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Abstract

A competitive stochastic growth model is developed for the simulation of the
3D morphology of eutectic silicon in Al-Si alloys, which represents the colonies
of pairwise disconnected Si corals in an Al matrix. The model is based on
ideas from stochastic geometry and multivariate time series analysis. The 3D
model is validated by comparing morphological characteristics computed for
experimental 3D FIB-SEM data, and for realizations drawn from the model.
Good agreement between the simulation model and the experimental image data
is shown confirming the efficiency of using the competitive stochastic growth
model for the generation of virtual eutectic silicon morphologies.
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1. Introduction

A competitive stochastic growth model is developed for the simulation of
the 3D morphology of eutectic silicon in Si-Al alloys, where hypoeutectic Al-Si
alloys contain less than 12% of Si and present a two-phase material, consisting
of primary α-Al dendrites and Al-Si eutectic [1]. The Si particles consist of
pairwise disconnected Si corals in an Al matrix.

Combination of good castability and corrosion resistance of Al-Si alloys with
good mechanical properties makes these alloys very attractive for applications
in automotive industry. In Al-Si alloys, there is a strong relationship between
morphology of eutectic Si and their mechanical properties. Commercially used
modification of the microstructure morphology with Sr addition changes the
morphology of Si from a coarse plate-like into refined fibrous structure, signifi-
cantly improving mechanical properties of the alloy, particularly tensile strength
and elongation [2, 3, 4, 5, 6]. The results reported by Shin et al. [6] have shown
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that Sr-modification of Al-10.5Si-2.0Cu recycled alloy leads to an increase of the
elongation by a factor of two (from 2.0 to 4.1%) and tensile strength by more
than 10% (from 209 to 237 MPa), which is reflected by a higher quality index
of the material.

Stochastic models - in the context of materials science - can be used to elu-
cidate the relationship between morphology and functional properties [7]. Such
a design of virtual materials can be obtained by generating a broad range of vir-
tual morphologies according to the stochastic model (using different values for
the model parameters) and analyzing their functional properties by numerical
calculations. Thus, it is possible to detect morphologies with improved mate-
rials properties using computer experiments. This reduces the amount of real
experiments which are much more cost- and time-consuming.

In this paper, we present a stochastic model for the morphology of eutectic
Si corals in Al-Si alloys. It is organized in a three-stage approach: In a first
step, we introduce a model for single corals, where every single coral is repre-
sented by a connected system of line segments (which are dilated later). We use
multivariate time series to accurately describe the complex spatial correlations
of the branches within single corals [8, 9]. Secondly, based on the single-coral
model we present a competitive growth model which regulates the growth of
neighboring corals according to a ’birth-and-death’ process. More precisely, if
two corals are competing for space, i.e. if the smallest Euclidean distance be-
tween two corals falls below a certain threshold, one coral will stop growing
(’death’) and the other one can continue to grow and expand in space (’birth’).
The starting points for the competitive growth model are chosen according to
an isotropic and stationary Matérn hardcore point process in 3D. In a third
and final step, the aggregation of disconnected corals (i.e. aggregation of line
segments) is dilated in 3D to match the volume fraction of Si. The stochastic
model for Al-Si alloys is validated by comparing morphological characteristics
computed for a 3D image gained by FIB-SEM tomography, and for realizations
of the Al-Si model.

The paper is organized as follows. Section 2 introduces the material and
describes imaging of Al-Si alloys. Section 3 establishes the 3D Al-Si model
which is given in terms of a competitive growth model. Furthermore, model
fitting and model validation are discussed. Section 4 summarizes the results
and provides a short outlook regarding possible future research.

2. Materials and imaging

We have performed a tomographic reconstruction and analysis of morpholog-
ical parameters (volume fraction, particle density, connectivity, etc.) for several
samples of Al-Si alloys. Usually, an addition of 0,03 wt.% of Sr is already enough
to change an eutectic Si morphology [6]. The Al-Si7 alloy investigated in the
present paper contains 150 ppm of Sr and has typical morphological character-
istics of this type of alloys. Thus, it can be considered as representative. The
alloy is produced by directional solidification leading to a formation of the de-
scribed coral-like structure of Si particles with major orientation in the direction
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of the temperature gradient. The main goal is to develop a flexible stochastic
simulation model which allows to describe this kind of structural morphologies
(coral like, directionally solidified). After having developed a model for a typi-
cal experimental structure, it can be used for the (virtual) generation of other
similar structures by fitting the model parameters to another experimental data
sets, which is described in Section 3.3. The reconstructed volume of modified
eutectic and an example of unmodified eutectic are shown in Figure 1, where
the stochastic model describes the modified eutectic Si corals.

