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Abstract

Distributional properties and a simulation algorithm for the Palm version of station-
ary iterated tessellations are considered. In particular we study the limit behavior
of functionals related to Cox-Voronoi cells (such as typical shortest path lengths) if
either the intensity γ0 of the initial tessellation or the intensity γ1 of the component
tessellation converges to 0. We develop an explicit description of the Palm version
of Poisson-Delaunay tessellations (PDT) which provides a new direct simulation al-
gorithm for the typical Cox-Voronoi cell based on PDT. It allows us to simulate the
Palm version of stationary iterated tessellations where either the initial or component
tessellation is a PDT and can furthermore be used in order to show numerically that
the qualitative and quantitative behavior of certain functionals related to Cox-Voronoi
cells strongly depends on the type of the underlying iterated tessellation.
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1 Introduction

In [6] it is shown that iterated tessellations arouse much better fits considering
the underlying infrastructure and road system in telecommunication networks
than simple (non-iterated) tessellations of Poisson type do. Consequently, we
can also expect even better results for modeling access networks than those ob-
tained in [7]. This paper consistently extends results on shortest-path lengths in
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typical serving zones based on iterated random tessellations which have recently
been derived in [17] (see also [5, 4, 12] for further results on this type of network
characteristics). In particular, we investigate stochastic models for a hierar-
chical two-level network, i.e. path connections between two different kinds of
network nodes, say high-level components (HLC) representing antennas, nodes
of higher order, etc. and low-level components (LLC) such as nodes of lower
order or subscribers. For modeling the locations of these nodes, we place Pois-
son points along the edge set of a planar iterated tessellation T representing the
road system. In order to describe the connection rules between nodes within
our telecommunication network model, we say that each LLC is linked to its
closest HLC with respect to the Euclidean distance.
In other words, we construct the Voronoi tessellation {ΞH,i}i≥1 with respect to
the locations of the HLC {XH,i}i≥1 and associate each LLC located within the
cell ΞH,i with the corresponding nucleus and HLC XH,i. The cell ΞH,i is called
serving zone of XH,i. In this paper, we show the intuitive limit result that fix-
ing the intensity γ0 of the initial tessellation and letting the intensity γ1 of the
component tessellation converge to 0 should lead to the same distribution for
functionals related with the Cox-Voronoi cells ΞH,i (such as the typical shortest
path length C∗) as if one replaces the underlying iterated tessellation by its
initial tessellation (analogously for fixing γ1, letting γ0 → 0 and considering
the component tessellation). However, it is not clear how to obtain analytical
results for such functionals when neither γ0 nor γ1 are close to 0. Therefore
we develop a simulation algorithm for the Palm version T ∗ of an iterated tes-
sellation T , provided that we can simulate the Palm versions of the initial and
the component tessellation, in order to study the behavior of these functionals
numerically. Especially a direct simulation algorithm for the Palm version of a
Poisson-Delaunay tessellation is given in this context.
The paper is organized as follows. In Section 2 we briefly describe the Stochastic
Subscriber Line Model and tools of stochastic geometry, especially some essential
results of Palm calculus which are required for the network model investigated
in the present paper. Section 3 deals with limit ratios of the intensities γ0 and
γ1 of the initial and component tessellations. A simulation algorithm for the
Palm version T ∗ of an iterated tessellation T is given in Section 4 in order to
simulate the typical Cox-Voronoi cell based on T ∗. Special emphasis is put on
the explicit form of the Palm measure of a Poisson-Delaunay tessellation (PDT)
which provides us with a new direct simulation algorithm for T ∗ when a PDT
is involved. Then, in Section 5, we derive analytical functions approximating
the densities of the typical shortest path length C∗ and give some numerical
results. Finally, Section 6 concludes the paper and gives an outlook to possible
future research.
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2 Mathematical preliminaries

2.1 The Stochastic Subscriber Line Model

In order to model huge and complex wired telecommunication networks such as
the network of Paris, Orange Labs uses the Stochastic Subscriber Line Model
(SSLM) which has been developed in the last years and is still extended. The
SSLM consists of three parts which can all be modeled by means of stochastic
geometry and are described in the following. Tessellations as representation for
the infrastructure, point processes which model locations of subscribers as well
as some basic notions and results of Palm calculus are described within this
section.

