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Abstract Intermediate filament networks are part of the cytoskeleton and
protect cellular integrity during large deformations. In cells from mesenchymal
lineage the cytoskeleton is centrally involved in signal transduction, thereby
influencing differentiation. We study the ultrastructure of IF networks in three
human mesenchymal cell types, namely undifferentiated mesenchymal stem
cells, chondrocytes, and osteoblasts. In order to capture the high morphological
variability of IF networks we apply techniques from image analysis to extract
the network graph from 2D scanning electron microscopy (SEM) images in
a fully automatic way, which allows for a high-throughput analysis of SEM
data. The extracted network graphs are analyzed by techniques from spatial
statistics to detect differences in network morphology between different cell
types and infer strategies of network remodeling used by the cells to adapt
their mechanical properties during migration and differentiation.
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1 Introduction

In cellular biology it is of broad interest to study morphological and this means
spatial properties of cells. In this context data is naturally obtained by mi-
croscopy and often shows a high degree of biological variability. The analysis
of such images can be achieved by a combination of methods from spatial
statistics with techniques from image analysis which allow for an automatic
extraction of relevant information. This way, datasets can be analyzed without
the bias introduced by manual segmentation and with the efficiency necessary
for a high-throughput microscopy adequately capturing biological variability
(Weichsel et al. 2010).
In this study we analyze the morphology of the intermediate filament (IF)
network in different cell types from mesenchymal origin, namely undifferenti-
ated mesenchymal stem cells (MSC), chondrocytes (CH), i.e. cartilage forming
cells, and osteoblasts (OB), i.e. bone cells. MSCs, which in literature are also
termed multipotent mesenchymal stromal cells, are nonhematopoietic progeni-
tor cells with the potential to differentiate along various mesenchymal lineages
including CHs and OBs. In all of these cell types IFs are an abundant part
of the cytoskeleton, which apart from the IFs is composed of the actin net-
work and the system of microtubuli. In mesenchymal cells IFs are primarily
composed of the protein vimentin and exhibit a diameter of 8− 12nm (Mücke
et al. 2005). In cells from mesenchymal lineage the cytoskeleton is centrally
involved in transmitting signals from extracellular topographic cues and me-
chanical forces to the nucleus, thereby influencing cellular differentiation and
function. In addition, the cytoskeleton is described to play a pivotal role in cell
migration (O’Neill 2009). Though most studies on the role of the cytoskeleton
during the differentiation of mesenchymal cells have so far focused on the role
of actin microfilaments (Darling et al. 2008, Docheva 2008, Rodŕıguez et al.
2004, Treiser et al. 2010, Yourek et al. 2007), also the IF protein vimentin is
involved in migration as well as in signal transduction, e.g. in chondrogenic
differentiation (Bobick et al. 2010, Eriksson et al. 2009). Furthermore, the IF
network responds dynamically to mechanical loading of osteoblastic cells and
codetermines the viscoelastic properties of chondrocytes (Jackson et al. 2008,
Trickey et al. 2004).
Vimentin IFs exhibit interesting viscoelastic properties, setting them apart
from actin filaments and microtubules. They are less rigid than actin and very
extensible but show a dramatic stress-stiffening at high strains, transferring
from a linear to a non-linear response to increases in shear stress (Janmey et
al. 1991, Kreplak et al. 2005, Lin et al. 2010). IF networks are thus well-suited
to protect cellular integrity at large scale mechanic deformations, where the
actin networks suffers disruption (Beil et al. 2003, Yourek et al. 2007). The
viscoelastic properties of IF and other semiflexible polymer-networks are gov-
erned by their morphological properties (Heussinger and Frey 2007, Huisman
et al. 2007, Lin et al. 2010, MacKintosh et al. 1995). Due to the non-linear
relationship between the mean edge length of the network graph and the elas-
tic shear modulus of the network (Lin et al. 2010, MacKintosh et al. 1995),
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even small alterations in network morphology can substantially influence cell
mechanics. For vimentin networks this has been recently demonstrated in an
in vitro study by Lin et al. (2010) revealing that divalent cations crosslink
filament tail-domains and thus stiffen vimentin networks. Global features of
the cytoskeleton such as the gross amount of proteins and their intracellu-
lar spatial distribution may be determined by light microscopy and can be
valuable sources of information (Docheva et al. 2008, Rodŕıguez et al. 2004,
Weichsel et al. 2010). However, due to the non-linear impact of network ultra-
structure on the elasticity of semiflexible polymer networks (Heussinger and
Frey 2007, Huisman et al. 2007, Lin et al. 2010, MacKintosh et al. 1995) it is of
great interest to investigate the morphology of the cytoskeleton at high reso-
lution, thus analyzing network architecture at the level of single filaments and
their cross-links. There is a variety of electron microscopical techniques for the
visualization IF networks at this level of resolution (Sailer et al. 2010). A su-
perior contrast of the IFs is provided by scanning electron microscopy (SEM)
images of detergent extracted samples where most of the cellular structures
are removed and the IFs remain surrounded by vacuum. Due to the resulting
reduction in cellular complexity and the high filament contrast these images
are well-suited for an automatic extraction of the network graph (Sailer et al.
2010). Since IF networks are 3D structures the most accurate assessment of
network architecture can be obtained by electron tomographic 3D data (Lück
et al. 2010). Nevertheless, 2D geometric network characteristics still contain
the major part of morphological information since the orientation of most fila-
ments is close to parallel to the imaging plane. Moreover, data acquisition for
3D-tomograms of IF networks as conducted in Lück et al. (2010) is extremely
time-consuming. Thus, 2D methods are favorable for high-throughput studies
of network morphology capturing the high variability of IF networks that is
frequently found even within single biological scenarios.
In this study we introduce an image segmentation method for the analysis of
2D SEM images of IF networks, which extends previous approaches by Beil et
al. (2005) in such a way that also SEM images of multi-layered networks can be
analyzed, where the filamentous phase is characterized by a drastic variation
of the greyvalues with decreasing IF contrast in lower network layers (Fig. 1).
This technique is applied to automatically extract network graphs from a large
number of SEM images recorded from cells of mesenchymal lineage. We sta-
tistically compare network morphology between different cell types and, as an
important functional aspect, illustrate the impact of morphological differences
on cell mechanics. Our findings indicate a distinct reorganization of the vi-
mentin network in the cell periphery during differentiation of mesenchymal
stem cells into cartilage (CH) and bone (OB) cells. This suggests that the
elasticity differences between OB and CH cells measured by atomic force mi-
croscopy, which primarily resolves the actin cytoskeleton (Darling et al. 2008,
Yourek et al. 2007), are accompanied by corresponding structural changes of
the vimentin network, which modify the response of the cell to large scale
deformations. We will further demonstrate, that there is large variability in
network ultrastructure even within a single biological scenario which can be
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(a) (b)

