = 0, where dsc is an abbreviation of discrepancy,

which is defined below, see (12)) allows us to control not only the moments of
some geometrical characteristic but also its entire distribution. More precisely,
it is given by

V sn,dsc(C1, . . . , Cn) =
(
dsc(Hs(C1,...,Cn), H

′
s)
)1/2

, (11)

where Hs(C1,...,Cn) is the histogram of the chosen geometrical characteristic
computed from all cells, and H ′s is the prescribed targeting histogram of s
that we want to approach (this can be typically obtained from data). Alterna-
tively, we could deal with the cumulative histogram or empirical distribution
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Fig. 2 For the two histograms denoted in this figure by bars outlined in dark gray and
black, their discrepancy is a constant based on a sum of contributions of the regions shaded
in light gray

function instead of the histogram. Let us consider some geometrical charac-
teristic of the m-dimensional facets, m = 0, 1, 2, 3, taking values in an interval
[a, b]. For some integer J , let D = {ti}Ji=0 with ti < ti+1 for all i be a decompo-
sition of the interval [a, b] into J subintervals such that t0 = a and tJ = b (D
does not need to be equidistant). Each histogram H can then be represented
by some numbers h1, . . . , hJ interpreted as frequencies of the classes 1, . . . , J
(i.e., hi is the number of facets for which the value of the considered geomet-
rical characteristic belongs to the interval [ti−1, ti)). Using the abbreviating

notation S =
∑J
i=1 hi, the discrepancy between a pair of histograms (H,H ′)

defined over the same interval and having the same bins (this implies the same
number of classes) can be written as

dsc(H,H ′) =

J∑
i=1

∣∣∣∣hiS − h′i
S′

∣∣∣∣ . (12)

An illustration of dsc can be seen in Fig. 2. The discrepancy dsc measures the
difference between two histograms and is minimized when they are identical up
to some positive multiplicative constant (i.e., there exists a constant M > 0
such that hi = Mh′i for every i = 1, . . . , J). If we omit the normalizations
S, S′ in the definition of discrepancy, given in (12), then the discrepancy is
minimized if the two histograms are identical.

3 Simulation and statistical reconstruction

This section deals with two closely related topics, simulation and statistical re-
construction of marked point processes of tessellation generators on a bounded
and convex observation window Λ × I. We will use the Markov chain Monte
Carlo (MCMC)– namely, the Metropolis-Hastings birth-death-move algorithm
(MHBDM), cf. [7,14]. An adaptation of the evolution step of this algorithm
for marked Gibbs point processes is presented in Section 3.1. It is the key
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step of the algorithm and we treat it separately, since we will use it in both
simulation and reconstruction tasks. The MHBDM algorithm for simulation of
the Gibbs-Laguerre tessellation itself is presented in Section 3.2. Its goal is to
generate a stationary Markov chain of marked point configurations that tends
to the target distribution. On the other hand, the statistical reconstruction is
based on a given data pattern, and the aim is to generate samples that are
statistically similar [9]. In Section 3.3 we propose an alternative approach to
statistical reconstruction using the evolution step of MHBDM, in which an
auxiliary parameter is used. This method is compared in Section 5.5 with a
classical reconstruction based on greedy algorithm. This comparison is post-
poned since it requires an experimental data. Finally, Section 3.4 discusses the
importance of local recomputations of the tessellation, which are necessary to
achieve a substantial reduction in computing time.

3.1 Evolution step of the birth-death-move algorithm

The general form of the MCMC Metropolis-Hastings birth-death-move algo-
rithm is described in [14]. Recall that admissibility of a finite point configu-
ration x means that its energy E(x) is finite. Let f be defined as in equation
(3). The evolution step of the MHBDM algorithm for an admissible x0 ∈ Λ×I
with n = card(x0) can be written as follows.

Algorithm 1 (step of MHBDM).

1. (evolution step) do one of the following (with probability 1
3 each):

(a) “birth”: generate a point y uniformly in Λ (i.e., y ∼ U(Λ)) and a radius
r ∼ U(I) and set

x1 =

{
x0 ∪ {(y, r)} with probability min

(
1, f(x0∪{(y,r)})

(n+1)f(x0)

)
,

x0 otherwise;

(b) “death”: choose a point (y, r) from x0 at random and set

x1 =

{
x0 \ {(y, r)} with probability min

(
1, nf(x0\{(y,r)})

f(x0)

)
,

x0 otherwise;