2.1.1 Geometry Model - Nested iterated tessellations

The first component of the SSLM is the geometry model where the infrastructure
system, i.e. the roads of a city or a town (note that the cable system is installed
along the roads in order to reach each customer) are represented by random
tessellations. We call a subdivision of the Euclidean space R2 into a sequence
Ξ1,Ξ2, . . . of random convex and compact polygons fulfilling

(i) int Ξi ∩ int Ξj = ∅ for i 6= j,

(ii)
⋃∞
i=1 Ξi = R2,

(iii) #{i : Ξi ∩B 6= ∅} <∞ for each bounded B ⊂ R2,

a (planar) random tessellation T where T (1) =
⋃∞
n=1 ∂Ξn denotes the union of

the cell boundaries ∂Ξn of T . For further details on random tessellations and
random closed sets the reader can consult [10, 13, 14].
In this paper the focus is put on iterated tessellations (see Figure 1). For
some initial tessellation T0 = {Ξ0n} and a sequence T1, T2, . . . of indepen-
dent and identically distributed component tessellations which are also inde-
pendent of T0, the iterated tessellation T = τ(T0 | T1, T2, . . .) is defined as
follows: For all n ≥ 1, the cell Ξ0n of T0 is subdivided with component tes-
sellation Tn, i.e. the edge set T (1) of the iterated tessellation T is given by

T (1) =
⋃∞
n=1 ∂Ξ0n ∪ (Ξ0n ∩ T (1)

n ) where the edge set T
(1)
0 can be interpreted as

main streets, and Ξ0n ∩ T (1)
n for n ≥ 1 as side streets. In particular, the cell

of T0 which contains the origin is called zero-cell of T0 and is denoted by Ξ01.
We assume that T0 and T1, T2, . . . are stationary. Then T = τ(T0 | T1, T2, . . .)
is also stationary and the intensity γ = Eν1(T (1) ∩ [0, 1]2) of T is given by

γ = γ0 + γ1 where γ0 = Eν1(T
(1)
0 ∩ [0, 1]2) and γ1 = Eν1(T

(1)
1 ∩ [0, 1]2) denote

the intensities of T0 and T1, respectively, and ν1 is the 1-dimensional Hausdorff
measure in R2. Well-known examples of random tessellations which are used
in this paper for iteration are Poisson-line tessellations (PLT), Poisson-Voronoi
tessellations (PVT) and Poisson-Delaunay tessellations (PDT) (see [1]). We say
that an iterated tessellation is of type A/B if the initial tessellation is of type
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Fig. 1: Realisations of iterated tessellations: PVT/PDT (left) and PLT/PVT
(right)

A and the component tessellation is of type B, e.g. PVT/PDT. Note that for
simplicity, we assume in this paper that all component tessellations are of the
same type which is, of course, no necessary restriction for iterated tessellations.
For instance, it is possible to iterate only some cells of T0 with a certain type of
component tessellation whereas others remain empty (Bernoulli-nesting) or are
filled with another type of tessellation (multi-type-nesting).
Furthermore, we define T ′0 = γ0T0 and T ′n = γ1Tn for each n ≥ 1, where

Eν1(T
′(1)
0 ∩ [0, 1]2) = Eν1(T

′(1)
n ∩ [0, 1]2) = 1. Note that the standardized tes-

sellations T ′0 and T ′n can be used to construct two families (T0(γ0))γ0>0 and
(Tn(γ1))γ1>0 of intial and component tessellations T0 and Tn by scaling, i.e.,
(T0(γ0))γ0>0 = (T ′0/γ0)γ0>0 as well as (Tn(γ1))γ1>0 = (T ′n/γ1)γ1>0, where the
length intensities of T0(γ0) and Tn(γ1) are given by γ0 and γ1, respectively. In
the following we always assume that T0 and Tn are given by scaling of some
standardized tessellations, T ′0 and T ′n.