Fig. 1 Scanning electron microscopy images of IF networks in a detergent extracted chon-
drocyte (cell periphery) (a) and an osteoblast (perinuclear compartment) (b)

linked to the regulation of cellular elasticity. In particular, variations in cross-
linking and corresponding changes in the edge length distribution as reported
by Lin et al. (2010) for in vitro polymerized vimentin networks can also be
observed in our cellular image data.

2 Image acquisition and segmentation

Cells were isolated from human tissue and bone marrow as available due to
standard surgical procedures. Informed consent of the patients was obtained
according to the terms of the Ethics Committee of Ulm University. CHs were
derived from macroscopically normal regions of cartilage harvested during knee
joint replacement due to osteoarthritis. The detailed protocols used for iso-
lation of MSCs, OBs, and CHs are described in Fiedler et al. 2002, Mayr-
Wohlfart et al. 2002, and Joos et al. 2008, respectively. Early stage CHs were
used after 5 days of cultivation while late stage CHs were subcultivated to
passage 4. Cells were seeded on saphir discs (2500 cells/cm2). After 2 days
of adherence cells were detergent-extracted such that apart from the IF cy-
toskeleton cellular structures were entirely removed. Imaging by scanning elec-
tron microscopy and previous preparation steps were conducted as described
in Lück et al. (2010) and further discussed in Sailer et al. (2010) (magnification
40, 000, accelerating voltage between 5 and 10kV ).

Several techniques from image analysis were combined in order to extract
the graph structure of the IF network from the SEM images as vector data,
i.e., as a set of line segments and their cross-links. A primary challenge for
the segmentation of the SEM images was the multi-level structure of the net-
work, leading to difficulties in the assessment of network connectivity and the
separation of superposed network edges. The varying greyscale of filament pix-
els, which were rather bright in the top layer and substantially darker for the
background filaments, required the use of greyscale-oriented methods for the
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Fig. 2 Extraction of the network graph from a 2D SEM image for a small cutout of the
observation window. (a) Original image, orange arrows depict real cross-links of the network,
whereas the red arrows point at filaments whose trajectories are crossing each other in the
2D images without presumable contact in 3D. (b) Lower λ-leveling kernel. (c) Extracted
crest lines. (d) Superposition of dilated crest lines and intermode threshold of (a). (e) Skele-
ton of (d). In (b) and (c) oversegmentation occurs as a consequence of local minima in upper
network levels. In (d) the corresponding small network meshes are filled and thus not con-
served in the final skeleton (e). (f) Red lines correspond to the skeleton in (e), whereas yellow
lines mark high image gradients along filament edges. (g) Filament trajectories crossing high
gradients along filament edges are interrupted and pseudo cross-links removed.

identification of the filamentous phase, which could rarely be extracted by a
simple threshold-based binarization.
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2.1 Lower λ-leveling kernel

In order to account for the different grey-levels of filaments in the fore- and
background we implemented an algorithm for the computation of a lower λ-
leveling kernel within the Geostoch software library (Mayer et al. 2004). The
algorithm has been suggested by Couprie et al. (2001). Considering a digital
greyscale image on a set I ⊂ Z

2 of pixels as a map g : I −→ {0, . . . , 255},
the goal of the algorithm is to extract the crest-lines of the image topology
as defined by the greyscales (Fig. 2 (b)). However, in order to avoid an over-
segmentation of noisy images, crest lines of insufficient contrast are neglected.
The algorithm follows an iterative philosophy, which modifies the greyscale
topology in a controlled way by lowering greyvalues of single pixels according
to a set of rules regarding the 8-neighborhood of the pixel. Crest-lines arising
throughout this procedure are not subject to further modification unless their
contrast (i.e. the smallest greyvalue difference to a neighborhood pixel) does
not exceed the parameter λ. For details we refer to Couprie et al. (2001). A
key feature of the algorithm is that within the 8-neighborhoods, greyvalue dif-
ferences are considered rather than the actual greyscale. Therefore, the crest
lines resulting from filament trajectories of low greyscales in the background
of the image will still be identified by the algorithm as long as their contrast to
the background is sufficient. For our image data, lower λ- leveling kernels were
computed for λ = 10 after noise in the original SEM images had been reduced
by means of the anisotropic diffusion filter in ImageJ (Rasband 1997-2010). A
lower λ-leveling kernel is closely related to a watershed transform with local
minima of neighborhood contrast greater than λ as markers. Nevertheless, in
contrast to the watershed transform not all of these minima will define an own
mesh within the network of crest lines, since neighborhood contrast can change
due to the iterative nature of the algorithm. Although this feature reduces the
risk of oversegmentation, a certain degree of oversegmentation could not be
avoided unless the filter parameter λ was set to values which also suppressed
the identification of the darker background filaments (Fig. 2 (c)). Oversegmen-
tation occurred especially within the bright filaments of the foreground, where
the variability of greyvalues was still rather high.