(c) “move”: choose a point (y, r) from x0 at random and generate x ∼
N3(y,Σ) with the covariance matrix Σ, s ∼ U(I) and set

x1 =


(x0 \ {(y, r)}) ∪ {(x, s)} with probability

min
(

1, f((x0\{(y,r)})∪{(x,s)})
f(x0)

)
,

x0 otherwise.
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Here,

Σ = diag{σ2, σ2, σ2}, σ > 0, (13)

U denotes the uniform distribution and N3 denotes the trivariate Gaussian
distribution. All proposals are sampled independently of each other. Using the
Gaussian distribution for the move proposal distribution is a common choice,
cf. [7]. The constant σ of the proposal distribution will be chosen appropriately.
Throughout the rest of this paper the observation window Λ = [0, 1]3 is used.
First note that in step 1c of the algorithm, the point x can always be considered
to belong to Λ; if x /∈ Λ then the periodic image of x in Λ is taken. The second
observation is that with formula (3) the acceptance ratios Hk, k = “birth”,
“death”, “move”, in the steps 1a,b,c, are of the form

Hk = ck · exp(Eb − Ea), (14)

where Ea is the energy of the proposal (e.g., x0 ∪ {(y, r)} in step 1a), Eb is
the energy of x0 and the constant ck is equal to z

n+1 in step 1a, n
z in step 1b

and 1 in step 1c. Note that during the “death” step it is possible to exclude
one generator, but an even higher number of generators can be deleted in the
“birth” or “move” steps. The reason for this is that during the latter two steps
empty cells can arise whose generators are thus removed.

Choice of constants: In all simulations/reconstructions using the evolution
step of MHBDM, Algorithm 1, we set R0 = 0.2 as the upper bound for the
marks, σ to 0.015 in (13) and the activity z to the fixed value 2000.

3.2 Simulation of Gibbs-Laguerre tessellations

An MHBDM algorithm simulating Gibbs-Voronoi tessellations in R2 is pre-
sented in [7]. We extend their work to Gibbs-Laguerre tessellations in R3.
Pseudocode for our simulation algorithm is given below.

Algorithm 2 (MHBDM simulation of Gibbs-Laguerre tessellations).

1. construct an admissible marked point configuration x0,
2. n← card(x0),
3. run the Algorithm 1 (taking x0 and yielding x1),
4. x0 ← x1,
5. repeat steps 2 to 4 (S − 1) times,
6. return x0.

The marked point patterns obtained in Λ × I can be transformed into
tessellations that are considered to be samples of Gibbs-Laguerre tessellations.
Various models based on different densities f in (3) will be considered. Clearly,
the number of iterations S depends on the considered model; more complex
models tend to require more iterations in Algorithm 2 to approach the target
distribution. The convergence of the basic MHBDM algorithm was proven
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under mild conditions in [14], Section 7.3. As claimed in [7], Section 3.2, for
models with hard-core potentials the convergence of the algorithm is difficult
to prove in cases when the tessellation model becomes too rigid. This might
happen if the NVR potential (9) is multiplied by a large positive parameter θ,
which we try to avoid in the following.

3.3 Reconstruction approach

The aim of the statistical reconstruction of point patterns as introduced in
[25] (see [9] for a textbook version) is to generate point patterns with distri-
butional characteristics close to those of a given point pattern (data). This
is carried out by fixing the number of points in the observation window and
by running some iterative optimization method (e.g., greedy algorithm, [4],
Chapter 16, or simulated annealing, [10]) that modifies a single point in each
step to minimize the discrepancy to the data. The resulting point pattern is
taken as a reconstruction of the data pattern.

In the present paper we develop an alternative approach, which is based on
the Gibbs point process simulation discussed above. Here, the energy function
is chosen in such a way that the states of the corresponding Markov chain in
the stationary regime are marked point patterns having characteristics close
to those of the given data.

For this purpose, we simplify the equation in (6) such that the periodic
energy function is written as the sum of k reconstructing potentials of n-
th order, V s1n,T1

, . . . , V skn,Tk , cf. (10). The potentials differ from each other in
the choice of geometrical characteristic si and functional Ti, i = 1, . . . , k. A
hardcore potential might be included as well, i.e.,

Ẽ(x) = Vhard +

k∑
i=1

θinV
si
n,Ti

(C1, C2, . . . , Cn). (15)

