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Far-field three-dimensional X-ray diffraction (3DXRD) microscopy allows

for quick measurement of the centers of mass and volumes of a large number

of grains in a polycrystalline material, along with their crystal lattice ori-

entations and internal stresses. However, the grain boundaries—and, there-
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fore, individual grain shapes—are not observed directly. The present paper

aims to overcome this shortcoming by reconstructing grain shapes based

only on the incomplete morphological data described above. To this end,

cross-entropy optimization is employed to find a Laguerre tessellation that

minimizes the discrepancy between its centers of mass and cell sizes and those

of the measured grain data. The proposed algorithm is highly parallel and

is thus capable of handling many grains (> 8 000). The validity and stabil-

ity of the cross-entropy approach are verified on simulated and experimental

datasets.
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1 Introduction

Recently, novel diffraction-based imaging techniques capable of measuring the centers

of mass, volumes and crystal lattice orientations of thousands of grains in a polycrystal

have became available, see Abdolvand et al. (2015); Johnson et al. (2008); Ludwig et al.

(2009); Poulsen (2004); Sedmák et al. (2016). One of the most promising methods

yielding large datasets (> 10 000 grains) is 3D X-ray diffraction (3DXRD) microscopy

(Poulsen, 2004). In the far-field setup (Abdolvand et al., 2015; Sedmák et al., 2016), the

sample rotates with respect to the X-ray beam and only the diffraction signal from the

grains is collected. This leads to an incomplete dataset, since there is no information

on the location and shape of the grain boundaries. However, for many applications it

is crucial to have complete knowledge of the microstructure. A prominent example for

such a situation is the analysis of the mechanical behavior of a polycrystal of defined

microstructure (Materials by Design) by means of the finite-element (FE) method. Since

the 3DXRD technique provides additional information on the elastic strain and stress

tensors for each grain in samples subjected to external forces, it is possible to compare

this experimental information to a comprehensive FE analysis of the mechanical behavior

of the material, see Abdolvand et al. (2015); Sedmák et al. (2016).

One possibility to arrive at the desired complete model of microstructure is to add a

near-field detector to the 3DXRD setup or to employ other imaging techniques, such as

diffraction contrast tomography (Johnson et al., 2008). This is an excellent strategy if

smaller datasets (< 1000 grains) are considered, but it can be impractical when large

datasets are required for meaningful simulations of mechanical properties of engineering

materials.

Alternatively, the missing information can be added by utilizing the available far-field

diffraction data and reconstructing the grain boundaries on the computer, which yields

an approximation of the grain shapes, e.g., based on Laguerre tessellations (Lautensack
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and Zuyev, 2008). This has been demonstrated by Lyckegaard et al. (2011), where a

fast heuristic is described that allows for quick reconstruction of grain boundaries from

3DXRD data. In Quey and Renversade (2018) the task of reconstructing the grain

boundary network based solely on the centers of mass and volumes from a 3DXRD

measurement was formulated as an optimization problem, which led to much better

results at the cost of longer runtimes. Both methods are discussed in-depth later on.

The present paper takes a similar approach, but the optimization is performed with

an algorithm that is more robust against local minima. Moreover, instead of following

a mostly sequential procedure, the algorithm is highly parallel and can be run on a

distributed system, making it applicable to datasets with a large number of grains.

In a forthcoming paper we will exploit this property even further by considering more

general tessellation models having curved cell boundaries, such as the spherical growth

model, (see, e.g., Šedivý et al., 2018), which are better suited than flat-faced Laguerre

tessellations to the modeling of microstructures manifesting non-negligible boundary

curvatures. For these general tessellation models, no efficient formulas for computing

the centers of mass and volumes of the tessellation cells are available, and the resulting

high computational effort can be tackled only by distributing the workload over many

CPU cores. To our knowledge, there are no methods proposed in the literature capable

of solving this problem. However, the intention of the present paper is to establish

our reconstruction method for fitting tessellations in the well-studied Laguerre case and

compare its results to those of other methods from literature.

The remainder of this paper is structured as follows: We begin in Section 2 with a

recap of the fundamentals of Laguerre tessellations and an introduction to our proposed

reconstruction procedure. Then, to prove the validity of our approach, we apply the

method to four different datasets in Section 3 and discuss the results in Section 4, where

we also compare our method with two other techniques from the literature and suggest
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possible extensions to our approach. This is followed by concluding statements.

2 Models and Methods

In this section we recall some fundamentals of Laguerre tessellations and present our

reconstruction method.

2.1 Laguerre Tessellations

A tessellation in R3 is a countable collection of sets (called cells), T = {Ci ⊂ R3 : i ∈ N},

such that

1) int(Ci) ∩ int(Cj) = ∅ for i 6= j,

2)
⋃
i∈NCi = R3,

3) T is locally finite (i.e. #{Ci ∈ T : Ci ∩B 6= ∅} <∞ for all bounded B ⊂ R3),

4) Ci is a compact set for all i ∈ N.

In this paper we consider only tessellations in a bounded subset W ⊂ R3, which are

defined analogously. Note that condition 4) implies that the cells of a tessellation are

bounded polyhedra if we additionally assume that they are convex sets. For various

classes of tessellations compare, e.g., Šedivý et al. (2018).