2.1.2 Network model - Cox processes representing network nodes

The placement of network nodes builds up the second part of the SSLM. For
the network model, we consider stationary Coxian point processes XH = {XH,i}
and XL = {XL,i} in order to model the locations of HLC and LLC (see Figure
2). Their random intensity measures are concentrated on the edge set T (1)

of some stationary tessellation T and are proportional to the one–dimensional
Hausdorff measure ν1 on T (1), i.e., EXH(B) = λ` Eν1(B ∩T (1)) and EXL(B) =
λ′` Eν1(B ∩ T (1)) for each Borel set B ⊂ R2 and for some (linear) intensities
λ`, λ

′
` > 0. Note that the planar intensities of XH and XL are given by λ = λ`γ

and λ′ = λ′`γ. For more details on (marked) Coxian point processes see e.g.
[3, 14, 8].
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Fig. 2: Cox-Voronoi cell ΞH,i (dashed) based on PVT/PDT (gray)

2.1.3 Topology Model - Cox-Voronoi cells as serving zones

The third component of the SSLM is the topology model where the serving zones
of HLC are added to the telecommunication network model. In particular, we
consider the Cox-Voronoi tessellation TH = {ΞH,i} induced by the points XH,i

of the Cox process XH = {XH,i} on the edge set of T = τ(T0 | T1, T2, . . .), i.e.

ΞH,i = {x ∈ R2 : |x−XH,i| ≤ |x−XH,j | for all j 6= i} ,

where | · | denotes the Euclidean norm. In this way, every HLC whose location
is represented by a Cox point XH,i is linked with his serving zone represented
by ΞH,i. Let us furthermore denote by SH,i = T (1) ∩ ΞH,i the segment system
of the serving zone ΞH,i corresponding to XH,i. We then link each point XL,i of
XL to the point XH,j of XH if and only if XL,i ∈ ΞH,j and mark XL,i with the
shortest path length Ci from XL,i to XH,j along T (1). In this way we obtain
the stationary marked point process XL,C = {(XL,i, Ci)}.

2.2 Palm calculus and typical serving zones

For telecommunication networks, one important cost functional we are inter-
ested in is the typical shortest path length C∗ which is defined as the typical
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mark of XL,C with representation formula

Eh(C∗) =
1

λ′
E

∑
i:XL,i∈[0,1]2

h(Ci) , (1)

where h : [0,∞) → [0,∞) is an arbitrary measurable function. Although this
definition makes sense from a conceptual point of view, it is difficult to effi-
ciently compute the distribution of C∗ using (1). Therefore, in order to obtain
a representation formula which is easier to handle, we first have to have a look
on the Palm version of the stationary Cox process XH of the HLC, which is a
point process X∗H in the Euclidean plane R2 whose distribution can be given by
the representation formula

Eh(X∗H) =
1

λ
E

∑
i:XH,i∈[0,1]2

h({XH,n} −XH,i) ,

where h : N → [0,∞) is an arbitrary measurable function and N denotes the
family of all locally finite sets of R2. Note that P(o ∈ X∗H) = 1 by definition,
where the distribution of X∗H is called the Palm distribution of XH which can
be interpreted as conditional distribution of XH given that there is a point
located at the origin. In addition, the reduced Palm version X∗H \ {o} of XH

is a Cox process, too. The random intensity measure Λ∗ of X∗H \ {o} is given
by Λ∗(B) = λ` ν1(T ∗(1) ∩ B) for each Borel set B ⊂ R2 and for T ∗, the Palm
version of T , whose distribution is given by

Eh(T ∗) =
1

γ
E
∫
T (1)∩ [0,1]2

h(T − x) ν1(dx) , (2)

where h : T → [0,∞) is an arbitrary measurable function and T denotes the
family of all tessellations in R2. Note that P(o ∈ T ∗(1)) = 1 by definition, where
the distribution of T ∗ can be interpreted as conditional distribution of T given
that the origin o belongs to an edge of T . The typical Voronoi cell Ξ∗H of XH is
defined as the Voronoi cell at o with respect to X∗H . Furthermore, the typical
segment system S∗H is then defined as the typical mark of the Coxian point
process of the HLC XH,i marked with the corresponding segment systems SH,i.
This provides the following representation formula for the distribution of the
typical shortest path length C∗ which has been derived in [12]. It holds that

Eh(C∗) = λ`E
∫
S∗
H

h(c(y))ν1(dy), (3)

where h : [0,∞)→ [0,∞) is an arbitrary measurable function and c(y) denotes
the shortest path length from y ∈ S∗H to the origin o along the edges of S∗H . For
more details on typical shortest path lengths and typical segment systems, the
reader is referred to [7] and [12] again.
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3 Limit theorems

3.1 Some auxiliary results

In order to find out similarities and differences for the distributional behavior
of C∗ based on simple and iterated tessellations, respectively, we begin by con-
sidering the limit cases γ0 → 0 where γ1 is fixed and vice versa. The mindful
reader may expect that the more the intensity of either T0 or Tn is reduced,
the more the typical shortest path length based on an iterated tessellation be-
haves like the typical shortest path length based on the corresponding simple
(non-iterated) tessellation. Indeed, we show this formally in this section. In [17]
the following representation formula has been derived for T ∗. For an arbitrary
measurable function h : T 7→ [0,∞), it holds that