2.2 Reducing oversegmentation

In order to reduce the oversegmentation within the lower λ-leveling kernels of
the SEM data, the binarized crest lines (Fig. 2 (c)) were in a first step dilated
by 2 pixels (this corresponds to approximately half the filament diameter), i.e.
all pixels whose distance to a crest line did not exceed two pixels were clas-
sified as foreground and colored white. The resulting image was then added
to a binarized version of the original SEM image, where the latter was com-
puted by means of a standard intermode threshold (Fig. 2 (d)). All of these
steps were performed using the ImageJ software yielding a binarization of
the original SEM images with the following desirable properties. First of all,
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the dark background filaments, which were not identified by the intermode
thresholding, were incorporated into the binarization through their dilated
crest lines. Moreover, the majority of pseudo-meshes resulting from overseg-
mentation were either closed by the dilation or by the subsequent superposition
of the dilated crest lines with the threshold image. Finally, an important as-
pect of this binarization strategy is the suppression of background noise, which
would have been part of a simple binarization by a threshold low enough to
incorporate dark background filaments.
In a final step the standard skeletonization algorithm of ImageJ was applied to
the binarized images. This way the network structures were thinned to fibers
of one pixel width (Fig. 2 (e)). It is noticeable that in Fig. 2 (e) the major-
ity of the oversegmentation artifacts in Fig. 2 (c) has been removed, though
most dark background filaments are still represented in the segmentation. The
drawback of the binarization technique is that closely parallel filament strands
may get merged in the dilation step and will consequently be represented by
a single fiber in the final skeleton.

2.3 Detection of pseudo cross-links

Our analysis is based on 2D images of a possibly multi-layered 3D network
structure. The 2D perspective of the microscope and the resulting skeleton
of the network graph (Fig. 2 (e)) frequently suggest the existence of cross-
links, where filament trajectories do not have an actual contact in 3D (see
the red arrows in Fig. 2 (a)). However, the correct definition of cross-links
and thus network connectivity is crucial for the computation of morphologi-
cally relevant parameters such as mean edge length and network meshes (see
Sections 3.1, 3.2, and 3.3). Therefore we implemented a classification algo-
rithm removing pseudo cross-links from the network graph. In a first step a
Canny-Deriche edge detection filter (Canny 1986, Deriche 1987) was applied
to the original SEM images in order to compute a gradient image detecting the
filament boundaries. Due to specific properties of the secondary electron sig-
nal, greyvalue gradients along filament boundaries in the top of the specimen
were particularly high and could thus be extracted from the gradient images
by simple thresholding. Whenever pseudo cross-links occur in the skeleton,
the trajectory of a lower level filament in the skeleton crosses the high edge
gradient of an upper-level filament in the vicinity of the pseudo-node (Fig. 2
(f)). Filament trajectories intersecting the gradients were therefore split into
two parts and the shorter of the two resulting pixel paths was removed from
the skeleton. This way pseudo cross-links in the upper network layer could be
removed and thus, edges and meshes could be correctly identified for the top
layer of the network. Filament trajectories in the extracted skeletons were not
always optimally centered within the filaments and sometimes even touched
the boundary of the filament they were tracking. In order to preserve such fila-
ment trajectories during cross-link classification, the algorithm was not applied
to the original thresholded gradient images but gradient particles of less than
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10 pixels size were removed and afterwards the distance of pixelpaths repre-
senting opposite boundaries of a filament was slightly enlarged. This was done
by means of the method BinaryDilateNoMerge8, which is part of the collection
of morphological operators for ImageJ provided by Landini (2010). The algo-
rithm perfoms a dilation of a binary image without merging particles together
and thus leaves a gap between the dilations of opposite filament boundaries.
Subsequent skeletonization of the dilated image yields the desired version of
the gradient image with increased distance of opposite filament boundaries.

2.4 Vector data

The pixelpaths representing the filament trajectories were finally converted
into vector data. Since filaments exhibited only negligible curvature, trajec-
tories were represented by line segments. Some filaments were entangled in
such a way that they enclosed small angles, which leads to the artifacts of
cross-links located very closely to each other and network edges shorter than
filament diameters. Therefore, as suggested in Beil et al. (2005) and Lück et al.
(2010), such pairs of cross-links were merged into a single one located in their
center of gravity. Taking into account that after carbon coating filaments had
a diameter between 20 and 25nm , merging was performed for cross-links of a
distance no more than 25nm apart in ascending sequence, i.e., cross-links of
smaller distance were merged first. Cross-links were defined as vertices of the
network graph with degree of at least 3, where the degree counts the number
of edges emanating from a vertex. Thus, positions of dead ends in the net-
work graph as arising through cross-link classification were not modified by
the merging algorithm.

3 Statistical analysis of network morphology

Based on the network graphs extracted from the SEM image data a statistical
analysis of network morphology was conducted, aiming at the comparison of
network structure between different cell types of mesenchymal lineage, namely
MSCs, OBs and the differentiated and dedifferentiated state of chondrocytes
CH1 and CH2. Samples were analyzed separately for the cell periphery and
the perinuclear cellular compartment. A total of 138 images was statistically
analyzed, where sample sizes varied between 15 and 20 images per cell type
and cellular compartment. Images were taken from 5 (MSC, OB) and 6 (CH1,
CH2) different cells, respectively. Each image covered an area of 7.2µm2.