Figure 1: Left: 3D image of modified coral-like eutectic silicon; right: an example of unmod-
ified lamellar or plate-like eutectic silicon; connected component are displayed by the same
color

The reconstruction of the Al-Si eutectic has been done by using FIB-SEM
dual beam tomography. The technique provides a high resolution of less than
50-60 nm [10] and allows imaging of microstructure morphology constituents
with a good contrast. FIB-SEM tomography reconstruction consists of iterative
milling of the sample with ion beam and imaging of the sectioned planes with
electron beam after removing a slice of a certain thickness from the sample.
Resolution in milling direction is defined as a thickness of the layer of material
removed with an ion beam and depends on the precision of ion beam cuts.
The resolution in the imaging plan depends on the resolution of SEM images.
The angle between FIB and SEM columns is 52◦, so that the sample surface is
perpendicular and the imaging plan is parallel to the ion beam. Due to such
an experimental setup the voxel of the reconstructed data volume is anisotropic
and is bigger in the milling direction. For a detailed exposition of the technique
see [11, 12]. When a stack of 2D SEM images is collected, 3D reconstruction of
the morphology is processed by interpolation in Avizo 6.3 software. The voxel
resolution of the reconstructed 3D image is 46 × 180 × 59 nm. The size of the
considered image is 790× 195× 285 voxel.
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3. Stochastic model for Al-Si

In this section, we introduce a stochastic model describing the morphology of
eutectic Si in Al-Si alloys. Eutectic Si in this kind of material bears a coral-like
structure, i.e., it consists of aggregates of Si corals which are pairwise discon-
nected, see Figure 1 (left). The stochastic model for the morphology of Si corals
is organized in a three-stage approach, see also the flow chart in Figure 2.

Figure 2: Flow chart of the stochastic model

In a first step, we introduce a model for single corals, where every single coral
is represented by connected line segments, which form a stem and branches.
Both components, the stem and the branches are modeled using multivariate
time series to take into account the complex spatial correlations of the line
segments within single corals. A ’win/lose’ criterion is introduced to control
the spatial expansion of the branches and the distances between neighboring
branches.

Secondly, based on the single-coral model, a competitive growth model is
introduced which regulates the growth of neighboring corals. We introduce some
kind of a ’birth-and-death’ process to control the distances between neighboring
corals. More precisely, if two corals are competing for space, i.e., if the smallest
Euclidean distance between two corals falls below a certain threshold, one coral
will stop growing (’death’) and the other one can continue to grow and expand
in space (’birth’). In a third and final step, the aggregation of disconnected
corals (i.e. aggregation of line segments) is dilated in 3D to match the volume
fraction of Si as observed in the experimental image data.
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3.1. Data preprocessing

As described in Section 2, the FIB-SEM image of Al-Si alloys is given as
binary image with anisotropic voxel. We consider a cut-out of the image and
rescale the image to isotropic voxel using bilinear interpolation and subsequent
global thresholding. The image size is 548×761×357 (isotropic) voxel with voxel
size of 46 nm, see also Figure 3 (left). Thus, throughout the manuscript, we
consider this 3D image of Al-Si alloys with isotropic voxels. In order to describe
the single corals by line segments whose evolvement is governed by a multivariate
time series model, we reduce the morphology of Si to a graph representation
consisting of nodes and edges (i.e. an aggregate of line segments). Therefore,
the system of Si particles is skeletonized using Avizo 6.3 software, see Figure 3.
This means that voxels of the Si particles, i.e., those voxels belonging to the
objects we are interested in, are changed to background voxel in a way that the
remaining voxel paths have a thickness of one voxel, where the connectivity has
to be preserved. These voxel paths are then transformed into line segments,
see also [13]. By this graph representation, we obtain accurate data on how to
organize the spatial structure of the line segments.