A Laguerre tessellation, also called a Laguerre diagram or power diagram, is a gener-

alization of the well-known Voronoi tessellation (Møller, 1994). Let x, y ∈ R3 and r ≥ 0;

then the power distance (Laguerre distance measure) is defined by

pow(y, (x, r)) = ||y − x||2 − r2,
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where || • || is the Euclidean norm on R3. A Laguerre tessellation is given by a set of

weighted generating points {(xi, ri)}i∈I with seed point xi ∈ R3 and weight ri ≥ 0 for

i ∈ I ⊂ N. The i-th cell Ci of a Laguerre tessellation is then defined as

Ci = {y ∈ R3 : pow(y, (xi, ri)) ≤ pow(y, (xj, rj)) for each j ∈ I}.

Note that in contrast to Voronoi tessellations, for which all weights ri are equal to

each other, the Laguerre cell Ci defined above may be empty (i.e., the cell may have

no interior points) and, even if Ci 6= ∅, it is not guaranteed that its seed point xi lies

inside Ci. Moreover, while for a given Voronoi tessellation its generating points are

uniquely determined, a Laguerre tessellation can be generated by uncountably many

sets of generating points, see Duan et al. (2014); Lautensack and Zuyev (2008). On the

other hand, Laguerre tessellations provide much more flexibility compared to Voronoi

tessellations. In fact, every tessellation in R3 (as defined above) that is normal—i.e.,

each k-dimensional face lies at the intersection of exactly 4− k cells for k = 0, . . . , 3—is

a Laguerre tessellation, see Lautensack and Zuyev (2008).

Recall that the aim of the present paper is to find a Laguerre tessellation whose cells

match given volumes and centers of mass (also called centroids) and thus to reconstruct

the grain boundaries of a material sample captured by a 3DXRD measurement. Of

course, we cannot in general assume that the grain boundaries of the measured poly-

crystalline material follow a Laguerre tessellation exactly; therefore, we seek a Laguerre

tessellation that best approximates the given experimental data. For a set of volumes

and centers of mass, it is not clear whether there is only one such “optimal” Laguerre

tessellation. We do know, on the other hand, that the Laguerre tessellation generators

are not uniquely determined (consider, e.g., adding a constant value to all weights).

We show below, however, that these issues are of no consequence for the reconstruction

method developed in the present paper.
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Figure 1: Visualization of the two-step reconstruction method. The Laguerre cell Gi

has the correct center of mass si, but its seed point xi is unknown and we want to

approximate it. The Laguerre cell Ci is given by the seed x
(1)
i = si, and the weight r

(1)
i

is the same for both cells Gi and Ci.

2.2 Two-Step Reconstruction Method

A very fast, heuristic method for finding a Laguerre tessellation whose cells approxi-

mately match given volumes and centers of mass is presented in Lyckegaard et al. (2011).

Since the method is comprised of two steps, we refer to it in the following as the two-step

reconstruction method, and we employ it to come up with a Laguerre tessellation that

acts as a starting point for our approach.

Let {(si, vi)}i∈I be the input dataset that we want to match where si is the center of

mass and vi is the volume of the i-th grain. In the first step, we create the tessellation

T1 = {Ci}i∈I with generators {(x(1)i = si, r
(1)
i =

(
3vi
4π

) 1
3 )}i∈I . We use si as the seed point

of the i-th Laguerre cell because, even if the center of mass does not coincide with the

position of the seed x
(1)
i , we expect them to be close to each other. The choice of weights

is motivated by visualizing the generators as a system of spheres with centers x
(1)
i and

radii r
(1)
i . If the spheres are non-overlapping and densely packed, the corresponding
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Laguerre cells will have similar shapes and in particular similar volumes. The notion

of nearly spherical cells with volumes vi = 4
3
πr

(1)
i

3
leads to the formula for the weights,

r
(1)
i =

(
3vi
4π

) 1
3 .

In the second step, we assume that the weights of T1 = {Ci}i∈I are already good

enough and we only want to improve the seed points. For that we consider a Laguerre

tessellation {Gi}i∈I with the same weights {ri = r
(1)
i }i∈I as T1, where each cell has the

correct center of mass si but whose seed points {xi}i∈I are unknown. Denote by s
(1)
i the

center of mass of the cell Ci. If the centroid (and seed of T1) si and the seed xi are close

to each other, the shapes and sizes of the cells Ci and Gi will be similar, and, hence,

the vectors v = xi− si and v(1) = x
(1)
i − s

(1)
i are similar as well, see Figure 1. By setting

v = v(1) we obtain an approximation of xi = 2si − s
(1)
i , and we can define the final

Laguerre tessellation T2 with the generating points {(xi = 2si − s(1)i , ri =
(
3vi
4π

) 1
3 )}i∈I .

2.3 Reconstruction Based on the Cross-Entropy Method

The cross-entropy (CE) method is a versatile stochastic optimization method that can be

used to solve many continuous optimization problems, see Kroese et al. (2006); Rubin-

stein and Kroese (2004). In Spettl et al. (2016) it was successfully applied to the fitting

of Laguerre tessellations to 3D image data obtained by X-ray tomography. The idea of

the method is that the global minimum z∗ = arg minz∈Rmc(z) of an m-dimensional cost

function c : Rm → R for m ∈ N can be described by a degenerate probability distribu-

tion where z∗ has probability 1. The CE method generates a sequence of probability

distributions that converges to this degenerate probability distribution. If there is more

than one global minimum of the cost function c, the CE method finds one of them.