3.1 Mean value characteristics of network morphology

In this section we compare mean value characteristics of the network morphol-
ogy found for the cell types described above. For each image we computed the
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mean network length per unit area and the mean edgelength. In our 2D im-
age data edges could only be investigated by measuring their 2D projections.
However, these approximations can be expected to be rather accurate since
most filaments were oriented parallel to the imaging plane. Edgelengths were
computed for all edges whose center was located in a subwindow of the image
in order reduce edge effects of the estimation. For construction of the subwin-
dow, the image was reduced by 0.25µm at each side. Spatial mean values of
the edgelength were computed with respect to all edges in the top layer of
the network, i.e. for all egdes that were not truncated during classification of
cross-links (see Section 2.3).
Results are visualized by boxplots in Tab. 1. It is noticeable that there is a
substantial morphological variability of network architecture between differ-
ent images taken for a single cell type and compartment. Differences between
sample means were tested for significance using the Tukey-Kramer multiple
comparisons procedure (TKT) (Kramer 1956) if the Shapiro Wilk test did not
indicate violations of the normality assumption. The additional assumption
of equal sample variances for the TKT was for none of the characteristics re-
jected by the Brown-Forsythe test at a 5% level of significance (R-software
package). For characteristics where the normality assumption was violated we
used pairwise Wilcoxon rank tests with (a very conservative) Bonferroni cor-
rection, even if this may have reduced the power of testing in comparison to
the TKT. Tabelled p-values for the TKT and the WRT have thus been ad-
justed for multiple testing. Note that all test results are therefore conservative
(see e.g. Hayter (1984)).
Morphological differences between the different cell lines were rather small
in the perinuclear compartments, whereas they were pronounced in the cell
periphery. In the peripheral compartment MSCs exhibited the highest total
network length per unit area, followed by the OBs, whereas early and late
chondrocytes (CH1 and CH2) showed rather sparse IF networks (Tab. 1). This
observation corresponded to small mean edge lengths in the MSCs, which were
slightly larger for the OBs and substantially increased in the CH1 and CH2
cells (Tab. 1). For the cell periphery, with respect to both network character-
istics, mean network length per unit area as well as mean edge length, the
TKT identified two groups of significantly different classes of cell types at the
5%-level. The first group is formed by the early stage chondrocytes CH1, the
second one by MSC and OB cells (Tab. 2 and 3). Differences within the two
groups were not significant. Comparisons of late stage chondrocytes (CH2) to
MSCs and OBs generally showed similar results as obtained for the earlier har-
vested CH1 cells. However, the mean edge length of CH2 cells was not found
to significantly differ from OBs by the TKT (p = 0.1). A pairwise comparison
by a WRT without Bonferroni correction however indicated significant differ-
ences (p = 0.01).
For the perinuclear compartment differences of the mean value characteris-
tics were not statistically significant at the 5%-level according to the ANOVA
F-test and pairwise TKTs (Tabs. 2 and 3).
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Table 1 Morphological mean value characteristics of the network in the perinuclear

compartment and the cell periphery. Spatial mean values were computed for single
images representing a biological scenario. The boxplots visualize the samples of these mean
values derived from multiple images.

Periphery Perinuclear compartment
CH2 MSC OB CH2 MSC OB

CH1 0.67 < 10−4 < 10−2 0.17 0.56 0.15
CH2 < 10−3 0.037 0.87 0.99
MSC 0.66 0.85

Table 2 Adjusted p-values of the Tukey-Kramer multiple comparison test for the equality
of mean edge lengths.
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Periphery Perinuclear compartment
CH2 MSC OB CH2 MSC OB

CH1 0.98 < 10−3 0.047 0.26 0.93 0.29
CH2 < 10−3 0.1 0.6 0.99
MSC 0.4 0.62

Table 3 Adjusted p-values of the Tukey-Kramer multiple comparison test for equality of
mean network length per unit area.

3.2 Network elasticity

We will now illustrate that the morphological differences found above can have
a substantial impact on the mechanical properties of a vimentin IF network.
For this purpose we follow Lin et al. (2010) and apply a formula estimating the
elastic plateau shear modulus G of a vimentin network in the elastic regime
that has been derived by MacKintosh et al. (1995). For a uniform or affine
strain, the elastic network shear modulus is given by

G = 6ρ
kbT `

2
p

`3e
, (1)

where kb is the Boltzmann constant, T denotes temperature, `e is the mean
edge length, and ρ denotes the mean network length per volume, also referred
to as network density. The constant `p is the persistence length of the fil-
aments, which is the maximum distance over which two points on a single
filament move in a correlated way while the filament gyrates under thermal
fluctuations. For vimentin not adsorbed to a surface, a value of `p = 0.5µm
has been estimated (Mücke et al. 2004, Schopferer et al. 2009). T was chosen
as body temperature. Notice that for our 2D image data `e and ρ can only be
estimated from planar projections of the network. Since electron-tomographic
3D data of IF networks of similar network density revealed that 2D SEM
images visualize the networks within a depth of ∼ 0.5µm (Lück et al. 2010)
this value was used for estimating ρ from our measurements of total network
length. Formula (1) has been derived for isotropic 3D networks. Although most
of the IFs in our image data are oriented rather parallel to the imaging plane,
the formula can nevertheless give an approximation of the mechanic effects of
morphological network variability (Fleischer et al. 2007).
The boxplots in Fig. 3 visualize the computed shear moduli for the IF net-
works in different cell types and cellular compartments. Differences between
cell types with respect to network elasticity were small for the perinuclear
compartments and not significant according to the ANOVA F-test and pair-
wise TKT (Tab. 4), whereas they were pronounced in the cell periphery. In
the periphery MSCs and OBs with their very dense IF networks exhibited
significantly higher shear moduli than the chondrocytes (Tab. 4, where we
used a Bonferroni-corrected WRT due to non-normally distributed samples).
An exception were the non-significant deviations between CH2 and OB cells
(p = 0.07), which were however classified as significant by a pairwise WRT
(p = 0.012). In the cell periphery elasticity differences between the two stages
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of chondrocytes CH1 and CH2 (p = 0.1) as well as between OBs and MSCs
(p = 0.87) were not significant according to the Bonferroni corrected WRT .
In addition to the elastic shear modulus G we investigated the characteristic
stress σc at which the vimentin network leaves the linear elastic regime and re-
sponds to further increases of shear stress with nonlinear stiffening. According
to Lin et al. (2010) σc is given by

σc = ρ
kbT `p
`2e

. (2)