Besides Vhard, information regarding the point pattern of the data is contained
also in the reconstructing potentials V sin,Ti–namely, in the constants s0,i and
the histograms H ′si in the formulas (10) and (11), respectively. The energy
function is parametrized by a vector θ = (θ1n, . . . , θ

k
n) of so-called control pa-

rameters. If θin > 0 for all i ∈ {1, . . . , k} then the entire energy function is
nonnegative and its minimum is greater or equal to 0. The vector of control
parameters is used for specifying the precision of the reconstruction, while the
activity parameter z can be fixed. The Algorithm 1 yields x1 with the ten-
dency that E(x1) is smaller than E(x0), which is evident from the formula of
acceptance ratios (14). Despite this, the MHBDM algorithm cannot be used
for the direct minimization of the energy function. How much we are able to
decrease the energy depends on the parameter θ. This issue will be discussed
in Section 3.3.1 below. Instead of a fixed number of iterations, we use a differ-
ent stopping condition after which the algorithm is terminated. The algorithm
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ends if there is no significant change larger than some δ > 0 of the energy func-
tion during a series of t steps. We call the pair (δ, t) the stopping criterion.
The reconstruction algorithm (as used in Section 5) is given as follows.

Algorithm 3 (Reconstruction via MHBDM).

1. construct an admissible marked point configuration x0,
2. n← card(x0),
3. run the Algorithm 1 (taking x0 and yielding x1),
4. x0 ← x1,
5. if the energies of the last t marked point configurations obtained by step 3

do not differ more than δ, then return x0, else goto 2.

Note that stopping conditions other than the pair (δ, t) are possible, e.g.,
terminate the algorithm if the energy of the point pattern decreases below some
threshold. This approach could lead to a substantial decrease in computational
time without necessarily ensuring that the algorithm arrives in a stationary
regime. Finally, note that a stopping criterion must be suggested carefully;
otherwise, it may not terminate at all. A related numerical study is presented
in the online supplementary material.

3.3.1 Control parameters

The control parameters enable us to influence the accuracy of the reconstruc-
tion. For the ease of explanation assume k = 1, i.e., θ = θn, and omit the
hardcore potential Vhard. For practical reasons consider θn > 0 only (a neg-
ative value would increase the energy instead of decreasing it). Assume that
there is a stationary distribution to which the algorithm converges. Then the
algorithm generates a Markov chain whose states in the stationary regime have
energies oscillating around some mean value L ≥ 0, which is a measure of the
accuracy of the reconstruction. More specifically, L corresponds to the mean
Euclidean distance for the moments of the characteristics in the case of the po-
tential given in (10) or to the mean discrepancy measure for histograms in the
case of (11). The accuracy improves, i.e., L decreases, with increasing values
of the control parameter θn. Note that if k > 1, the potentials are competing
and the situation becomes more complicated. The value of the control param-
eter must not be too high, however, since otherwise only very few changes are
accepted during the run of the algorithm (the acceptance probabilities of non-
improving suggestions tend to zero), and it is difficult for the Markov chain to
reach the stationary regime. This is demonstrated by the following example.
Example: Consider an energy function with a single potential V sn,T given in
(10), where s is the number of cell faces (nof), T is the sample mean and
s0 = 12, i.e., the aim is to get tessellations with mean number of faces per
cell equal to 12. In the i-th step of the algorithm, let the sample mean of the
number of cell faces be equal to 14.258. Suppose that a move of a generator
is suggested and the sample mean after the suggested operation is 14.264.
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The choice of θn influences the probability of acceptance; more precisely, re-
call from step 1c of Algorithm 1 that the acceptance probability is given by
f((x0\{(y,r)})∪{(x,s)})

f(x0)
, where x0 is the point pattern in the i-th step and the

point (y, r) ∈ x0 is suggested to be substituted by (x, s). The energy of this
change is θn ·

(
(14.258− 12)1/2 − (14.264− 12)1/2

)
= −0.002 · θn, and the ac-

ceptance ratio is proportional to e−θn·0.002. The acceptance probability equals
e−0.2 = 0.819 or e−2 = 0.135 for θn = 100 or θn = 1 000, respectively. An
increase to θn = 10 000 results in an almost vanishing acceptance probability
of e−20 = 2.06 · 10−9.

Because a better fit is achieved with increasing θn, it seems to be unde-
sirable to estimate the parameter θn by the methods described in the online
supplementary material, and we simply advise taking the smallest value of
the control parameter that yields a satisfactory accuracy of reconstruction.
The value of θn influences the fluctuations in energy, as well. The fluctuations
are smaller when the value of the parameter is higher, which causes greater
penalization of non-improving suggestions. This must be kept in mind when
applying the stopping criterion (δ, t).