More precisely, the CE method works as follows. Denote by f(z; θ) the probability

density of possible locations of a global minimum z∗, which depends on a certain pa-

rameter vector θ ∈ Θ ⊂ Rm̃ for m̃ ∈ N. Generate a sample z(1), . . . , z(n) of length n ∈ N
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from the probability density f(z; θ) and compute the corresponding values of the cost

function c(z(1)), . . . , c(z(n)). The set of ` < n best-performing members of the sample

(i.e., those with the lowest values of the cost function) are called the elite set. The

parameter vector θ is updated by computing the maximum likelihood estimate based on

this elite set. This procedure is repeated until the distribution corresponding to f(z; θ)

is nearly deterministic.

A common choice for the probability density f(z, θ) is the product of normal densities,

i.e.,

f(z; θ) = ϕ(z1;µ1, σ1) ·ϕ(z2;µ2, σ2) · . . . ·ϕ(zm;µm, σm),

where z = (z1, . . . , zm), θ = (µ1, σ1, . . . , µm, σm) for some µ1, . . . , µm ∈ R, σ1, . . . , σm > 0,

and ϕ(z;µ, σ) = (2πσ2)
−0.5

exp (−(z − µ)2/(2σ2)) is the density of the normal distribu-

tion with mean µ and standard deviation σ. With this choice of the density f(z; θ), we

can easily update the parameters µ1, . . . , µm with the component-wise sample means of

the elite set and σ1, . . . , σm with the component-wise sample standard deviation of the

elite set.

The algorithm of the CE method is thus given as follows:

1. Initialization. Choose an initial parameter θ(0) = (µ
(0)
1 , σ

(0)
1 , . . . , µ

(0)
m , σ

(0)
m ) and

set k = 0.

2. Sampling. Generate a sample z(1), . . . , z(n) from f(z; θ(k)) and select the elite set

z(e1), . . . , z(e`) from this sample with respect to the cost function c.

3. Updating. Calculate the component-wise sample means and standard deviations

of the elite set; i.e., calculate

z̄1 =
1

`

∑̀
i=1

z
(ei)
1 , . . . , z̄m =

1

`

∑̀
i=1

z(ei)m
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and

ẑ1 =

√√√√ 1

`− 1

∑̀
i=1

(
z̄1 − z(ei)1

)2
, . . . , ẑm =

√√√√ 1

`− 1

∑̀
i=1

(
z̄m − z(ei)m

)2
,

where z
(ei)
j is the j-th component of z(ei). Set the new parameter

θ(k+1) =
(
µ
(k+1)
1 = z̄1, σ

(k+1)
1 = ẑ1 , . . . , µ

(k+1)
m = z̄m, σ

(k+1)
m = ẑm

)
.

4. Iteration. The algorithm is stopped if the cost function does not decrease signif-

icantly for a certain number of steps. Otherwise, set k = k + 1 and repeat from

Step 2.

Note that in our case (µ1, . . . , µm) = (x1,1, x1,2, x1,3, r1, . . . , xN,1, xN,2, xN,3, rN), where

{(xi, ri)}i∈I with #I = N and xi = (xi,1, xi,2, xi,3) for all i ∈ I, are generating points

that converge during the CE procedure to the generating points of a Laguerre tessellation

minimizing the cost function. For the number of grains N in the dataset that we want to

reconstruct, it thus holds that m = 4N . Conversely, the generating point of the i-th cell

is given by ((µ4i−3, µ4i−2, µ4i−1), µ4i) = (xi, ri). Each element of the sample z(1), . . . , z(m)

hence corresponds to all generating points of a Laguerre tessellation used for probing the

cost function. Because the weights of the Laguerre tessellation must be non-negative,

we employ truncated normal distributions for the weights, in which negative values are

assigned a probability of zero.

Since each element of the sequence z(1), . . . , z(n) can be generated independently, it is

possible to split the sampling step of each iteration into n tasks consisting of drawing a

generator vector z(i) from f(z; θ), constructing the Laguerre tessellation, and computing

the cost function. These tasks can be executed on multiple CPU cores, possibly dis-

tributed over different machines. This approach has been studied in Evans et al. (2007).

10



Furthermore, the updating step of the CE algorithm can also be sped up by sorting

the generator vectors with respect to their cost, selecting the best ` generator vectors

z(1), . . . , z(`), and computing the component-wise mean and standard deviation in a par-

allel fashion, e.g., based on the MapReduce programming model (Dean and Ghemawat,

2008). In summary, it is thus possible to utilize a high number of CPU cores and run the

algorithm in a cluster setting, resulting in a significant speedup, see Evans et al. (2007).

2.3.1 Cost Function

Recall that our aim is to find a Laguerre tessellation in order to approximate the grain

boundaries of a polycrystalline material for which we know only the centers of mass and

volumes of the grains. For this purpose, we use the following notation:

• D = {(si, vi)}i∈I is the input dataset, with si = (si,1, si,2, si,3) ∈ R3 denoting the

center of mass and vi > 0 the volume of the i-th grain,

• GT = {(xi, ri)}i∈I is the sequence of seed points xi = (xi,1, xi,2, xi,3) ∈ R3 and

weights ri ≥ 0 of the Laguerre tessellation T that approximates the data, the i-th

cell of which has center of mass ŝi ∈ R3 and volume v̂i ≥ 0.