In the cell periphery this stress stiffening onset was significantly higher for
the OBs and the MSCs if compared to CH1 and CH2 cells (Tab. 5). As an
exception, the difference between CH2 and OB cells was not significant (p =
0.07) according to the Bonferroni corrected WRT though by a pairwise WRT
(p = 0.012). The highest values of σc occurred for single very dense network
samples from MSCs (Fig. 4 and Tab. 5). In the perinuclear compartment the
ANOVA F-test and the TKT did not detect any significant differences between
mean stress stiffening onsets of the different cell types at the 5% level (Tab. 5).
In vitro experiments of Lin et al. (2010) showed that at a fixed network density
ρ vimentin networks can be stiffened by the addition of cations which crosslink
vimentin tail domains, thus reducing the mean edge length `e. In order to
investigate whether such structural modifications of network architecture at a
fixed network density also occur in cellular systems, we studied the relation
between ρ and `e for our image data. Generally, ρ scales with 1/`e (Fig. 5
(a)). Nevertheless, as will be demonstrated below, the measured regression
residuals are large enough to substantially alter cellular elasticity. Fig. 5 (b)
illustrates the effect of the variations in mean edge length found for our image
data on the elastic network shear modulus G. Based on the regression results,
a network density-dependent mean modulus G(ρ) was computed (black line

in Fig. 5(b)). This was achieved by substituting the value ̂̀−1
e (ρ) as predicted

by the regression line for `−1
e in formula (1). In an analogous way upper and

lower envelope curves Gu(ρ) and Gl(ρ) were obtained. For this purpose `−1
e

was replaced by ̂̀−1
e (ρ) + r, r ∈ {ru, rl}, where ru and rl denote the 95%-

quantile of the positive and negative regression residuals, respectively. This
way the effects of the additional variability of mean edge length as found
in the data were introduced into the elasticity model (red and blue lines in
Fig. 5(b)). The envelope curves indicate that for lower values of ρ, cells are able
to vary the elastic shear modulus of their IF network by a factor 2 through a
mere modification of mean edge length, while the total amount of filamentous
vimentin is kept constant.

3.3 Second order characteristics of network morphology

In view of the relation between different network mean-value characteristics
discussed above the question arises, whether there is also a local variability of
network structure which can affect network mechanics. We investigated such
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Fig. 3 Elastic shear modulus of the network in the perinuclear compartment (a) and
in the cell periphery (b). Values were computed for each of the single images representing
a biological scenario. The boxplots visualize samples with respect to a biological scenario,
which were derived from multiple images.
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Fig. 4 Characteristic onset of stress stiffening of the network in the perinuclear

compartment (a) and in the cell periphery (b). Values were computed for each of the
single images representing a biological scenario. The boxplots visualize samples with respect
to a biological scenario, which were derived from multiple images.

Periphery Perinuclear compartment
CH2 MSC OB CH2 MSC OB

CH1 1 < 10−3 0.024 0.41 0.84 0.47
CH2 < 10−2 0.07 0.88 0.99
MSC 0.87 0.9

Table 4 Adjusted p-values of the Tukey-Kramer multiple comparison test (perinuclear) and
the Bonferroni-corrected Wilcoxon rank test (periphery) for the equality of shear moduli.
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Periphery Perinuclear compartment
CH2 MSC OB CH2 MSC OB

CH1 1 < 10−3 0.025 0.34 0.83 0.38
CH2 < 10−3 0.071 0.84 0.99
MSC 0.81 0.85

Table 5 Adjusted p-values of the Tukey-Kramer multiple comparison test (perinuclear) and
the Bonferroni corrected Wilcoxon rank test (periphery) for the equality of stress stiffening
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Fig. 5 (a) Network density plotted against the mean edge length. The suffixes ‘n’ and ‘p’
refer to the perinuclear compartment and the cell periphery, respectively. Network density ρ
generally scales with the reciprocal of mean edge length 1/`e. However, at fixed ρ differences
in mean edge length can still substantially modify the elastic modulus G of the network.
In (b) G is plotted as a pure function of network density (black line), where the parameter
1/`e in formula 1 has been replaced with the predicted value according to the regression
line in (a). The red and blue lines show the values obtained for G, when the 95% quantile
of the positive and negative regression residuals is added to the predicted regression value
of 1/`e, respectively.

second order characteristics of network morphology by means of the pair-
correlation function g : [0,∞) −→ [0,∞) of the point pattern of mesh centers
in the upper network layer. Before we will discuss estimation results and relate
them to cell mechanics we will give a formal definition of ĝ. Let {Xn}n≥1 be a
sequence of IR2-valued random vectors defining a point process in IR2, which
has almost surely only finitely many points in each bounded Borel set B such
that none of the points coincide with probability 1. Then {Xn}n≥1 is called
stationary if

{Xn}n≥1
d
= {Xn + x}n≥1 for all x ∈ IR2,

where the equality in distribution refers to the entire point process (for a formal
definition see e.g. Daley and Vere-Jones (2003/08)). Moreover, {Xn}n≥1 is
called isotropic if

{Xn}n≥1
d
= {δ(Xn)}n≥1 for all rotations δ around the orign.
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The intensity measure µ of {Xn}n≥1 is defined as

µ(B) = E

∑

n≥1

1IB(Xn) for all B ∈ B(IR2),

where B(IR2) denotes the Borel σ−algebra. Thus, µ(B) is the expected number
of points in the setB. If {Xn}n≥1 is stationary one has µ = λν, where ν denotes
2-dimensional Lebesgue measure and the constant λ > 0 is called the intensity
of {Xn}n≥1. Analogously one defines the second factorial moment measure by

α(2)(B1 ×B2) = E

∑ 6=

n,m≥1
1IB1

(Xn)1IB2
(Xm) for all B1, B2 ∈ B(IR2),

which describes the expected number of point pairs (Xn, Xm) with values
in B1 × B2, where n 6= m. We now consider the case that α(2) is absolutely
continuous with respect to the 4-dimensional Lebesgue measure and thus there
exists a density ρ2 : IR4 −→ [0,∞) such that

α(2)(B1 ×B2) =

∫

B1

∫

B2

ρ2(x1, x2)dx2dx1 for all B1, B2 ∈ B(IR2).

In case {Xn}n≥1 is stationary and isotropic the value ρ2(x1, x2) = ρ2(r)
depends only on the distance r = |x1 − x2|. The pair-correlation function

g : [0,∞) −→ [0,∞) is defined as

g(r) =
ρ2(r)

λ2
for all r ≥ 0.