Figure 3: Left: 3D morphology of eutectic Si corals in an Al matrix; right: corresponding
skeletonization; image size is 548× 761× 357 voxel with voxel size of 46nm

3.2. Model description

The graph structure of the Si particles gained by skeletonization, as explained
in the preceding section describes the main structure of the aggregation of Si
corals. Based on this graph, we first introduce a stochastic model representing
the graph structure of single corals. The single-coral model consists of two
modeling components, the stem of a coral and its branches, where we define the
stem of a coral by the shortest path connecting the lowest and highest point
of a coral, see Figure 4. The advantage of this decomposition into stems and
branches is that each component can be modeled using multivariate time series.

3.2.1. Single-stem model

In this section, we introduce a stochastic model for a stem as displayed in
Figure 4 (right). The stem of a coral can be described as a polygonal track
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Figure 4: Left: 3D skeletonization of Si corals; right: corresponding stems

p = (p1, . . . , pn), where pi = (ai, bi) is the i-th line segment consisting of a
starting point ai ∈ R3 and an end point bi ∈ R3.

The stem of a single coral will thus be modeled by a random polygonal track.
This random polygonal track consists of a model for the first line segment (i.e.
starting line segment) and a multivariate time series which describes the succes-
sive line segments, where the spatial correlations of consecutive line segments
are taken into account by the time series.

Recently, this novel approach to describe polygonal tracks by multivariate
times series has successfully been applied to model the courses of carbon fibers
used in so-called gas-diffusion layers of proton exchange membrane fuel cells,
see [14, 15].

To begin with, we state an alternative representation of polygonal tracks
by the following incremental approach. Instead of describing a polygonal track
p = (p1, . . . , pn) by the endpoints ai, bi ∈ R3 of its line segments pi, we now
consider an angle-length representation, where given the first line segment, the
remaining line segments are described by the lengths `1, `2, . . . of the consecutive
line segments and the angles α1, α2, . . . and β1, β2, . . .. The angle αi (βi) denotes
the change of direction from the i-th to the (i + 1)-th segment with respect
to the azimuthal (polar) angle. Note that the vector (αi, βi) is a point on
the unit sphere. In summary, under the condition that the first line segment
is given, a polygonal track is uniquely described by the sequence of vectors
(α1, β1, `1)>, (α2, β2, `2)>, . . ., see Figure 5.

Thus, it would be reasonable to describe the polygonal tracks given in this
incremental representation, by a 3D multivariate time series. However, looking
at cross-correlations, see Figure 5 (right), we see that the first component, i.e.,
the azimuth angle α, seems to be (stochastically) independent of the polar angle
β and of the length of the line segment `. Moreover, it seems that consecutive az-
imuth angles are also independent from each other. Therefore, we model the se-
quence of azimuth angles by a sequence of independent and normally distributed
random variables α1, α2, . . ., i.e., αn ∼ N(µ, σ2). The remaining two compo-
nents, i.e., the polar angle and the length of the line segment, do have cross-
correlations, see Figure 5 (right). Hence, the sequence of consecutive vectors
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Figure 5: Left: incremental representation of polygonal tracks in the 2-dimensional case; right:
cross-correlation of {Gi}

(βi, `i) of polar angles and lengths of line segments is modeled by a 2D multivari-
ate time series {Yi}, which will be specified later. Thus, the single-stem model
is described by the 3D stochastic process {Gi} = {Ψ(α1, Y1),Ψ(α2, Y2), . . .},
where the function Ψ : R3 → R3 is given by

Ψ(r, s, t) = (r − 2k1π, s− 2k2π,max{0, t}) ,
if (2k1 − 1)π ≤ r < (2k1 + 1)π and (2k2 − 1)π ≤ s < (2k2 + 1)π

for some k1, k2 ∈ Z, where Z = {. . . ,−1, 0, 1, . . .} denotes the set of integers,
and the definition of Ψ assures some natural regularity, i.e., the changes of
directions of consecutive line segments are not allowed to be larger than π, the
lengths of line segments have to be non-negative. The geometric interpretation
of the process {Gi, i ≥ 1} is that its first (second) component is a sequence of
random angles denoting the change of direction from the i-th to the (i + 1)-th
line segment of a polygonal track w.r.t. the azimuthal (polar) angle. The third
component specifies the lengths of the consecutive line segments of a polygonal
track.

In order to fully describe the stem of single corals, we consider as starting line
segment `start a vertical line segment with a length ` which is inverse Gaussian
distributed, i.e., ` ∼ invG(µ1, µ2) with density

fµ1,µ2
(x) =

(
µ2/

(
2πx3

))1/2
exp

((
−µ2(x− µ1)2

)
/
(
2µ2

1x
))
.