Note that we consider a Laguerre tessellation T restricted to a bounded sampling

window W ⊂ R3, and the cells at the boundary of W—which might be cut and are

thus no longer Laguerre cells—are treated in the same way as cells in the interior. The

reason for this is that it is practically impossible to identify the boundary cells of the

input dataset without knowing the exact shape of the grains. Any edge treatment based

on reconstructed tessellations during the CE method yields a different set of boundary

cells for different tessellations, and this spoils the comparability of the cost function,

which is necessary for identification of the elite set. Furthermore, the quality of the

reconstruction would decrease at the boundary.
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As we want to employ the CE method, we need to define a cost function c that

measures the distance between the input dataset D and the set of generating points of

the Laguerre tessellation GT . A possible choice for the cost function is

cD(GT ) = cD (x1,1, x1,2, x1,3, r1, . . . , xN,1, xN,2, xN,3, rN) =
1

N

∑
i∈I

cD,loc (ŝi, v̂i)

with

cD,loc (ŝi, v̂i) =
3

4
min

(
|si − ŝi|
r′i

, 1

)
+

1

4
min

(
|vi − v̂i|
vi

, 1

)
, (1)

where N is the cardinality of the index set I, i.e., the number of grains in the polycrys-

talline material, and r′i = 3

√
3vi
4π

is the radius of a ball with volume vi.

The intuition for this cost function is to quantify the discrepancy between the input

grains and the corresponding Laguerre cells as relative errors for the volume and the

centroids. Since the usual definition of relative error is not applicable for the latter, we

consider the (Euclidean) distance between the input centroid and the centroid of the

Laguerre cell and normalize it by the volume-equivalent radius to introduce a measure

of the grain’s “mean elongation.” Both errors could become arbitrarily large and are

thus bounded by one. This is necessary because, as we will show later, under certain

circumstances the variance parameters σ1, . . . , σm in the CE method depend on the cost

function and, more precisely, large costs lead to high variances, which in turn lead to

rather arbitrary tessellations having many empty cells. The two bounded errors are

combined using a convex combination, in which the error of the centroids is weighted

three times the error of the volumes. The idea is that the centroids correspond to three

degrees of freedom instead of only one for the volumes. The total cost is then the mean

cost of the individual cells.
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2.3.2 Variance Injection and Stopping Conditions

In some cases, the variance of distribution f(z; θ) decreases too quickly, and the CE

algorithm can hence converge to a local minimum instead of the global minimum z∗.

To avoid such behavior, we can use variance injection, a method introduced in Botev

and Kroese (2004) and successfully employed, e.g., in Kroese et al. (2006); Spettl et al.

(2016). With this method we occasionally increase the variance of the distribution f(z; θ)

to ensure that more realizations of this distribution leave the neighborhood of a local

minimum. Usually, variance injection is applied when the cost function c has not de-

creased significantly over a period of τ iterations. The size of the variance increment can

depend on the current value of the cost function. If, as in our case, c(z) =
∑m

i=1 cloc(zi),

where z = (z1, . . . , zm) and cloc : R→ R, the increment of the standard deviation σi can

be proportional to the value cloc(zi). When variance injection does not produce further

improvements, the CE algorithm is terminated.

More precisely, denote c
(k)
min = mini=1,...,n cD(z(i)), where (z(1), . . . , z(n)) is the sample

of the k-th step. If ∣∣∣∣∣c
(k)
min −maxt∈{k−τ,...,k−1} c

(t)
min

c
(k)
min

∣∣∣∣∣ < δinject

for δinject > 0, a variance injection is performed. Let cloc,i = cD,loc (ŝi, v̂i) be the value

of the local cost function of the i-th cell as defined in (1), and let c∗loc,i = maxj∈Ii{cloc,j}

with Ii = {j ∈ I : Ci ∩ Cj 6= ∅} be the maximal value of the cost function of cells

in the neighborhood of the i-th cell (including Ci). Then, variance injection for the

i-th cell increases the corresponding standard deviations (i.e. σ
(k)
4i−j for j = 0, . . . , 3) by

κ
√
c∗loc,i where κ > 0. With this strategy, we increase the variance more for cells that

do not fit the input data well or, more precisely, for generators that surround a badly

reconstructed cell and thus have the most influence over its shape.
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When variance injection does not improve the current state significantly—that is, if

∣∣∣∣∣c(k)minc
(k′)
min

∣∣∣∣∣ > γ,

where γ ∈ (0, 1) and c
(k′)
min is the minimal cost function prior to the previous variance

injection—we stop using it.

The CE algorithm is terminated when

∣∣∣∣∣c
(k)
min −maxt∈{k−τ,...,k−1} c

(t)
min

c
(k)
min

∣∣∣∣∣ < δterm,

where δinject > δterm > 0.

Another possibility to prevent the CE algorithm from getting stuck in a local minimum

is to use dynamic smoothing, see Botev and Kroese (2004); Kroese et al. (2006); Spettl

et al. (2016).

2.3.3 Initial Configuration and Choice of Control Parameters

In order to keep the runtime short, it is desirable to start with a good initial tessellation.

For that we employ the two-step reconstruction method, namely tessellation T2 from

Section 2.2, which proved to give good results on the tested datasets.