3.3.2 Activity

The most natural option for the activity z is to set it to the total number
of points in the pattern that is being reconstructed. However, if the potential
(11) defined by the discrepancy of histograms of cell volumes is included in
the energy function, the choice of the activity z does not play a significant
role. It can be fixed arbitrarily, as long as the value remains on the same
order of magnitude as the intensity of the reconstructed point pattern. The
reason for this is that the cell volumes and the intensity of the Gibbs point
process are strongly correlated. So, assuming that the control parameter θn is
large enough, the influence of the reconstructing potential exceeds that of the
activity z.

A detailed description of the model’s behavior with respect to various
choices of parameter values is presented in Section 5, where the reconstruction
of experimental data is discussed.

3.4 Computational geometry aspects

When dealing with the simulation of Gibbs-Laguerre tessellations or with the
reconstruction of Laguerre tessellations, suitable implementations of efficient
geometrical data structures and algorithms are needed. We use the open source
software Voro++ [21] for the computation of Voronoi and Laguerre tessella-
tions. Periodic boundary conditions are also handled by this library.

The geometries of the tessellations are needed in each call of Algorithm
1 in order to determine the values of the potentials and the energy function.
Computing the entire tessellation in each step would be very time consuming
and inefficient. Each proposed tessellation differs from the previous one only
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by a small number of cells. These have to be recomputed in order to determine
the change in the value of energy, while the rest is kept unchanged. An algo-
rithm for finding the set of cells that needs to be updated is described in [19].
Recomputing the energy function only locally drastically reduces the runtime
of each iteration of the algorithm, and it is one of the main reasons why the
MCMC simulations approach the target distribution in a reasonable time.

4 Numerical studies

This section consists of two parts: an investigation of the neighbor-volume ratio
in Section 4.1, which is an example of a (2nd-order) pair potential, and a com-
parison of Gibbs-Laguerre and Poisson-Laguerre tessellations in Section 4.2.
The first part provides a deeper insight into the usage of the pair potential.
This potential is parametrized and treated on its own with hardcore condi-
tions, or together with a reconstructing potential based on the histogram of
the number of faces. The second part concerns the comparison of realizations
of Gibbs-Laguerre tessellations obtained by Algorithm 2 and those drawn from
Poisson-Laguerre models. It emphasizes the capability of the Gibbs approach
to generate tessellations manifesting greater variability in cell shapes.

Note about notation: Later in Sections 4 and 5, we will need to describe
briefly what a model, i.e., its energy function, looks like. This will be accom-
plished by listing incorporated potentials and parameters, collected in Section
2.5. For all potentials and soft-core parameters, the first subscript denotes the
order of the potential. There can be more than one potential of the same or-
der; therefore the corresponding soft-core parameters will be distinguished by
superscripts. Table 1 gives an overview of all considered Gibbs-Laguerre tes-
sellations. For the reconstructing potentials (10) we will use the abbreviating
notation T (s) = s̄, T (s) = s2 and T (s) = dsc(Hs, H

′
s) = dsc to state in which

statistic of the sample we are interested. The symbols nof and vol abbreviate
the number of faces per cell and the cell volume, respectively. For example,
the term

V nof
n,dsc; s = nof, T (s) = dsc(Hs, H

′
s), H

′
nof , θn

denotes the model with a single reconstructing potential defined by the number
of faces per cell as the geometrical characteristic s, histogram discrepancy as
the functional T (s), prescribed histogram H ′nof and a soft-core parameter θn.

4.1 Neighbor-volume ratio

The pair potential V2,NVR, given in (8) and studied in 2D in [7], introduces in-
teractions between neighboring cells. The strength of interactions is influenced
by the parameter θ2 given in (6). When θ2 is positive, we will call the model
regular. The potential is minimized when both cells in a pair of neighboring
cells have the same volume, and consequently when all cells have the same
volume. On the other hand, if θ2 is negative, then pairs with totally different
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Table 1 Potentials and parameter specifications of the considered Gibbs-Laguerre tessel-
lations and their identifying labels. The symbols RTk, k = 1, . . . , 7, denote either a single
random tessellation or a class of random tessellations sharing a common choice of potentials.
The missing random tessellations can be found in the online supplementary material. The
rightmost column gives number of parameter specifications used in the given tessellation,
and “data” means that real microstructure data, cf. Fig. 5, are used in the model

Tessellation(s) Potential(s) Label Parameter(s)
Number of

specifications
RT1 V1,hard + V2,NVR (16) α, β; θ2 2

RT2 V1,hard + V2,NVR + V nof
n,dsc (17) α, β; θ2, θn 2 (data)

RT6 V nof
n,dsc (18) θn 6 (data)