In summary, the stochastic model {Xi, i ≥ 1} for the stem of corals is given by
{Xi} = (`start, {Gi}).

Finally, the time series {Yi, i ≥ 1} is chosen by means of an autoregressive
process of order 2. That means that (βi, `i) is a function of its two previous
values (βi−1, `i−1) , (βi−2, `i−2) plus some random component. More precisely,
the autoregressive processes {Yi, i ≥ 1} of order 2 is given by

Yi = η +A1 Yi−1 +A2 Yi−2 + εi for each i ≥ 1.
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Note that η ∈ R2, and the coefficient matrices A1, A2 ∈ R2×2 are considered as
model parameters. The ‘residuals’ {εi , i ≥ 1} are assumed to form a sequence
of two-dimensional random vectors which are independent and identically dis-
tributed with vanishing mean vector E εi = o and some (non-singular) covariance
matrix Σ = E (εiε

>
i ) where Σ is a further model parameter, see e.g. [8, 9]. For

more information about random polygonal track models based on multivariate
time series, the reader is referred to [14, 15].
Parameter Estimation. The parameters η,A1, A2,Σ are estimated as described
in detail in [14]. In our case, we get that

Yi =

(
−0.65
1.34

)
+

(
−0.45 0.41
−0.02 −0.004

)
Yi−1 +

(
−0.25 0.07
0.01 0.015

)
Yi−2 + εi ,

where εi ∼ N

((
0
0

)
,

(
0.17 −0.01
−0.01 0.01

))
. Moreover, the first component (polar

angle) of {Yi, i ∈ Z} is a dimensionless number whereby the second compo-
nent (length of line segments) is given with respect to the cubic voxel size of
the rescaled (experimental) 3D FIB-SEM data which is equal to 46 nm3. A
transformation of this voxel size can be easily obtained by multiplying all Yi2
with factor x

46 , where x is the desired new voxel size. Regarding the estimation
of
(
µ, σ2

)
, we consider the usual maximum-likelihood estimator applied to the

sample of angles αi denoting the change of direction from the i-th to the (i+1)-
th line segment w.r.t. the azimuthal angle of the extracted stems of corals. For
the parameter (µ1, µ2) of the inverse Gaussian distribution, representing the
length of the starting line segments, we consider the maximum-likelihood esti-
mator applied to the sample of all line segments which are observed in the graph
structure of the Al-Si material. As results, we obtain

(
µ, σ2

)
= (0.025, 1.5) and

(µ1, µ2) = (1.16, 1.29). The values for (µ1, µ2) are given in µm.

3.2.2. Stochastic modeling of single corals

In this section, we develop a model to add branches to the single stems
introduced in Section 3.2.1, which yields the single-coral model. When analyzing
the graphs extracted from the experimental Si corals, it turns out that at the end
of each line segment of the extracted stem, there exists one branch. Therefore,
we include branching to the stem model by including exactly one branch at the
end of each line segment. The branch itself is simulated according to the stem
model (i.e. with same time series model which is used for the stem), but with a
different starting line segment, which will be specified later on.

Obviously, different branches may interact or even cross each other. To con-
trol the interaction of branches or the distances between branches, respectively,
we introduce a ’win/lose’ criterion, which we specify in the following. The
general idea is that all line segments from different branches should have a rea-
sonable distance from each other. First we simulate a single stem and number
serially the endpoints of its line segments starting at 1, see Figure 6 (0). Then,
in the first iteration step, we add a new branch at the endpoint labeled with
1 (Figure 6 (1)). In the i-th iteration step for i ≥ 1, we add a new branch at
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all endpoints of the existing line segments which have the mark i, see Figure 6
(2). At the end of each iteration step, we (eventually) delete new line segments
according to the following rules, see Figure 6 (3).

• All line segments from the stem and the first line segment of a new branch
located at the stem ’survive’.

• If the smallest Euclidean distance between a candidate for new line seg-
ment p = (a, b) and any other line segment (excluding the new ones) is
below a threshold τinternal, the new line segment is deleted (’lose’). How-
ever, if the distance from the starting point a (to the nearest line segment)
is smaller than at the endpoint b, i.e., the new branch is moving away from
the remaining part of the tree, the line segment is not deleted (’win’). This
exception is useful since branches with common branching point are rather
close, still have a chance to ’survive’.