The initial standard deviations for the i-th cell are chosen as σ
(0)
4i−j =

√
cloc,i, where

j = 0, . . . , 3, and cloc,i is the value of the local cost function of this cell. For the sample

size we use n = 2000, for the size of the elite set ` = 100, for the variance injection

threshold δinject = 0.05, for the termination threshold δterm = 0.01, for the number of

iterations considered for variance injection and termination τ = 10, for the smoothing

factor of the variance injection κ = 0.25, and for the stopping criterion of the variance

injection γ = 0.9. Note that, in particular, higher values for the parameters n and ` can

be used to trade short runtime against a better fit. The proposed set of values aims to
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keep both balanced.

3 Results

In order to evaluate our reconstruction method, we use four different datasets. The

first two datasets are realizations of random Laguerre tessellations, which allow us to

quantify the performance of the algorithm under ideal circumstances. Based on two

additional experimental datasets, the applicability of the method to real world data

is investigated. In all four scenarios we use a set of centroids and volumes as input

data and find a Laguerre tessellation that minimizes the cost function introduced in

Section 2.3.1. In order to quantify the accuracy of the results, we compare characteristics

of each input cell/grain in a given dataset and its corresponding cell of the tessellation

gained from the reconstruction method. Note that because we want to evaluate the

fit of the whole dataset and be consistent with the behavior of the cost function, all

cells/grains are considered, including those at the boundary of the sampling window.

Since we cannot assume that the considered optimization problem has a unique solution

(apart form the parameterization of the generators), we analyze the stability of our

method empirically. To this end, we run the procedure five times for each input dataset.

Because the CE method is a Monte Carlo algorithm, different results are returned each

time, and by comparing the results of the repetitions we get an estimate for the stability.

All computations were performed on shared cluster nodes equipped with Intel Xeon E5-

2670 octa-core processors. The parallel implementation of the algorithm employed twelve

threads, which fully saturated twelve CPU cores.

3.1 Application to Laguerre Tessellations

In the first scenario we consider simulated data, i.e., two random Laguerre tessellations.

Doing so, we know that the reconstruction problem has a solution and, in theory, we
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reconstruction

(b)

Figure 2: 3D visualization of (simulated) input data (left tessellation) and reconstructed

data (right tessellation), shown for datasets having (a) high and (b) low cell-size vari-

ability. Input cells and their corresponding reconstructed cells are drawn in the same

color.

could find a perfect reconstruction. This allows us to quantify the accuracy of the

reconstruction method without the errors introduced through the representation of grain

boundaries by Laguerre tessellations.

In order to generate the data, we consider a bounded sampling window W ⊂ R3 with

periodic boundary conditions and add random balls until the ratio of the total volume of

all balls to the volume of W exceeds a predefined volume fraction ρsim. The midpoints

of the balls are uniformly distributed in W , and the radii are gamma-distributed with

some shape parameter αsim > 0 and rate parameter βsim > 0. A force-biased algorithm

(Bezrukov et al., 2002; Mościński et al., 1989) moves the balls until they no longer

overlap. Their midpoints and radii are then considered as generators for a Laguerre

tessellation. As input data for the reconstruction algorithm we compute the centroid

and volume of each cell. Because we apply periodic boundary conditions to the point

process but not to construction of the Laguerre tessellation, some marked points are

copied and thus generate multiple cells. In our analysis, we used W = [0, 99]3 and

ρsim = 0.63. The parameters of the gamma-distribution were chosen such that the radii
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(a) Relative errors of the volumes of the re-
constructed cells.
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Figure 3: Kernel density plots of error descriptors of the reconstructed tessellations for

the simulated datasets. The gray bands show the difference between minimum and

maximum density of the five repetitions for each reconstruction. The colored lines

correspond to the mean densities.

of the first dataset (αsim = 0.789, βsim = 0.3) have a high variance, while the second

dataset (αsim = 6.94, βsim = 1.5) is more homogeneous. The first one comprises 1702

cells, whereas the other one has 1439 cells.

The input datasets and their reconstructions are depicted in Figure 2. By visual

inspection, it is apparent in both cases that the general structure is approximated very

well. For a more detailed evaluation of the goodness of fit we consider the relative errors

of the cell volumes and the distances of the output centroids to the input centroids

relative to the volume-equivalent radius of the input cells. Note that both characteristics

are part of the cost function considered in Section 2.3.1. Plots showing their kernel

density estimates can be seen in Figure 3. These plots indicate that for both datasets

the centroids and volumes of the reconstructed cells match those of the input cells quite

well, but the more homogeneous dataset gives slightly better results. Another important

criterion for a good fit is whether the number of reconstructed cells corresponds to the
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Figure 4: Histograms of the difference between the number of neighbors of the input

cells and the number of neighbors of the reconstructed cells for the simulated datasets.

Error bars show the minimum and maximum difference in the five repetitions of the

reconstruction.

number of input grains (or, in this case, cells). Discrepancies can occur, since in a

Laguerre tessellation not every generator produces a non-empty cell. For the dataset

with high cell-size variability the mean number of empty cells is about 6.4 (0.37%),

whereas the latter quantity is 1.2 (0.08%) for the low-variability case, which indicates

good agreement with the input datasets. Note that these numbers are computed as the

mean values of five repeated simulations for each of the two datasets.