RT7 V nof
n,dsc + V vol

n,dsc (19) θ1n, θ
2
n 12 (data)
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Fig. 3 Histogram of relative frequencies of the NVR statistic for the simulated tessellation
of class RT1: (a) irregular (4497 cells) and (b) regular (752 cells) specification

volumes are preferred, and we will speak about an irregular model. In the
irregular case, there are often many more cells than in the regular case, given
a fixed value of z. Whether θ2 is positive or negative has a strong effect on the
number of cells in Λ. Hardcore parameters, e.g., (7), can be used to reduce Λ
significantly (in particular by using the bounds α and β). The class RT1, cf.
Table 1, consists of two random tessellations given by

α = 0.02, β = 0.095, θ2 = ±1. (16)

Note that the pair potential given in (8) can be combined with other po-
tentials, e.g., with the potential given in (11). The combination then shares
properties of both components. The potential in (11) is minimized if the his-
togram of the target characteristic of the tessellation approaches the prescribed
histogram. This way we can control the distribution of the chosen character-
istic. The parameter θn controls how closely the distribution of the target
characteristic of the tessellation matches the prescribed histogram. As men-
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Fig. 4 Characteristics for two simulated tessellations from the class RT2: the histograms of
relative frequencies of the NVR statistic are plotted in column A, the histograms of relative
frequencies of the number of faces in column B; results for an irregular tessellation (3166
cells) are provided in row I and for a regular tessellation (956 cells) in row II

tioned in Section 3.3.1, the value of θn must be reasonably high. Thus, the
class RT2, cf. Table 1, consists of two random tessellations given by

α = 0.02, β = 0.095,
s = nof, T (s) = dsc(Hs, H

′
s),

θ2 = ±1, θn = 100 000,
(17)

whereH ′nof is set to be the histogram of the number of faces of the experimental
dataset described in Section 5.1, see Fig. 7a.

In the tessellation generated by an irregular model the variance of the
neighbor-volume ratio given in (9) is much larger than in the regular case,
as the neighboring cells tend to have significantly different volumes (cf. the
histograms in Fig. 3). The tessellations of the class RT2 demonstrate that
the combination of an interaction potential and a reconstructing potential can
work successfully: the properties observed in the case of RT1 are preserved,
and the discrepancy between each of the histograms in column B of Fig. 4
and the corresponding histogram coming from experimental data, Fig. 7a, is
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small. Note that realizations of all random tessellations in RT1 and RT2 were
obtained after three million steps of Algorithm 2.

4.2 Comparison with Poisson-Laguerre tessellations (PLT)

In contrast with Poisson type tessellations, the Gibbs point process allows for
ready modification of various geometrical characteristics of the cells using the
potentials introduced in Section 2. For example, in the Voronoi case, the theo-
retical values (depending on the intensity) for the first two moments of various
characteristics can be determined, cf. [15]. A simulation study demonstrating
that Gibbs-Laguerre tessellations outperform Poisson-Laguerre tessellations in
terms of the variety of possible cell shapes and characteristics is presented in
the online supplementary material.

5 Application to polycrystalline microstructures

This section is devoted to experimental data which are first introduced in
Section 5.1. The main task–how to generate tessellations having similar prop-
erties to those of the data–is discussed in Section 5.2. Here, two approaches are
utilized: fitting a parametric model and statistical reconstruction, which are
described in the online supplementary material and in Section 3, respectively.
Sections 5.3 and 5.4 focus on the reconstruction of the data. Two methods of
reconstruction are suggested, and their ability to simulate tessellations with
prescribed properties is evaluated. Section 5.5 complements Section 3 in the
sense of comparison of MHBDM reconstruction and classical method based on
greedy algorithm.

5.1 Experimental data

The motivation for the simulations described in Section 4 comes primarily
from real experimental data. The image data used in this paper are obtained by
synchrotron X-ray tomographic imaging and are a cutout of the polycrystalline
microstructure of an Al-5 wt% Cu sample, which is described in [23] together
with its approximation by a deterministic Laguerre tessellation, see Fig. 5.
Later in this section, the Laguerre tessellation from Fig. 5b is used as our
experimental dataset, including its generators.

In the experimental data there are 1057 nonempty cells in a cuboidal do-
main of size 486 × 529 × 685 µm3. The total number of neighboring pairs of
cells is 7453.