Eh(T ∗) =
γ0
γ

Eh(τ(T ∗0 | T1, T2, . . .)) +
γ1
γ

Eh(τ(T0 | T ∗1 , T2, T3, . . .)), (4)

where the component tessellations T1 and T ∗1 subdivide the zero-cell of T ∗0 and
T0, respectively. Let XI

H and XC
H denote Cox processes whose random in-

tensity measures are given by λ`ν1(· ∩ τ(T ∗0 | T1, T2, . . .)) and λ`ν1(· ∩ τ(T0 |
T ∗1 , T2, T3, . . .)) respectively. In addition, we write XI

H,o and XC
H,o for the clos-

est point to the origin (in the Euclidean sense) of XI
H and XC

H , respectively.
Considering the typical shortest-path length C∗, we can use (4) to obtain the
following result.

Lemma 3.1. Let h : [0,∞)→ [0,∞) be a measurable function. Then

Eh(C∗) =
γ0
γ
Eh(C∗0 ) +

γ1
γ
Eh(C∗1 ),

where C∗0 = c(XI
H,o) and C∗1 = c(XC

H,o) denotes the shortest path length from

XI
H,o and XC

H,o to the origin along the edges of τ(T ∗0 | T1, T2, . . .) and τ(T0 |
T ∗1 , T2, T3, . . .), respectively.

Proof. For a deterministic tessellation t such that o ∈ t(1) we define f(t) =
E
(
h
(
c(Xt

H,o)
))

, where Xt
H,o denotes the closest point to the origin of some

Poisson process Xt
H on t(1). Then we compute

Eh(C∗) = E (E (h(C∗) | T ∗)) = Ef(T ∗)

=
γ0
γ

Ef(τ(T ∗0 | T1, T2, . . .)) +
γ1
γ

Ef(τ(T0 | T ∗1 , T2, T3, . . .))

=
γ0
γ
E(E(h(C∗0 ) | τ(T ∗0 | T1, T2, . . .))) +

γ1
γ
E(E(h(C∗1 ) | τ(T0 | T ∗1 , T2, T3, . . .)))

=
γ0
γ
Eh(C∗0 ) +

γ1
γ
Eh(C∗1 ),

where we used (4) in the third equality.
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Lemma 3.2. Let T ⊂ R2 be a stationary random tessellation with intensity γ.
Denote by X a Cox process on T ∗(1) with linear intensity λ`. Denote by Xo ∈ X
the closest point of X to the origin o. For n ≥ 1 denote by A

(1)
n the event that

c(Xo) < n. Then P(A
(1)
n )→ 1 as n→∞.

Proof. The claim immediately follows from the fact that limn→∞ P(A
(1)
n ) =

P(c(Xo) <∞) = 1.

3.2 The case γ0 → 0

We begin by considering the case γ0 → 0 where γ1 is fixed. A realisation of
T = τ(T0 | T1, T2, . . .) where T0 is a PVT and T1 is a PLT such that γ0 is close
to zero (but γ1 not) is shown in Figure 3.

Fig. 3: PVT/PLT where γ0 → 0

Lemma 3.3. Let γ0 > 0 and n ≥ 1. Furthermore, write A
(2)
n,γ0 for the event that

the zero-cell of the tessellation T0 = T0(γ0) contains the ball Bn(o) centered at

the origin o ∈ R2 with radius n. Then, for each n ≥ 1 it holds that P(A
(2)
n,γ0)→ 1

as γ0 → 0.

Proof. Denote by Ξ′01 the zero-cell of the standardized tessellation T ′0 and by
Ξ01 = Ξ′01/γ0 the zero-cell of the tessellation T0 = T0(γ0). The claim now
follows immediately from the fact that P(o ∈ int Ξ′01) = 1 and, therefore,⋃
γ0>0 Ξ′01/γ0 = R2 a.s.

Observe that each pair of Cox processes with the same (linear) intensity λ` whose

random intensity measures are concentrated on T
∗(1)
1 and τ(T0 | T ∗1 , T2, T3, . . .)(1),

respectively, can be coupled so that they coincide in the interior of the zero-cell

of the initial tessellation T0. Denote by A
(3)
γ0 the event that in this coupling the



3 Limit theorems 9

shortest paths to the closest point to the origin of the Cox processes on T
∗(1)
1

and τ(T0 | T ∗1 , T2, T3, . . .)(1) coincide.