For a homogeneous Poisson process with intensity λ, which can be seen as
a reference model for complete spatial randomness, one can easily show that
α(2)(B1 × B2) = λ2ν(B1)ν(B2) and hence g(r) = 1 for all r ≥ 0. Therefore,
the pair-correlation function of a point pattern can be interpreted as follows.
For r > 0 such that g(r) > 1 there are more point pairs with distance r than
in a Poisson process of the same intensity λ. Vice versa, in case g(r) < 0
there are less point pairs with distance r than in a Poisson point process. An
estimator ĝ(r) for the pair-correlation function of a point process {Xn}n≥1 on
some bounded observation window W ⊂ IR2 is given by

ĝ(r) =
1

λ̂2(W )

∑ 6=

n,m≥1

K
(
(|Xn −Xm| − r)/b

)
1IW×W (Xn, Xm)

2b2πrν(W ∩ (W + (Xn −Xm)))
, (3)

where λ̂(W ) =
1

ν(W )

∑

n≥1

1IW (Xn) denotes the standard estimator for λ, and

K is some kernel function.

For our estimation results discussed below, K was chosen as the Epanechnikov

kernel with bandwidth b = 0.15/
√
λ̂ as recommended in Stoyan and Stoyan

(1994). If the estimator (3) is computed for an anisotropic point pattern, it
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contains aggregated information of inter-point distances with respect to dif-
ferent directions.
Fig. 6 shows pair-correlation functions for the point pattern of mesh centers
in the top network layer of our image data, where these points were defined
as the centers of maximum incircles to be inscribed into top layer meshes.
The pair-correlation functions ĝ(r) in Fig. 6 are argument-wise averages with
respect to the estimation results obtained for the single images of a biological
scenario. The averaged estimated functions ĝ(r) were of similar shape for all
cell types and compartments considered. Due to the merging of closely located
cross-links during image segmentation pairs of mesh centers with distance less
than 25nm hardly occurred, although they are theoretically not excluded by
the merging algorithm. Consequently, the estimations of ĝ(r) showed values
close to 0 for r < 25nm. All pair-correlation functions exhibited a peak around
50nm, which implies that point-pair distances in this range are more frequent
than in a Poisson process with the same intensity and thus indicates a clus-
tering effect of the points. The mean degree of clustering, as indicated by
the height of the peaks, showed slight variations between different cell types.
However, the variation of the estimated pair-correlation functions computed
for single images of a cell type and compartment was substantially larger than
the differences of the mean values displayed in Fig. 6. In order to visualize
the variability of the clustering effects within single scenarios, we defined a
clustering parameter

γ =

∫

[a,b]

ĝ(r)dr,

where [a, b] = [25nm, 100nm], and thus ĝ is integrated in the range identified
as relevant for clustering (Fig. 7). With respect to γ tests did not detect
significant differences between biological scenarios. This suggests that mesh
cluster formation is mainly a source of morphological variability within single
biological scenarios.
In order to investigate whether mesh clustering can be related to the regulation
of network mechanics the clustering parameter γ was introduced as a second
explanatory variable into the regression model relating the network density
ρ to the reciprocal `−1

e of the mean edge length. t-Tests for significance of
single explanatory model parameters classified the effects of both variables ρ
and γ as highly significant (p < 10−5). Backward elimination of explanatory
variables yielded highly significant loss in goodness of fit when γ was excluded
from the model (p < 10−5). The regression plane fitted to the data can be
seen in Fig. 9 and indicates that a linear combination of network density ρ
and the clustering parameter γ explains the mean edge length rather well.
The decreasing effect of mesh clustering on the mean edgelength can also
be demonstrated on a model-based level. For this purpose we compared two
scenarios of a stochastic simulation model for the formation of single layered IF
networks published by Beil et al. (2009), which were identified to result in weak
and strong clustering of network meshes (Fig. 8). For the simulations network
density was kept constant at ρ = 49µm−2. Comparison of two samples, each
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Fig. 6 Pair-correlation functions of upper-layer mesh centers in the perinuclear com-

partment (a) and the cell periphery (b). The estimated values ĝ(r) are argument-wise
averages over the corresponding estimates obtained for single images.

CH1 CH2 MSC OB

50
10

0
15

0
20

0
25

0

γ

(a)

CH1 CH2 MSC OB

50
10

0
15

0
20

0
25

0

γ

(b)

Fig. 7 Integrals γ of the Pair-correlation functions of mesh centers in the perinuclear

compartment (a) and the cell periphery (b) for single images.

consisting of 100 realizations, showed a decrease of mean edge length by 12% in
the strongly clustered networks in comparison to the weakly clustered scenario.
By formula (1) this corresponds to an increase of the elastic modulus by a
factor 1.5 at a network density of ρ = 49µm−2. The factor 1.5 closely resembles
the spread between the envelope curves in Fig. 5(b) at ρ = 49µm−2, which
estimate elasticity differences between weakly and strongly clustered network
morphologies in our real network data.
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(a) (b)

Fig. 8 Simulated single-layered network morphologies with weak (a) and stronger (b) clus-
tering of network meshes at constant mean network density. Mesh clustering resulted in a
12% decrease of mean edge length and an increase of the elastic shear modulus G by a factor
1.5.

4 Discussion

The cytoskeleton is known to play a vital role in the process of mesenchymal
differentiation. So far studies have primarily investigated changes of the actin
network (Darling et al. 2008, Docheva 2008, Rodŕıguez et al. 2004, Yourek
et al. 2007). The spatial and structural organization of the actin network has
even been proposed as a biomarker for early prediction of stem cell lineage
fates during the differentiation process (Treiser et al. 2010). From the mor-
phologoical point of view the focus of previous research has been on gross
levels of protein expression, global intracellular protein distribution and the
observation of thick stress fibers as resolved by light microscopy. Additionally,
extensive measurements of cellular elasticity have been conducted by various
mechanical testing methods (an overview is given in Darling et al. 2008). So
far there has been rather limited attention to the role of IFs during mesenchy-
mal differentiation. The IF protein vimentin, which is dominantly expressed in
cells of mesenchymal lineage, has been reported to participate in chondrogenic
differentiation (Bobick et al. 2010). This motivated our analysis of differences
in network ultrastructure arising during the differention process of mesenchy-
mal stem cells into osteoblasts and chondrocytes. We have demonstrated that
in chondrogenic direction there is a substantial decrease in network density
and a corresponding increase of the mean edge length in the cell periphery,
whereas OBs exhibit an IF network which is not severely different from MSCs.
Few of the MSCs nevertheless showed a particularly high network density in
their periphery, which could not be found for the other cell types. We did
not find significant alterations in network morphology in the perinuclear com-
partments. Our observation of pronounced network reorganization in the cell
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Fig. 9 Linear model relating the reciprocal of mean edgelength 1/`e to network density ρ
and clustering parameter γ.