• If the smallest Euclidean distance between a new line segment and another
new line segment is below a threshold τinternal, the line segment with the
highest end point (i.e. z-coordinate) ’wins’ and the other ’loses’ (i.e. is
deleted), see Figure 6 (3). However, if the distance from the starting
point a (to the nearest line segment) is smaller than at the endpoint b,
i.e., the new branch is moving away from the remaining part of the tree,
the line segment is not deleted (’win’). Again, this exception is useful
since branches with common branching point are rather close, still have a
chance to ’survive’.

• The thinning is organized in such a way that we start with the line seg-
ment which has the smallest z-component. Then, the deletion takes place
iteratively, i.e., the order in which line segments are deleted, does have an
influence on the final result.

To complete the single-coral model, we have to specify the choice of the
starting line segment for the branches. Our intention is that all branches have
the same azimuth angle (±π), in agreement with the Si corals observed in the
experimental data, see Figure 7 (left). Therefore, we mark each coral with an
angle δ, where δ is an uniformly distributed random variable in the interval
[0, π], i.e., δ ∼ U(0, π). The starting line segment `branch = (a, b) of the branch
is uniquely described by its starting and end points a, b, where the starting point
is already given. Using spherical coordinates, the endpoint b is described by its
azimuth angle ϕ, polar angle θ and length `, where ϕ is uniformly distributed
on [δ− π, δ+ π]. The polar angle θ is chosen in dependence of the previous line
segment `prev where the branch begins, see Figure 7 (right). More precisely, θ is
determined by an acceptance and rejection method. We choose θ as a realization
of a uniformly distributed random variable in the interval [−π, π] and we accept
θ if the angle between `branch and the previous line segment `prev is in the
interval [π5 ,

4π
5 ], otherwise we sample a new realization of θ.
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Figure 6: Modeling idea of single coral: First the main stem is described by a random polygonal
track where the endpoints of these line segments are numbered serially (0). Branches are added
to the stem and numbered serially ((1), (2)) and finally branches are deleted ((3), red colored)
which are too close to each other

Figure 7: Left: top view on graph of Si corals; right: illustration of choice of polar angle for
new branch
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3.2.3. Stochastic modeling of aggregates of corals

Based on the single-coral model introduced in Sections 3.2.1 and 3.2.2, we
develop a stochastic model of aggregates of corals whose realizations correspond
to the graph structure of Si corals as displayed in Figure 3. This is done by a
two-stage growing approach.

In the first stage, single corals grow iteratively as described in Section 3.2.2,
where the starting points are given by a stationary and isotropic point process
in 3D. More precisely, as a stochastic model representing the random starting
points of the single corals, we choose a Matérn hardcore process with some
intensity λ and hardcore radius rhc > 0 in the sampling window R×R× [0,∞),
see [16]. Note that in a Matérn hardcore process, all points have a minimum
distance rhc > 0 from each other. This is an important aspect to ensure that the
Si corals are nicely spread in space and do not interfere directly at the beginning
of their growing process. We let all corals grow simultaneously at their starting
points given by the point process. During the growth process, we propose some
kind of ’birth-and-death’ process to control the distances between neighboring
single corals. It is obvious that single corals must not touch each other (to ensure
the correct number of separated single corals), but we also want to control the
distances between them. Therefore, the ’birth-and-death’ process is organized
as follows:

• If branches belonging to two different corals are too close to each other, i.e.,
the minimal distance of these branches (of stems) is smaller than τexternal,
the growth of that branch (stem) which has the smaller z-component stops
growing (’death’).

• In each iteration step of the growth process, the external competition
criterion (given by τexternal), being more important, is executed before the
internal competition criterion (given by τinternal). Thereby, it is possible
that (segments of) stems are deleted (and only the branches continue to
grow).

• The thinning is organized in such a way that we start with the line segment
which has the smallest z-component. The deletion takes place iteratively,
i.e., the order in which line segments are deleted, does have an influence
on the final result.

We denote the union of those corals by Ξ(0). The ’birth-and-death’ process of
the first stage gives nice control of the distances between neighboring corals.
However, as a side-effect, the ’birth-and-death’ process yields large pores, i.e.
regions with a large shortest distance to the nearest Si coral. This is plausible
since the winning single coral (’birth’) needs some time to take over the free
space of the other single coral. The branches of the winning single coral will
expand in space, but it will not directly take over the free space.