Lemma 3.4. It holds that P(A
(3)
γ0 )→ 1 as γ0 → 0.

Proof. The assertion immediately follows from Lemmas 3.2 and 3.3.

Proposition 3.5. Let h : [0,∞) → [0,∞) be a bounded measurable function
and fix γ1 > 0. Then Eh(C∗)→ Eh(C∗comp) as γ0 → 0 where C∗comp denotes the
typical shortest path length based on the (non-iterated) component tessellation
T1. In particular, C∗ converges in distribution to C∗comp as γ0 → 0.

Proof. By Lemma 3.1 it suffices to prove that Eh(C∗1 )→ Eh(C∗comp) as γ0 → 0.
Observe that

Eh(C∗1 ) = E(h(C∗1 )1
A

(3)
γ0

) + E(h(C∗1 )(1− 1
A

(3)
γ0

))

= E(h(C∗comp)1A(3)
γ0

) + E(h(C∗1 )(1− 1
A

(3)
γ0

))

= Eh(C∗comp) + E(h(C∗1 )(1− 1
A

(3)
γ0

)) + E(h(C∗comp)(1A(3)
γ0

− 1)),

where 1
A

(3)
γ0

denotes the indicator of A
(3)
γ0 . Taking into account that the function

h : [0,∞)→ [0,∞) is bounded, Lemma 3.4 implies that the last two summands
of this expression tend to zero as γ0 → 0. This proves the result.

Remark 1. Let T be a stationary tessellation of intensity γ and for γ > 0
denote by C∗(γ) the typical shortest path length for the tessellation T/γ. Observe

that the distribution of C∗(γ) satisfies the scaling relation C∗(1)
d
= γ C∗(γ). In

particular, by Slutsky’s lemma, Proposition 3.5 remains true if we relax the
assumption that γ1 is constant (say γ1 = c) and γ0 → 0 by γ1 = c − γ0 and
γ0 → 0.

3.3 The case γ1 → 0

Now let us deal with the limiting case where γ0 is fixed and γ1 → 0. A realisation
of T = τ(T0 | T1, T2, . . .) where T0 is a PVT and T1 is a PLT such that γ1 is
close to zero (but γ0 is not) is shown in Figure 4.
The arguments given below are similar to those of the case γ0 → 0 considered
in Section 3.2 but we present the details for the convenience of the reader. By
Lemma 3.1 it suffices to prove that Eh(C∗0 ) → Eh(C∗init) where C∗init denotes
the typical shortest path length based on the (non-iterated) initial tessellation
T0.

Lemma 3.6. Let γ1 > 0 and n ≥ 1. Let furthermore A
(4)
n,γ1 denote the event

that (τ(T ∗0 | T1, T2, . . .))
(1) ∩ Bn(o) = T

∗(1)
0 ∩ Bn(o). Then, for each n ≥ 1, it

holds that limγ1→0 P(A
(4)
γ1,n) = 1.
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Fig. 4: PVT/PLT where γ1 → 0

Proof. Denote by Ξ0,m1
, . . . ,Ξ0,mk the cells of T ∗0 that intersect Bn(o). Further-

more, given T ∗0 , denote by Ξ′mj ,1 the zero-cell of the mj-th standardized com-
ponent tessellation T ′mj . Then, for each 1 ≤ j ≤ k we have P(o ∈ int Ξ′mj ,1) = 1
and therefore ⋃

γ1>0

k⋂
j=1

Ξ′mj ,1/γ1 = R2 a.s.

which proves the lemma.

Observe that similar to Section 3.2, each pair of Cox processes with the same

(linear) intensity λ` whose random intensity measures are concentrated on T
∗(1)
0

and τ(T ∗0 | T1, T2, . . .)(1), respectively, can be coupled so that they coincide

on T
∗(1)
0 . Denote by A

(5)
γ1 the event that in this coupling the shortest paths

to the closest point to the origin of the Cox processes on T
∗(1)
0 and τ(T ∗0 |

T1, T2, T3, . . .)
(1) coincide.

Lemma 3.7. It holds that P(A
(5)
γ1 )→ 1 as γ1 → 0.