periphery corresponds to fluorescence imaging experiments by Windoffer et al.
(2004), which identified the cell periphery as a center for network remodeling
of keratin IF networks.
Atomic force microscopy (AFM) showed that osteoblasts are substantially
stiffer than chondrocytes (Darling et al. 2008). Since AFM primarily resolves
the actin network (Yourek et al. 2007) these findings cannot be directly linked
to the morphological differences of the IF network in OBs and CHs but should
rather be interpreted as a consequence of a differing actin network architecture.
However, our results suggest that the reorganization of the actin network dur-
ing chondrogenesis is accompanied by a remodeling of the IF network, which is
crucial for the cellular response to large deformations that cause a disruption
of the stiffer actin cytoskeleton. Darling et al. (2008) and Yourek et al. (2007)
report the Young’s modulus of OBs to be higher than that of MSCs. Our data
suggests that this effect is not reflected by significant morphological differences
in the IF network, which is rather dense in both cell types. Since MSCs and
OBs show a rather high migratory activity (Fiedler et al. 2005, Fiedler et al.
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2006, Nakasaki et al. 2008), the high network density of their IF cytoskeleton
may meet a demand for an increased robustness with respect to large scale
deformations during migration. On the other hand chondrocytes exhibit less
migration activity (unpublished observations). This is reflected by a reduction
of their IF network density in the periphery as demonstrated in our work.
Our data indicates that the IF network is a highly dynamical system exhibit-
ing substantial local variations of its morphology even within single cells. By
modifications of network structure cells can adapt their mechanical properties
to the various needs arising during migration as well as mitosis.
Our data was obtained from detergent extracted and critical point dried sam-
ples, which were imaged by SEM. These techniques yield a high level of con-
trast, which is necessary for automatic image segmentation and hence allows
for the analysis of large samples of images. Possible preparation artifacts for
these protocols such as surface tension artifacts caused by traces of water dur-
ing critical point drying (Ris 1985) and fracturing of actin filaments (Resch
et al. 2002, Urban et al. 2010, Vignal and Resch 2003) have been discussed in
the literature. Comparisons of critical point dried samples with freeze dried
controls by Sailer et al. 2010 did not show obvious morphological differences
for keratin IF networks. Moreover, in the latter study detergent extracted
and critical point dried samples were also compared with ultrathin sections
of unextracted high-pressure frozen and freeze-substituted cells, thus using -
as generally considered- the best immobilization method for the preservation
of subcellular structures (e.g. Dubochet 2007, Hohenberg et al. 2003). Since
these comparisons did not indicate differences in network structure between
the preparation techniques, we are in particular confident that network ten-
sion in our samples was not altered by preparation. This view is additionally
supported by the preservation of outer cell shape which indicates unchanged
boundary conditions. In Sailer et al. 2010 specimens, which had been deter-
gent extracted by the protocol used in our study, were compared to samples
where prior to detergent extraction the actin network had been stabilized by
treatment with phalloidin. After freeze drying and tungsten coating IFs could
be distinguished from actin by the helical surface structure of actin filaments.
The results indicate that without phalloidin treatment the extraction protocol
reliably removes the actin component of the cytoskeleton. We can therefore
assume that our samples only contained the IF component of the cytoskele-
ton.
Our quantitative measurements of network characteristics were obtained by
a fully automatic image segmentation algorithm, which allows for a high-
throughput analysis of cytoskeleton images without bias introduced by man-
ual segmentation. For the first time an image segmentation method was used,
which is suitable for the analysis of 2D images of multilayered IF networks
with large differences in the greyscale of IFs in different layers. Greyvalue
differences between filament trajectories intersecting each other in the 2D im-
ages without contact in 3D were used to eliminate cross-link artifacts in the
2D network graphs. Classification of cross-links has substantially contributed
to the understanding of actin networks (Urban et al. 2010) and represents a



21

crucial step for the interpretation of cytoskeleton image data. Our algorithm
provides an automatic approach to this segmentation step, which is suitable
for high-throughput studies of network morphology.
Despite our greyvalue-oriented segmentation approach some filaments in lower
network layers were not detected by the algorithm. Consequently, our measure-
ments of total network length are still slight underestimates taking additionally
into account that filament orientations were assumed parallel to the imaging
plane. Due to the latter assumption our measurements of mean edge lengths
are also slight underestimates. Moreover, the shorter an edge in a lower network
layer the more likely is its complete visibility in a 2D image. Consequently, the
likelihood of a lower level network edge to be considered for the computation
of the edge length distribution decreased with length. However, the vast ma-
jority of completely visible edges would have been visually classified as part of
the top network layer.

By means of mean-value formulae for the elastic modulus and the char-
acteristic stress for the onset of stress-stiffening we demonstrated that the
changes in IF network morphology between chondroctytes on the one side and
osteoblasts and mesenchymal stem cells on the other have a dramatic impact
on elastic properties of the IF network and hence on cellular functionality.
Whereas it cannot be expected that these mean-value approaches capture the
complex interplay of mechanical properties and network morphology in semi-
flexible polymer networks to full extend, finite element simulations suggest
that they take into account the morphological factors with most dominant im-
pact on network mechanics (Huisman et al. 2007), namely network density and
mean edge length. Due to the 2D nature of our data, we could only estimate
the observed 3D volume and thus the network density ρ from tomographic
data of IF networks published in Lück et al. (2010), which were imaged with
the same microscopy and preparation method and exhibited a similar net-
work density. Results for the elastic shear moduli estimated for our cell types
were however qualitatively identical, when formulae (1) and (2) were reformu-
lated in terms of the mean meshwidth ξ, which according to Morse (1998) is
roughly of the order 1/