Therefore, in the second stage, these ’gaps’ are filled by an iterative Cox
procedure. The idea is to identify large ’gaps’ and let corals grow starting from
their midpoints. In the first iteration step, we simulate corals in the ’gaps’ of
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the plane P0 = R × R × {z0} with z0 = 0, i.e., we start at the bottom of our
observation window. We aim to let the new corals start growing in the centers
of the ’gaps’ from the plane P0. Therefore, we determine the local maxima in
the plane P0 of the so-called distance transformation of Ξ(0) which assigns to
each point x ∈ R × R × [0,∞) the shortest Euclidean distance to the nearest
coral and denote it by DΞ(0)(x). To avoid that new corals interfere with other
corals of the first stage, the set of local maxima is thinned out by first deleting
each local maximum m such that DΞ(0)(m) < rcox. Thus, every new coral has
a minimum distance to a coral from the first stage larger than rcox. Secondly,
if the Euclidean distance of two local maxima m1,m2 is smaller than rcox, we
delete m1 if DΞ0(m1) < DΞ0(m2), and m2 otherwise. This ensures that two new
corals have a minimum distance (at least at their first line segments) of rcox such
that they do not interfere directly. Now, we let corals grow starting from the
remaining local maxima of the plane P0 according to the same procedure as
used for corals in the first stage while taking into account these already existing
corals. More precisely, if during the growth process of these new corals the
distances of some of their branches to the already existing corals, here Ξ(0), are
smaller than τexternal, these branches are deleted. Otherwise, if the distances of
branches of different new corals are smaller than τexternal, then the growth of
that branch which has a smaller z-component stops. We denote the union of
the new corals by Ξ(1). This procedure is repeated iteratively, where in the i-th
iteration step, we consider the plane Pi = R× R× {zi} with zi = (i− 1) rcox2 .

Investigations accomplished by means of realizations of this model for ag-
gregates of corals have shown that these realizations reach a steady-state in
the sampling window R × R × [100,∞), where the dimension is given in voxel
(100 voxel correspond to 4.6 µm). This process towards a steady state can be
explained as follows, where we begin by the first stage: corals start growing
according to a realization of a 3D Matérn hardcore process, which is stationary
and isotropic. Those corals that start at the bottom, i.e. with z-component
close to zero, will have plenty of space to develop branches. Sooner or later,
however, every coral will interfere with other corals (whose starting point may
be far above) and stop growing. Those corals that started at the bottom, may
thus have a larger maximum stem length. This bias will decreases with increas-
ing z-component. For large z-components, the process will eventually reach an
equilibrium. This shows that the first stage of the competitive stochastic growth
model reaches stationarity (for large z). Similarly, the iterative Cox procedure
also leads to stationarity for sufficiently large z for the same reasons.

Thus, for that reason our model is defined on the (slightly smaller) sampling
window R × R × [200,∞), such that the process in R × R × [0, 200) can reach
its equilibrium.
Parameter Estimation. The hardcore radius rhc is chosen such that λ stands
for the maximal possible intensity with the hardcore radius rhc of a hard-

core process, i.e, rhc =
(

3.0
4πλ

) 1
3 . The estimation of the remaining parameters

λ, τexternal, rcox is described in Section 3.3. A realization of the stochastic model
for aggregates of corals is displayed in Figure 8.
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Figure 8: Left: 3D graph structure of Si corals in an Al matrix; right: realization of the
stochastic model for aggregates of corals

3.2.4. From graph structure to morphology

The stochastic model for aggregates of corals introduced in Section 3.2.3 de-
scribes the graph structure of eutectic Si corals and consists of an ensemble of
line segments. From a mathematical point of view, the volume of this arrange-
ment of line segments is equal to zero. Therefore, in this final modeling step, we
transform the graph onto a 3D grid and dilate the graph such that a) the volume
fraction of Si corals is matched and that b) separate corals remain separated
after dilation. Therefore, we separately dilate each edge of the aggregates of
corals model with a sphere as structuring element and radius rdilate > 0. Now,
the radii of edges which overlap with edges of other corals are simultaneously
decreased by some small value ε > 0 until the dilated edges from different corals
show no more overlap. The radius rdilate > 0 is chosen such that the volume
fraction after the iterative erosion is matched.