Proof. The assertion immediately follows from Lemmas 3.2 and 3.6.

Proposition 3.8. Let h : [0,∞)→ [0,∞) be a bounded measurable function and
fix γ0 > 0. Then limγ1→0 Eh(C∗) = Eh(C∗init) as γ1 → 0 where C∗init denotes
the typical shortest-path length based on the (non-iterated) initial tessellation
T0.

Proof. By Lemma 3.1 it suffices to prove that Eh(C∗0 ) → Eh(C∗init). Similarly
to the proof of Proposition 3.5 we get that

Eh(C∗0 ) = Eh(C∗init) + E(h(C∗0 )(1− 1
A

(5)
γ1

)) + E(h(C∗init)(1A(5)
γ1

− 1)).
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Thus, taking into account that h is bounded, Lemma 3.7 proves the result.

Remark 2. Again, the scaling relation C∗(1)
d
= γ C∗(γ) and Slutsky’s lemma

imply that Proposition 3.8 remains true if we relax the assumption that γ0 is
constant (say γ0 = c) and γ1 → 0 by γ0 = c− γ1 and γ1 → 0.

4 Simulation algorithms

In Section 3 we studied the limit behavior of C∗ for iterated tessellations where
γi → 0 for i ∈ {0, 1} and γj was fixed for j ∈ {0, 1}, j 6= i. We now want
to investigate what happens if neither γ0 nor γ1 are close to 0. Since it is
unclear – like in the non-iterated case – how to compute the distribution of
C∗ analytically, we derive an algorithm which allows us to simulate the Palm
version of stationary iterated tessellations. Using this simulation algorithm, we
can compute the distribution of C∗ at least numerically and proceed to study
its behavior for arbitrary values of γ0 and γ1. In [17] a simulation algorithm
has been derived for the Palm version T ∗ of iterated tessellations T provided
that the Palm versions T ∗0 and T ∗1 of the initial tessellation T0 and component
tessellation T1 can be simulated. For the convenience of the reader, we just
summarize the main steps of this algorithm.

1) Simulate Z ∼ U [0, 1]. If Z < γ0/γ, go to step 2a, else go to step 2b.

2a) Simulate the Palm version T ∗0 of the initial tessellation T0 and subdivide
its cells Ξ∗01,Ξ

∗
02, . . . by T1, T2, . . ., respectively, which yields T ∗.

2b) Simulate T0, subdivide the zero cell Ξ01 of T0 by T ∗1 and subdivide the
cells Ξ02,Ξ03, . . . of T0 by T2, T3, . . ., which yields T ∗.

Note that this algorithm is based on the fact that the origin belongs to the edge

system of T ∗, where either o ∈ T ∗(1)0 with probability γ0/γ or o ∈ T ∗(1)1 with
probability γ1/γ. In [4] and [5], direct simulation algorithms for the Palm version
of PVT and PLT have been derived, which can be used within our context. The
algorithm for PVT is based on an explicit description of the Palm version of
PVT which was obtained in [2], whereas the algorithm for PLT is an immediate
application of Slivnyak’s theorem. For the Palm version of PDT so far, only an
indirect simulation algorithm is known (see [15]) which works for non-iterated
PDT, but as soon as PDT is involved in an iterated tessellation, this indirect
algorithm unfortunately becomes useless. Applying similar techniques as in [2],
we therefore derive a new direct simulation algorithm of the typical Cox-Voronoi
cell with underlying PDT which is based on the following explicit description of
the Palm version of PDT.

4.1 Explicit description of the Palm version of PDT

For ϕ ⊂ R2 locally finite we denote by Del(ϕ) the Delaunay graph on ϕ, i.e.,
the geometric graph with vertex set ϕ where x, y ∈ ϕ are connected by an
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edge if and only if there exists a closed disk B ⊂ R2 with ϕ ∩ B = {x, y}.
For ρ ∈ [−π/2, π/2] write gρ : R2 → R2 for the rotation of R2 by angle ρ.
Furthermore, for u, v ∈ R2 with u 6= v, write