For the purposes of the reconstructions, we normalize to the unit vol-
ume. This means that the volume of each cell is divided by the volume of
the cuboidal domain of the experimental data. Fig. 7 shows histograms of
normalized characteristics of the experimental data: namely, the number of
faces per cell, the cell volume, the NVR (9), and the difference in cell volumes
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a) b)

Fig. 5 Aluminum alloy specimen measured by synchrotron X-ray tomography (cf. [23]) —
a cuboid cropped out of the cylindrical domain for the purposes of statistical reconstruction:
a) original voxelized image, b) Laguerre approximation serving as experimental dataset
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Fig. 6 Histogram of relative frequencies of radius marks [µm] of the Laguerre tessellation
for the experimental data, Fig. 5b (1034 cells)

D(C1, C2) = ||C1| − |C2|| between two neighboring cells C1, C2. Note that
comparing Fig. 7d with Fig. 3, we observe that the NVR of experimental data
is closer to an irregular model rather than to a regular one. Table 2 summarizes
the moments of the same normalized characteristics. Further, the normaliza-
tion of the radii is a necessary step. As lengths are normalized by the cube
root of the volume of the cuboidal domain, the largest radius is below 0.124
(which corresponds to 70, cf. Fig. 6, before normalization). Thus, the choice
R0 = 0.2 in Section 3.1 for the proposal densities in Algorithm 1 is justified,
since this value covers all radii of the experimental data. The activity z is still
set to 2000, because the latter value takes on the same order of magnitude
as the observed intensity (and the precise value does not have a significant
influence on the final intensity, as mentioned above). The symbols histexdnof and
histexdvol denote the relative histogram of the number of faces in Fig. 7a and the
relative histogram of the cell volume in Fig. 7b, respectively. The upper index
“exd” means that the histogram corresponds to experimental data.
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Fig. 7 Normalized geometrical characteristics of the experimental data from Fig. 5b: his-
tograms of relative frequencies of a number of faces per cell, (a) histexdnof , the cell volume,

(b) histexdvol , (c) the difference of in cell volumes [µm3], and (d) the neighbor-volume ratio

Table 2 Statistical description of experimental data: mean and standard deviation of the
radius of generators, the number of faces (nof), the volume of cells, the difference of the cell
volumes (D), and the neighbor-volume ratio

Radius [µm] nof Volume [µm3] D [µm3] NVR

Mean 29.7693 14.1608 9.6712 · 10−4 1.0703 · 10−3 1.6995
SD 18.9564 4.8558 1.0782 · 10−4 8.9165 · 10−4 1.8754

5.2 Modeling approach

The aim is to create models of random tessellations whose realizations are sim-
ilar to the experimental data. The first approach to doing so it to estimate the
parameter values of various Gibbs point processes chosen a priori, using stan-
dard techniques like the pseudolikelihood method, which is described in the
online supplementary material. Some practical aspects regarding the problem
of estimation by the maximum pseudolikelihood method are mentioned in [7],
Section 4 (estimation of the parameters θ and z of the Gibbs-Voronoi model
is commented on in Section A.3). An alternative approach preferred here is
the statistical reconstruction method described in Section 3. The rest of this
section applies the latter method to two examples.
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5.3 Moment reconstruction

First, we aim to reconstruct the experimental data using moments. In the on-
line supplementary material we present simulations that force the realizations
to have a prescribed average number of faces per cell (class of random tessel-
lations RT3). These simulations are successful in the sense that they match
the prescribed value. On the other hand, the variance and overall shape of the
distribution can be entirely different even within a single specification. There-
fore, we investigate the first and second moments together. This is carried out
using the random tessellation class RT4, considering either solely the number
of faces per cell or solely the cell volume. Moreover, both of these geomet-
rical characteristics can be considered together. The energy function of the
Gibbs-Laguerre model consists of four potentials in random tessellation RT5.
With an increasing number of potentials combined in the energy function, it
becomes more and more difficult to match the prescribed values, but even for
the four potentials of the random tessellation class RT5 the results are satis-
factory. Numerical results for the random tessellations RT4 and RT5 can be
found in the online supplementary material.

5.4 Histogram reconstruction

A more sophisticated approach to the statistical reconstruction of tessellations
is to control not only a few moments but the entire distribution of a geometrical
characteristic. The easiest way to accomplish this is to measure the discrepancy
between histograms, see Fig. 2. We will consider two different setups. The first
one controls the distribution of the number of faces per cell, and the second
one adds the distribution of the cell volumes. In addition to providing the
results, we examine the choice of parameters in detail. The following parameter
specifications are used:

s = nof, T (s) = dsc(Hs, H
′
s), H ′nof = histexdnof , θn, (18)

(denoted in Table 1 as RT6) and

s1 = nof, T1(s) = dsc(Hs, H
′
s), H ′nof = histexdnof , θ1n,

s2 = vol, T2(s) = dsc(Hs, H
′
s), H ′vol = histexdvol , θ2n,

(19)

(denoted in Table 1 as RT7). Since the parameters θn, θ
1
n, θ

2
n are unspecified,

RT6 and RT7 form classes of tessellations. Once again, the stopping criterion
employed is (δ, t) = (0.002, 500 000).