3.3. Model fitting

The stochastic model presented in this work is fully parameterized. Most
parameters could be estimated in a straightforward way. The remaining pa-
rameters for the internal and external competition, τinternal, τexternal, and the
parameters for the starting points λ, rcox are estimated by the so-called min-
imum contrast method. Therefore, aggregates of Si corals are simulated in
dependence of the parameter vector v = (τinternal, τexternal, λ, rcox). The value
of v for which the discrepancy between structural characteristics of simulated Si
corals and their experimental counterparts is minimized, is called a minimum
contrast estimator. More precisely, we aim to minimize the cost function

L(v) =

∫ b12

b11

|H(r)−Hv(r)|dr +

∫ b22

b21

|EL(r)− ELv(r)|dr

+

∫ b32

b31

|TL(r)− TLv(r)|dr .

Here, H, Hv (EL, ELv; TL, TLv) denote the spherical contact distribution
function (distribution of edge length; distribution of maximum stem length),

13



computed for the graph structure of the experimental Si corals and for real-
izations of the multi-coral model, respectively. More precisely, the value H(r)
of the spherical contact distribution function denotes the probability that the
minimum distance from a randomly chosen location of the Al phase to the
graph structure is not larger than r for r > 0. Furthermore, the distribution
of maximum stem length is defined by the distribution of lengths of shortest
paths connecting the lowest and highest point of the corals. The constants
b11, b12, b21, b22, b31, b32 are appropriately chosen integration limits. A vector v0

such that L(v0) ≤ L(v) holds for all admissible values of v is called a minimum
contrast estimator for v = (τinternal, τexternal, λ, rcox). In Figure 9 we can clearly
see that the three structural characteristics used for the minimum-contrast es-
timation are almost perfect represented by our growth model.

Figure 9: Left: spherical contact distribution function; center: distribution of edge lengths;
right: distribution of maximum stem length; black: computed for the graph structure of
experimental Si corals, red: drawn from the multi-coral model

Finally, the radius rdilate for the dilation of line segments is chosen such that
after the simultaneous decrease of radii, the volume fraction of the Si structure
is fitted. The numerical values of the fitted parameters are given by τinternal =
1.38 µm, τexternal = 0.92 µm, λ = 1.34e− 7, rhc = 5.47 µm, rcox = 2.53 µm and
rdilate = 0.55 µm.

3.4. Influence of model parameters

In the previous section, we estimated the model parameters that describe
the structure of Al-Si alloys. For reasons of clarity, in Figure 10, all model
parameters are listed and their influence is shortly described. In the following,
we will discuss the influence of model parameters on the microstructure of Al-
Si alloys in more detail. This is also an important aspect regarding virtual
materials design in order to generate different virtual microstructures of Al-Si
alloys. We begin with the parameters for the stochastic model for the single
corals. Mainly, the evolution and correlation structure of the connected system
of line segments is described by the parameters of the time series model including
parameters for the starting line segment. The degree of branching, however,
is controlled by the ’internal competition’ parameter τinternal, where, roughly
speaking, τinternal is the maximum distance which is required between branches
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Figure 10: Overview of model parameters and their influence on virtual microstructures of
Al-Si alloys

belonging to the same coral. A lower value of τinternal leads to a significant
increase in the number of branches as fewer branches are deleted according
to the internal criterion as described in Section 3.2.2. Similarly, the ’external
competition’ parameter τexternal as well as rcox control the size of corals and
the distance between them, where a higher value of τexternal (rcox) reduces the
average distance between separate corals while producing larger corals. The
intensity of the Matérn hardcore process λ controls the relative frequency of
corals with a very large maximum stem length. Suppose λ is low, then there
are few starting points in 3D for the corals to grow. Thus, in the first stage
of the competitive growth algorithm, there is less interference with other corals
which means that these corals have a large maximum stem length. Finally, the
dilation radius rdilate influences the volume fraction of the corals, where a larger
radius leads to a larger volume fraction.

3.5. Model validation

In this section, we want to elucidate to which extend the stochastic simula-
tion model agrees with the experimentally determined Si corals. In Figure 11
(right) a typical realization of the Al-Si model is shown. By visual inspection,
the simulated image coincides quite well with the experimental FIB-SEM image
which is shown on the left-hand side of Figure 11.

In the following, we check more formally if the 3D stochastic model describes
the morphology of the Al-Si material sufficiently well.