L+(u, v) = {x ∈ R2 : 〈x− u, gπ/2(v − u)〉 > 0}

for the positive half-space whose boundary is determined by the ray with starting
point u and direction v−u. For a locally finite set ϕ ⊂ R2 define x1(ϕ), x2(ϕ) ∈
ϕ to be the points such that [x1(ϕ), x2(ϕ)] is an edge of the Delaunay tri-
angulation Del(ϕ) on ϕ containing o and such that the first coordinate of
x1(ϕ) is negative (provided that such points exist). Furthermore if such points
exist choose x3(ϕ) ∈ ϕ such that the disc B(x1(ϕ), x2(ϕ), x3(ϕ)) containing
x1(ϕ), x2(ϕ), x3(ϕ) on its boundary does not contain any further points of ϕ
and such that x3(ϕ) ∈ L+(x1(ϕ), x2(ϕ)). In particular, then x1(ϕ), x2(ϕ) and
x3(ϕ) form a triangle in Del(ϕ) and o ∈ [x1(ϕ), x2(ϕ)] (see Figure 5). If such
points do not exist, then we put x1(ϕ) = x2(ϕ) = x3(ϕ) = o. Furthermore
define s(ϕ) = |x1(ϕ)− x2(ϕ)| to be the length of the edge in Del(ϕ) which con-
tains the origin o ∈ R2. We also put e1(ϕ) = (x2(ϕ)− x1(ϕ))/ |x2(ϕ)− x1(ϕ)|,
e2(ϕ) = gπ/2(e1(ϕ)) and consider these vectors to be a basis of R2 which is
adapted to the direction of the Delaunay edge [x1(ϕ), x2(ϕ)]. Furthermore we
denote by u1(ϕ), u2(ϕ) the coordinates of x3(ϕ) in this basis, i.e., x3(ϕ) =
u1(ϕ)e1(ϕ) + u2(ϕ)e2(ϕ).

Fig. 5: Delaunay triangle through x1(ϕ), x2(ϕ) and x3(ϕ) containing the origin

Let furthermore T ∗ be the Palm version of the Poisson-Delaunay triangulation
T and let us write T ∗(0) for the vertex set of T ∗.

Theorem 4.1. Let λ > 0 and let X ⊂ R2 be a homogeneous Poisson process
with intensity λ. Let (L,U1, U2) be the random vector defined by (L,U1, U2) =
(s(T ∗(0)), u1(T ∗(0)), u2(T ∗(0))). Then, the following is true.
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1. The joint distribution function of (L,U1, U2) is given by

P (L ≤ δ, U1 ≤ a, U2 ≤ b) =

=
3π2λ5/2

32

∫ δ

0

∫ a

−∞

∫ b

0

s2exp (−λν2 (Bu1,u2
s )) du2 du1 ds,

for any δ > 0, a ∈ R and b > 0, where Bu1,u2
s = B

(
− s2e1,

s
2e1, (u1, u2)>

)
denotes the disc containing − s2e1,

s
2e1 and (u1, u2)> on its boundary.

2. Let ξ be a random angle chosen uniformly from [−π/2, π/2]. Assume
that ξ and L are independent and let W1 = (W1,x, 0)> be a random point
which is conditionally uniformly distributed in [−L/2, L/2] given L. Write
X ′1 = (−L/2, 0)>, X ′2 = (L/2, 0)>, X ′3 = (U1, U2)> and for all i ∈ {1, 2, 3}
define Xi = gξ(X

′
i−W1) (the points X1, X2, X3 will determine a Delaunay

triangle in Del(T ∗) such that o ∈ [X1, X2]). Furthermore let X ′ denote
the restriction of a homogeneous Poisson point process of intensity λ to
R2 \ B(X1, X2, X3), which is conditionally independent of (X1, X2, X3).

Then, T ∗(0)
d
= {X1, X2, X3} ∪X ′.

Proof. We prove parts (1) and (2) simultaneously. Let us write γ = 32
3π

√
λ for

the length intensity of Del(X). Let f : N → [0,∞) be a measurable function.
For x1, x2 ∈ R2 we write x1 ≤ x2 if the first coordinate of x1 is less or equal
the first coordinate of x2. Using the Slivnyak-Mecke formula (see [13]) we then
compute

E(f(T ∗(0))) =
1

γ
E
∫
T∩[0,1]2

f(X − x)dx

=
1

γ
E

∑
X1,X2,X3∈X
pw. distinct

∫ X2

X1

1[0,1]2(x)1X(B(X1,X2,X3))=0, X1≤X2, X3∈L+(X1,X2)f(X − x)dx

=
λ3

γ

∫
R2

∫
R2

∫
R2

∫ x2

x1

1x∈[0,1]21x1≤x2
1x3∈L+(x1,x2)

× E1X(B(x1,x2,x3))=0f({x1 − x, x2 − x, x3 − x} ∪ (X − x))dxdx1dx2dx3.