Since both cell volumes and distances of the centroids are part of the cost function,

it is desirable to look at other characteristics, as well. In Figure 4 histograms of the

difference between the number of neighbors for the input cells and for the corresponding

output cells are presented. To put this into perspective, each cell in the dataset with low

cell-size variability has on average 11.3 neighbors with standard deviation 4.92, whereas

in the dataset with with high cell-size variability each cell has on average 10.7 neighbors

with standard deviation 8.23. It is apparent that the more homogeneous dataset has

18



fewer cells with non-zero difference, which indicate a better fit. But even for the more

heterogeneous dataset, only for very few cells does the number of neighbors differ by

more than two compared to the number of neighbors of the corresponding original cell.

The barely visible gray bands in Figure 3 and the small error bars in Figure 4 are

indicative of very little difference in the goodness-of-fit between the five repetitions of

the reconstruction, which implies great stability of the CE method.

Computation of the reconstructions took about 19.2 h for the dataset with lower cell-

size variability and 27.2 h for the more heterogeneous case. Since the program uses a

Monte Carlo algorithm and ran on shared cluster nodes, the mean runtime of all five

repetitions is presented in order to give a more accurate estimate.

3.2 Application to 3DXRD Image Data with Knowledge of Grain

Boundaries

The experimental dataset with known grain boundaries was taken from a sample of

aluminum alloyed with 5 wt% copper (AlCu), which had been homogenized for 24 h

at 500◦C and then cold-rolled to 50% reduction in thickness. Subsequently, a 1.4 mm-

diameter cylindrical specimen was cut from the plate by spark erosion and annealed

at 620◦C for 10 min. Following this heat treatment, the sample was characterized at

room temperature by 3D X-ray diffraction (3DXRD) microscopy carried out at beam-

line BL20XU of the synchrotron radiation facility SPring-8 in Japan. A 32-keV X-ray

beam was employed to illuminate a layer of the sample 300µm in height; ten such layers

were recorded (with 50µm overlap), resulting in a total measured specimen height of

1.55 mm. Within each layer, both far-field and near-field diffraction data were collected

while the sample was rotated about its long axis by 360◦ in 0.48◦ steps. The crystallo-

graphic orientation and center of mass of individual grains were extracted from far-field

data using the program GrainSpotter (Schmidt, 2014), and 3D grain morphologies were
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Figure 5: 3D visualization of the (experimental) input data (left) and of the recon-

structed data (right) for an AlCu dataset with known grain boundaries. Input grains

and their corresponding reconstruction as cells of a Laguerre tessellation are drawn in

the same color.

reconstructed from near-field data via GrainSweeper (Schmidt et al., 2008), see Figure 5.

Following reconstruction, the individual layers were stitched together, yielding a map

containing 928 grains.

The cylindrical window was approximated with an 18-sided prism. This ensured

that the cells at the boundary of the window are still polyhedra and the formulas for

computing the volume and centroid remain the same. Similar to the previous section,

we compute the volumes and centroids of each grain restricted to the sampling window.

These act as input data for our reconstruction procedure. However, with this dataset

we can evaluate how the reconstructed cell boundaries compare to the grain boundaries

of real-world data.

Comparing the measured dataset and the reconstructed dataset visually (Figure 5),

we observe a good fit. A more in-depth analysis of the relative errors of the volumes
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Figure 6: Kernel density plots of error descriptors of the initial tessellation (two-step

method) and the final reconstructed tessellation for the experimental dataset with known

grain boundaries. The gray bands show the difference between minimum and maximum

density of the five repetitions for each reconstruction. The red lines correspond to the

mean densities.
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Figure 7: Histogram of the difference between the number of neighbors of the input

grains and the number of neighbors of the reconstructed cells for the experimental dataset

with known grain boundaries. Error bars show the minimum and maximum difference

in the five repetitions of the reconstruction.

shows slightly larger errors than for the simulated datasets considered in Section 3.1.

Nevertheless, the centroids were fitted with the same precision as for the simulated data,

and in both cases the errors are significantly lower compared to the initial configuration

from the two-step method, see Figure 6. The (mean) number of empty cells for the

experimental dataset with known grain boundaries is about 2.8 (0.3%) and is thus quite

similar to that of the high cell-size variability dataset described above.

In Figure 7 it is shown that the difference in number of neighbors is scattered over a

wider range than for the simulated datasets and that the reconstructed cells tend to have

slightly more neighbors than in the experimental input dataset. Here, the number of

neighbors of the input dataset is on average 10.6 with standard deviation 5.54. Still, for

89% of the cells, the number of neighbors differs between reconstruction and experiment

by less than two.

For this dataset the reconstruction took on average only about 6.9 h to compute.
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Figure 8: 3D visualization of the input centroids (left), the reconstructed centroids

(center) and the reconstructed grain boundaries (right) of the NiTi dataset with unknown

grain boundaries.

3.3 Application to 3DXRD Image Data without Knowledge of

Grain Boundaries

The fourth scenario is a cylindrical cutout (diameter = 100µm, height = 85µm) com-

prising 8063 grains from a larger cylindrical far-field 3DXRD measurement with about

15000 grains of a nickel titanium (NiTi) wire subjected to 425 MPa tensile stress. In

contrast to the previous datasets, only the centers of mass and volumes in addition

to elastic strain and stress tensors for each grain were determined. Consequently, no

information about the grain boundaries is available for validation.