Fig. 8 shows how the value of θn influences the variability of the simulated
realizations. The results should be compared to the experimental data, see
Fig. 7a. Table 3 demonstrates what happens with the discrepancy when θn
increases. The reconstructing potential considers only the number of faces per
cell (nof); therefore, the discrepancy of the histograms of cell volume is not
controlled. In summary, a small value of θn results in a large discrepancy for
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Fig. 8 Reconstruction of experimental data, controlling the distribution of the numbers of
faces per cell (class RT6, (18)): from top to bottom the parameter θn takes on the values 10,
100, 1 000 and 10 000; column A shows the histograms of relative frequency computed from
a single realization, and column B shows kernel density estimates based on ten realizations
together with the histogram coming from the experimental data (cf. Fig. 7a)—in gray
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Table 3 Dependence on θn of the discrepancy between histograms for the number of faces
per cell and for the cell volumes for tessellations of the class RT6

θn discrepancy
nof volume

10 0.46822 0.70841
100 0.41481 0.68919

1 000 0.02964 0.45739
10 000 0.02529 1.32095
100 000 0.02356 1.28102

1 000 000 0.02102 1.32543

Table 4 Dependence on the parameters theta1n and theta2n of the discrepancy of histograms
for the number of faces per cell and for the cell volume for tessellations of the class RT7,
(19)

θ1n\θ2n 1 000 10 000 100 000 1mil

100
nof 0.28966 0.21418 0.20543

-
volume 0.36386 0.06484 0.05571

1 000
nof 0.05294 0.07903 0.14432 0.13548

volume 1.21265 0.08136 0.06971 0.06634

10 000
nof

-
0.01671 0.06802 0.09268

volume 1.14779 0.09701 0.06514

100 000
nof

- -
0.01327 0.05756

volume 1.02774 0.09387

histograms of the number of faces per cell. On the other hand, increasing θn
beyond a certain level leads to no further improvement, because the acceptance
ratios tend to zero (see Section 3.3.1). The variability of the realizations is
higher for small values of θn and it decreases when θn grows. In the online
supplementary material we present another class of random tessellations based
on a single potential concerning the histogram of cell volumes. It is an analogy
of the class RT6, and similar behavior can be observed when changing the
value of parameter θn.

The conclusions from the last paragraph remain valid even for random
tessellations from class RT7, (19), which combine two potentials based on
the histogram discrepancy. Combining more than one potential introduces
some difficulties. The values of both parameters have to be in a reasonable
proportion as described in Table 4. Moreover, it is easy to see that the value
of the parameter corresponding to the histogram of cell volumes must be the
larger of the two. Fig. 9 shows the reconstruction results for the tessellations
from the class RT7 in the case of θ1n = 1 000 and θ2n = 10 000. The results
should be compared to the experimental data, see Fig. 7, in order to verify the
success of the reconstruction visually.
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Fig. 9 Reconstruction of experimental data, controlling distributions of the number of faces
per cell and of cell volume, class RT7, (19)) with θ1n = 1 000 and θ2n = 10 000: column A
shows the number of faces per cell, the histogram of relative frequencies computed from
one realization and kernel density estimates based on ten realizations; column B shows the
same plots for the cell volume. The gray histograms are those of the experimental data, cf.
Fig. 7a,b

5.5 Comparison of reconstruction approaches

In this section, a short comparative study is presented of reconstruction via
MHBDM (introduced in Section 3.3) and the classical approach using the
greedy algorithm described in [5], Chapter 16. The following pseudocode briefly
describes the greedy approach to statistical reconstruction.

Algorithm 4 (Reconstruction via greedy algorithm).

1. construct an admissible marked point configuration x0 of M marked points
that generate only nonempty Laguerre cells,

2. choose a point (y, r) from x0 at random, generate (x, s) ∼ Ux0\{(y,r)}(Λ×I)
and set

x1 = (x0 \ {(y, r)}) ∪ {(x, s)},
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3. x0 ← x1 if Ẽ(x1) < Ẽ(x0),
4. if the point configuration x0 has not changed over the last L iterations,

then return x0, else goto 2.