Therefore, the stochastic simulation model will be validated by comparing
morphological characteristics computed for the 3D image gained by FIB-SEM
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Figure 11: Left: 3D morphology of experimental Si corals in an Al matrix; right: corresponding
simulation of stochastic model; image size is 761× 548× 357 voxel with voxel size of 46nm

Table 1: Basic morphological characteristics

Vv Sv Mv Kv particle density
[µm−1] [µm−2] [µm−3] [µm−3]

real 0.14 5.27E-1 3.84E-1 6.03E-3 1.04E-2
simulated 0.13 4.95E-1 4.80E-1 5.84E-2 1.32E-2

tomography, and for realizations of the Al-Si model, respectively.

3.5.1. Comparison of densities

In materials science, there are four basic parameters used for the charac-
terization of morphologies in 3D. These parameters are also called ’densities’
since they are determined relative to the sample volume. The definitions and
methods for the estimation of these characteristics, including stereological ones,
are discussed in [17] and [18]. Below we briefly discuss general properties of
these basic parameters. The volume density Vv provides information about ma-
terial constitution. The surface density Sv reflects many of materials’ properties
such as mechanical strength, dispersion, etc. A typical example to demonstrate
an influence of surface density on mechanical properties of a material is the
Hall-Petch relationship. It relates the surface density of the Si phase with the
material strength. The specific integral of mean curvature Mv depends on the
geometrical characteristics of the Si phase, e.g. precipitates, and is related to
the deformation behavior of materials. The specific integral of total curvature
Kv is directly related to the mean number of particles per unit volume that is,
in turn, defined by the nucleation rate.

Agreement between the described parameters for both experimental and
simulated morphologies is particularly important for admitting a model as an
adequate one. Table 1 presents comparative results of morphology analysis for
the stochastic model and tomography-reconstructed 3D image. As one can see,
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there is a satisfying agreement between results for volume fraction Vv, specific
surface area Sv and specific integral of mean curvature Mv.

The values of specific integral of total curvature differ by one order of magni-
tude. The reason for such a difference may be that the integral of total curvature
Kv is sensitive to the density of particles, where the particle density is slightly
overestimated by the stochastic model. Besides, the estimation of Kv may be
unstable.

3.5.2. Distributional characteristics

Furthermore, we consider the distribution of spherical contact distances from
Al to Si particles, and vice versa, where also a good agreement is found, see
Figure 12. Note that we already considered this characteristic for model fitting
of the aggregates of corals (which is a system of line segments), but now we
calculate this characteristic for the complete 3D microstructure of Al-Si alloys.
Next, the distribution of chord-lengths in the directions of x−, y− and z− axes is
determined. Figure 13 shows the cumulative distribution function of the chord-
length in each of these three directions. One can see clearly that there is a good
accordance w.r.t. to these chord-lengths distribution. Overall, we can conclude
a good agreement of the stochastic model with the aggregate of experimentally
determined Si corals.

Figure 12: Distribution of spherical contact distances from Al to Si particles (left), and vice
versa (right) for the experimental image data (black curve) and realization drawn from the
stochastic model (red curve)

4. Conclusions and Outlook

We have proposed a stochastic 3D model for simulating the spatial morphol-
ogy of eutectic silicon in Al-Si alloys. This fully parametrized model is based
on ideas from stochastic geometry and multivariate time series analysis. The
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Figure 13: Distribution of chord lengths in direction x− (left), y− (center) and z− (right)
axes for the experimental image data (black curve) and realization drawn from the stochastic
model (red curve)

model is organized in a three-stage approach: In a first step, a model for sin-
gle corals is introduced, where every single coral is represented by connected
line segments (which are dilated later). Multivariate time series are used to
accurately describe the complex spatial correlations of the branches within sin-
gle corals. Second, based on the single-coral model, we present a competitive
growth model which regulates the growth of neighboring corals according to
a certain ’birth-and-death’ process. The final step is a dilation of the set of
trees (corals) in order to fit the volume fraction of silicon. The stochastic model
is validated by comparing morphological parameters computed for a 3D tomo-
graphic image and for realizations of the model. Although some differences are
discovered for the density of corals, good agreement of the other parameters
is shown, confirming the model as adequate for generation of virtual eutectic
silicon morphologies. Further investigations are required to study the flexibility
of the model with respect to various structural scenarios. In particular, our
model will be used for virtual scenario analyses in a forthcoming work with the
general aim to detect a correlation between the microstructure morphology and
its mechanical properties. An optimal eutectic Si structure providing the best
mechanical properties can be deduced by systematic modifications of the model
parameters and in combination with mechanical simulations.
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