√
ρ and can be assessed by the diameter of a maxi-

mum incircle to be inscribed into top-layer meshes (Fleischer et al. 2007). The
question arises whether all investigated network samples were within a linear
elastic stress-strain regime. However, in view of the large strains between 30
and 40% required for the onset of stiffening in solutions of vimentin filaments
and hagfish slime threads composed of IF proteins (Janmey et al. 1991, Fudge
et al. 2003) a non-linear stress response can only be expected for networks
subject to large deformations. For cells adherent to flat surfaces such as our
saphhire discs large deformations of the cell as a whole are not likely to occur
without external mechanical impact, since even migration would not require
strong variations in cell shape as e.g. occurring when cells squeeze through
small pores. Strong locally confined deformations resulting from an interplay
between migration and adhesion can however not be completely excluded for
our cells. We nevertheless expect the vast majority of the IFs in our samples
to be in the linear stress-strain regime.
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One of our most interesting findings is that although the reciprocal 1/`e of
the mean edge length scales roughly linearly with network density ρ, we ob-
serve considerable variability of measured mean edge lengths around the value
predicted by the regression line. These structural differences in network archi-
tecture rather than in the total amount of filamentous vimentin can account
for elasticity differences of a factor 2 at moderate values of ρ. This indicates
that cells use an energy-efficient and presumably also fast mechanism for the
structural modification of their IF network beyond variations in the concen-
tration of filamentous vimentin in order to tune their mechanical properties.
This seems to be a universal principle, which can also be observed in IF net-
works composed of other proteins such as keratin (Beil et al. 2009, Lück et
al. 2010). By means of a stochastic simulation model for the generation of IF
network morphologies we demonstrated that at constant network density ρ
variations of the mean edge length can be mediated by the formation of mesh
clusters. Since in our microscopy data the clustering parameter γ had a high
explanatory power in the linear regression model relating 1/`e to ρ and γ , vari-
ations of mesh clustering are apparently a crucial factor controlling `e in real
cells. Biochemically, network structure can be regulated by the concentration
of the divalent cations Ca2+ or Mg2+, which is also known to mediate guided
motility of osteoblast-like cells (Ozkucur et al. 2009). In vitro studies by Lin
et al. (2010) showed that Ca2+ or Mg2+ cations modify the carboxytermi-
nal vimentin tail domains and this way control cross-link formation, which in
turn determines the edge length distribution and hence network stiffness. Our
statistical image analysis of SEM data suggests that such mechanisms may
also be used for network remodeling in living cells of mesenchymal lineage.
Through their impact on locally defined aspects of network morphology such
as mesh clustering they can substantially alter mechanical cellular properties.
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13. Fiedler J, Röderer G, Günther KP, Brenner R (2002) BMP-2, BMP-4, and PDGF-bb
stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell
Biochem 87:305–312

14. Fiedler J, Leucht F, Waltenberger J, Dehio C, Brenner RE (2005) VEGF-A and PlGF-1
stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem Biophys
Res Commun 334:561-568

15. Fiedler J, Brill C, BlumWF, Brenner RE (2006) IGF-I and IGF-II stimulate directed cell
migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys
Res Commun 345:1177–1183

16. Fleischer F, Ananthakrishnan R, Eckel S, Schmidt H, Käs J, Svitkina T, Schmidt V,
Beil M (2007) Actin network architecture and elasticity in lamellipodia of melanoma cells.
New J Phys 9:420

17. Hayter AJ (1984) A proof of the conjecture that the Tukey-Kramer multiple comparisons
procedure is conservative. Ann Stat 12:61–75

18. Heussinger C, Frey E (2007) Role of architecture in the elastic response of semiflexible
polymer and fiber networks. Phys Rev E 75:011917

19. Hohenberg HH, Müller-Reichert T, Schwarz H, Zierold K (2003) Foreword, special issue
on high pressure freezing. J Microsc 212:1-2

20. Huisman EM, van Dillen TM, Onck PR, Van der Giessen E (2007) Three-dimensional
cross-linked F-actin networks: Relation between network architecture and mechanical be-
havior. Phys Rev Lett 99:208103

21. Jackson WM, Jaasma MJ, Tang RY, Keaveny TM (2008) Mechanical loading by fluid
shear is sufficient to alter the cytoskeletal composition of osteoblastic cells. Am J Cell
Physiol 295:C1007–C1015

22. Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Viscoelastic properties of vimentin
compared with other filamentous biopolymer networks. J Cell Biol 113:155-160

23. Joos H, Albrecht W, Laufer S, Reichel H, Brenner RE (2008) IL-1beta regulates FHL2
and other cytoskeleton-related genes in human chondrocytes. Mol Med 150-159

24. Kramer CY (1956) Extension of multiple range tests to group means with unequal
numbers of replications. Biometrics 12:307–310

25. Kreplak L, Bär H, Leterrier JF, Herrmann H, Aebi U (2005) Exploring the mechanical
behavior of single intermediate filaments. J Mol Biol 354:569-577

26. Landini G (2010) ImageJ plugins and macros
http://www.dentistry.bham.ac.uk/landinig/software/software.html

27. Lin Y, Broedersz CP, Rowat AC, Wedig T, Herrmann H, MacKintosh FC, Weitz DA
(2010) Divalent cations crosslink vimentin intermediate filament tail domains to regulate
network mechanics. J Mol Biol 399:637–644

28. Lück S, Sailer M, Schmidt V, Walther P (2010) Three-dimensional analysis of interme-
diate filament networks using SEM-tomography. J Microsc 239:1–16

29. MacKintosh F, Käs J, Janmey PA (1995) Elasticity of semiflexible biopolymer networks.
Phys Rev Lett 75:4425-4428

30. Mayer J, Schmidt V, Schweiggert F (2004) A unified simulation framework for spatial
stochastic models. Simul Model Pract Th 12:307–326

31. Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W,
Brenner RE (2002) Vascular endothelial growth factor stimulates chemotactic migration
of primary human osteoblasts. Bone 30:472–477



24
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