The dataset and its reconstruction are depicted in Figure 8. Density plots of the

relative errors of the volumes and the relative distances of the centers of mass are shown

in Figure 9. Especially when considering the errors in volume, it is apparent that the

program has a much harder time finding a good tessellation for NiTi than for the AlCu

sample considered above; nevertheless, the reconstruction is much better than the initial

configuration from the two-step method. One explanation for this could be that Laguerre
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Figure 9: Kernel density plots of error descriptors of the initial tessellation (two-step

method) and the final reconstructed tessellation for the experimental dataset with un-

known grain boundaries. The gray bands show the difference between minimum and

maximum density of the five repetitions for each reconstruction. The red lines corre-

spond to the mean densities.
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tessellations having flat cell boundaries might not approximate the grain boundaries of

the sample well enough. This is supported by the fact that the method proposed by Quey

and Renversade (2018), which will be discussed in the next section, also struggles with

matching the volumes, as can be seen in Figure 11. While the majority of the centroids

lie in close proximity to their input counterparts, a few show high relative errors of about

2. In all five repetitions of the reconstruction an average of 52.6 (0.0065%) empty cells

is observed, which is the lowest percentage of all considered datasets.

Note that in order to reduce the runtime and maintain it within the cluster’s time

limit of six days, we changed the sample size n of the CE method from 2000 to 1500.

This way, the computation took on average about 122.3 h.

4 Discussion

In this section we discuss the results presented in the previous section, compare them

with other approaches from literature and suggest possible extensions to our method.

4.1 Analysis of Goodness-of-Fit and Stability

In the previous section we have seen that the proposed reconstruction method is able

to find Laguerre tessellations that capture the characteristics of the input datasets rea-

sonably well. The fit degrades slightly for the experimental data, but this is to be

expected, as real grain boundaries are not perfectly described by Laguerre tessellations.

The corresponding error in representation adds to the error of the optimization itself.

Even though it is not clear whether there exists a unique solution to the posed opti-

mization problem, all considered characteristics (in particular those that are not part of

the cost function) show very little scatter between individual repetitions of the recon-

struction. Because the CE method is a global optimization algorithm, it has the ability

to find different tessellations with the same volumes and centroids. But since the latter
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Figure 10: Cost function and percentage of empty cells during optimization for the

dataset with unknown grain boundaries. The points at iteration zero correspond to

the initial Laguerre tessellation from the two-step reconstruction method considered in

Section 2.2.

possibility did not actually occur, we conclude that the non-uniqueness of the solution

is of minor practical relevance.

As to be expected, the runtime of the reconstructions depends on the number of

grains in the input dataset. Even without considering that the program ran on shared

computers, the time it took to terminate is already acceptable. However, it could easily

be sped up further by employing more processors.

4.2 Comparison to Other Approaches from Literature

In contrast to the approach proposed in the present paper, the two-step reconstruction

method proposed in Lyckegaard et al. (2011), see Section 2.2, is a very fast, heuristic

approach that does not aim to find the best result. We use this property to kick-

start the optimization in order to find tessellations that better fit the data. This can

26



0 1 2 3
relative error of the volumes

CE method

Neper

Two-step
pr

og
ra

m

(a) Relative errors of the volumes of the re-
constructed cells.

0 0.5 1 1.5 2
relative distance of the centroids

CE method

Neper

Two-step

pr
og

ra
m

(b) Distances of centroids of the reconstructed
cells to input centroids, relative to the volume-
equivalent radii of the grains.

Figure 11: Box plots of error descriptors of the reconstructed tessellations from the

two-step method, Neper and the CE method proposed in the present paper for the

NiTi dataset. Note that the high number of outliers is caused by the skewness of the

distributions.

easily be seen, e.g., for the NiTi dataset in Figures 9 and 11, but also by considering

the decrease in value of the cost function during the optimization procedure (Figure 10),

where the initial value corresponds to the results obtained by the two-step reconstruction

method. Here, we show the results for the NiTi dataset because it best represents real

world applications. For some datasets, the two-step method produces a relatively large

number of empty cells, which the CE method is able to reduce. This behavior is also

depicted in Figure 10. The cost for the better fit, however, is a much longer runtime of

several hours, compared to only a few seconds for the two-step reconstruction method.

In Quey and Renversade (2018) a generic algorithm is presented that constructs La-

guerre tessellations that fit properties of experimental datasets, in particular the volumes

and centroids of the grains. For this purpose, a different optimization problem is con-

sidered, in which the cost function cNeperD of the generator vector GT of the Laguerre
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tessellation T , given the input dataset D, is defined by

cNeperD (GT ) =
1

2Nr̄′

√∑
i∈I

(
‖si − ŝi‖2 + (r′i − r̂′i)2

)
+ pNe,

with the centroid si and the volume-equivalent radius r′i of the i-th input grain, the

centroid ŝi and the volume-equivalent radius r̂′i of the corresponding i-th Laguerre cell,

and the mean volume-equivalent radius r̄′ of the N = #I input grains. The term pNe

multiplies a penalization factor p ≥ 0 by the number of empty cells Ne, thus punishing

empty cells. Furthermore, instead of applying a global Monte Carlo approach, in Quey

and Renversade (2018) a local optimization procedure is suggested with a sophisticated

method for propagating changes in the tessellation, thereby allowing for efficient recal-

culation of the cost function. However, this comes at the cost of a higher susceptibility

to local minima. An implementation of their procedure is available in the open-source

software “Neper.” In Figure 11 box plots of the errors of the reconstructed Laguerre tes-

sellations for the NiTi dataset from Neper and the CE method proposed in the present

paper are shown. The relative errors of the volumes are smaller for the CE method,

but Neper does a better job at fitting the centers of mass. One reason for this is that

the corresponding cost functions weight the two types of errors differently. Note that

we constrained the reconstruction procedures such that the runtime does not exceed the

cluster’s time limit of six days. We thus stopped Neper after this time and reduced the

sample size for the CE method from 2000 to 1500, which led to a runtime of about five

days. Under these circumstances both programs produce reasonable reconstructions.