The periodic energy, cf. (6), in step 3 is of the form (15) and will be specified
later. The reconstruction starts by fixing the total number M of nonempty
cells in the sampling window Λ× I. Then an admissible marked point pattern
x0 of M generators is sampled uniformly in Λ × I such that it generates
only nonempty Laguerre cells. In each iteration of Algorithm 4 a random
marked point (y, r) ∈ x0 is chosen and proposed to be replaced by a new
marked point (x, s). Here, the marked point (x, s) is generated uniformly on
the subset of Λ×I that ensures that the corresponding cell is nonempty, i.e., on
{(z, u) ∈ Λ × I : the cell generated by (z, u) is nonempty}. This set depends
on the marked point configuration x0\{(y, r)} and the appropriate conditional
uniform distribution, which we denote by Ux0\{(y,r)}(Λ× I). The replacement
is carried out if the periodic energy of the proposal x1 is smaller than the
periodic energy of x0. The reconstruction ends if there is no replacement in
L ∈ N consecutive iterations.

The reconstruction was carried out on the previously introduced experi-
mental data set encompassing 1057 nonempty cells. An important decision is
which potentials will be incorporated in (15). We provide two comparisons,
both defined by a single potential based on the histogram discrepancy and
without any hardcore parameters. The first comparison concerns the volumes
of cells. Both reconstruction approaches consider the discrepancy (12) be-
tween the histogram of cell volumes of each generated tessellation and the
corresponding histogram of the experimental data histexdvol shown in Fig. 7. In
both algorithms there are some auxiliary parameters that need to be specified:
namely, in Algorithm 3 we set θn = 1000 and (δ, t) = (0.01, 100000), and in
Algorithm 4 we set M = 1057 and L = 50000. In Fig. 10 we observe that
the discrepancy stops decreasing after 200 000 iterations in the case of the
greedy reconstruction and after 50 000 iterations in the case of the MHBDM
reconstruction. The computational time to arrive at this point is roughly the
same for both approaches. It seems that the greedy reconstruction has the
natural advantage that the mean cell volume is guaranteed to be the correct
value throughout the entire run. Despite this fact, the MHBDM reconstruc-
tion yields smaller discrepancies, as can be seen in Fig. 10. On the other hand,
when dealing with histograms of the number of faces per cell, the results, cf.
Fig. 11, are better for the greedy reconstruction.

In the literature, cf. e.g., [9], statistical reconstruction of point patterns is
considered to be a non-parametric method. Our method interconnects statisti-
cal reconstruction with the simulation of stationary Gibbs point processes and
uses auxiliary parameters to control the precision of the fit. Altogether, there
is a common step, Algorithm 1, that can be used in the simulation of marked
Gibbs point processes and the reconstruction of marked point patterns. Note
that, in contrast to the classical reconstruction [9], the number of points in
the reconstructed pattern does not need to be fixed. In summary, the benefit
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Fig. 10 Evolution of the discrepancy of histograms of cell volume for (a) the greedy algo-
rthm and (b) the MHBDM algorithm. The red line represents the discrepancy y = 0.05
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Fig. 11 Evolution of the discrepancy of histograms of number of faces per cell for (a)
the greedy algorithm, (b) the MHBDM algorithm with θn = 1 000 and (c) the MHBDM
algorithm with θn = 10 000. The red line represents the discrepancy y = 0.05

of the MHBDM reconstruction compared to the greedy algorithm introduced
in [4] is that the former allows more flexibility in how close the reconstructed
tessellation tracks the data. Moreover, since the MHBDM algorithm is not
prone to getting stuck in local minima, better fit can be achieved.

6 Concluding remarks

The Gibbs-Laguerre tessellation is a much more flexible stochastic model than
the Poisson-Laguerre and Gibbs-Voronoi tessellations previously studied in
the literature. This is demonstrated by several numerical studies in the three-
dimensional Euclidean space. A certain disadvantage is the fact that conven-
tional methods for parameter estimation–which work well for Gibbs particle
systems [3]–give satisfactory results in the case of Gibbs-type tessellations only
for small ranges of the activity and parameters θ. Therefore, we focus more
on the 3D statistical reconstruction of tessellations derived from experimen-
tal image data from materials research, extending some earlier approaches to
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Gibbs-type tessellations. By constructing the energy function in an appropri-
ate manner, we are able to influence the geometrical characteristics of interest,
obtaining tessellations that are comparable with a given data specimen. The
development of such methods is important for the generation of virtual poly-
crystalline microstructures, whose physical properties can be investigated by
means of numerical modeling and simulation. It is shown that by using MCMC
techniques, we are able to generate different realizations of tessellations that
provide good reconstructions in the statistical sense. This was verified for char-
acteristics like the number of faces per cell and the cell volume. Alternatively,
a number of other characteristics can be used instead, e.g., the NVR statistic,
which introduces spatial interactions of neighboring cells.
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