Given more CPU time both probably would have returned a more accurate fit. How-

ever, one advantage of the CE method is that it scales very well with the number of

CPU cores. This means that if more CPUs are available the real runtime can be cut

down significantly. This becomes especially important when dealing with huge datasets

(> 10 000 grains). The same order of parallelization is not possible with the sequential
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updates that Neper uses.

4.3 Possible Extensions

Since our method relies only on centroids and volumes of tessellation cells, it is easy to

adapt the procedure to more flexible tessellation models (see e.g. Šedivý et al., 2018),

which may be better suited to the microstructure of a given experimental dataset. For

example, if a material is known to have curved grain boundaries, one might choose

spherical growth tessellation models (Teferra and Graham-Brady, 2015) instead of the

flat-faced Laguerre tessellations to achieve a more accurate fit. The only requirement

imposed by the proposed CE method on the tessellation models is that for each generator

the volume and centroid of the corresponding cell can be computed, but even if no

closed formulas for the volumes and centroids are available, a discretized approximation

of the tessellation may be used to compute the cost function. The resulting increase in

computational complexity can be handled only by highly parallel algorithms, such as

the cross-entropy method, since other approaches—like the one proposed in Quey and

Renversade (2018)—would lead to impractically long runtimes. In a future paper we will

extend the CE approach to other tessellation models and study the results for datasets

having curved grain boundaries.

Furthermore, the weights in the cost function can be changed to return a better fit,

e.g., with respect to the volumes of the grains. Going even further, the cost function

could be tailored to incorporate additional information, should additional characteristics

describing the grain boundaries be part of the measurement.

5 Conclusion

In this work we presented a method for finding the generators of a Laguerre tessellation

for a given set of cell volumes and centroids. This is of interest when reconstructing grain
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boundaries from far-field 3DXRD measurements yielding only the volumes and centers

of mass for a large number of grains, but not their shapes and positions. The resulting

Laguerre tessellation can then be used for a finite element analysis of the mechanical

behavior of the specimen. It was shown that the reconstructed Laguerre tessellations fit

the actual grain morphologies well. Furthermore, by employing the highly parallel cross-

entropy optimization, our approach can utilize a large number of CPU cores, making it a

good solution for big datasets. In a future paper we will extend the proposed method to

more general tessellation models that potentially allow for more accurate fits of complex

grain microstructures.
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Mościński, J., Bargie l, M., Rycerz, Z. A., and Jacobs, P. W. M. (1989). The force-biased

algorithm for the irregular close packing of equal hard spheres. Molecular Simulation,

3(4):201–212.

Poulsen, H. F. (2004). Three-Dimensional X-Ray Diffraction Microscopy. Springer,

Berlin, Heidelberg.

Quey, R. and Renversade, L. (2018). Optimal polyhedral description of 3D polycrys-

tals: Method and application to statistical and synchrotron X-ray diffraction data.

Computer Methods in Applied Mechanics and Engineering, 330:308–333.

Rubinstein, R. Y. and Kroese, D. P. (2004). The Cross-Entropy Method. Springer, New

York.

32



Schmidt, S. (2014). GrainSpotter: a fast and robust polycrystalline indexing algorithm.

Journal of Applied Crystallography, 47(1):276–284.

Schmidt, S., Olsen, U. L., Poulsen, H. F., Sørensen, H. O., Lauridsen, E. M., Margulies,

L., Maurice, C., and Jensen, D. J. (2008). Direct observation of 3-D grain growth in

Al-0.1% Mn. Scripta Materialia, 59(5):491–494.
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Šittner, P. (2016). Grain-resolved analysis of localized deformation in nickel-titanium

wire under tensile load. Science, 353(6299):559–562.

Spettl, A., Brereton, T., Duan, Q., Werz, T., Krill III, C. E., Kroese, D. P., and Schmidt,

V. (2016). Fitting Laguerre tessellation approximations to tomographic image data.

Philosophical Magazine, 96(2):166–189.

Teferra, K. and Graham-Brady, L. (2015). Tessellation growth models for polycrystalline

microstructures. Computational Materials Science, 102:57–67.

33


	Introduction
	Models and Methods
	Laguerre Tessellations
	Two-Step Reconstruction Method
	Reconstruction Based on the Cross-Entropy Method
	Cost Function
	Variance Injection and Stopping Conditions
	Initial Configuration and Choice of Control Parameters


	Results
	Application to Laguerre Tessellations
	Application to 3DXRD Image Data with Knowledge of Grain Boundaries
	Application to 3DXRD Image Data without Knowledge of Grain Boundaries

	Discussion
	Analysis of Goodness-of-Fit and Stability
	Comparison to Other Approaches from Literature
	Possible Extensions

	Conclusion