This gives that

E(f(T ∗(0))) =
λ3

γ

∫
R2

∫
R2

∫
R2

∫ x2−x1

o

1y+x1∈[0,1]21x1≤x21x3∈L+(x1,x2)

× E1(X−(x1+y))(B(−y,x2−x1−y,x3−x1−y))=0

× f({−y, (x2 − x1)− y, (x3 − x1)− y} ∪ (X − (x1 + y)))dydx1dx2dx3

=
λ3

γ

∫
R2

∫
R2

∫
R2

∫ y2

0

1y+x1∈[0,1]210≤y21y3∈L+(0,y2)

× E1X(B(−y,y2−y,y3−y))=0f({−y, y2 − y, y3 − y} ∪X)dydx1dy2dy3,

where we first reparametrized the integral
∫ x2

x1
· · · dx using the substitution y =

x−x1, then consider the further substitutions y2 = x2−x1 and y3 = x3−x1 and
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finally recalled that X is stationary. Thus an application of Fubini’s theorem
yields

E(f(T ∗(0))) =
λ3

γ

∫
R2

∫
R2

∫ y2

0

10≤y21y3∈L+(o,y2)E1X(B(−y,y2−y,y3−y))=0

× f({−y, y2 − y, y3 − y} ∪X)dydy2dy3.

Next we use the substitutions y2 = sgρ(e1), w = y − y2/2 and z4 = w + y3 − y
to obtain

E(f(T ∗(0))) =
λ3π

γ

∫ ∞
0

∫
R2

∫ s
2 gρ(e1)

− s2 gρ(e1)

1

π

∫ π/2

−π/2
s1z4∈L+(o,gρ(e1))

× E1X(B(− s2 gρ(e1)−w,
s
2 gρ(e1)−w,z4−w))=0

× f({−s
2
gρ(e1)− w, s

2
gρ(e1)− w, z4 − w} ∪X)dρdwdz4ds.

These integrals can be made more explicit by using the substitutions w1 =
g−ρ(w) and (u1, u2) = g−ρ(z4).

E(f(T ∗(0))) =
λ3π

γ

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

1

s

∫ (s/2,0)

(−s/2,0)

1

π

×
∫ π/2

−π/2
s2E1X(gρ(B((−s/2,0)−w1,(s/2,0)−w1,(u1,u2)−w1)))=0

× f(gρ({(−s/2, 0)− w1, (s/2, 0)− w1, (u1, u2)− w1}) ∪X)dρdw1du2du1ds

Finally using the formula for the void probabilities of a homogeneous Poisson
point process X ⊂ R2 with intensity λ > 0, we compute

E(f(T ∗(0))) =
λ3π

γ

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

1

s

∫ (s/2,0)

(−s/2,0)

1

π

∫ π/2

−π/2
s2

× exp(−λν2(B((−s/2, 0)− w1, (s/2, 0)− w1, (u1, u2)− w1)))

E
(
f(gρ({(−s/2, 0)− w1, (s/2, 0)− w1, (u1, u2)− w1}) ∪ X̃)

| X̃(gρ(B((−s/2, 0)− w1, (s/2, 0)− w1, (u1, u2)− w1))) = 0
)
dρdw1du2du1ds,

where X̃ ⊂ R2 is a homogeneous Poisson point process with intensity λ >
0. Observe that the distribution of X ′ is the same as the distribution of a
homogeneous Poisson point process X̃ of intensity λ conditioned on the event
X̃(B(X1, X2, X3)) = 0. As this computation is valid for all measurable functions
f : N→ [0,∞) this proves the claim.

4.2 Acceptance-rejection scheme

As explained in [4], the explicit description of the Palm version of PVT can be
easily transferred into a direct simulation algorithm. Unfortunately it is not
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clear how to directly draw random vectors (L,U1, U2) with the (joint) density

f(s, u1, u2) = πλ3

γ s2exp (−λν2 (Bu1,u2
s )) which has been derived in Theorem 4.1.

Nevertheless, this goal can be achieved by a simple acceptance-rejection scheme
(see e.g. [9] for a detailed introduction to this sampling-method). To be more
precise we consider a constant c > 0 and a probability density g(s, u1, u2) with
f(s, u1, u2) ≤ c ·g(s, u1, u2) for any (s, u1, u2) ∈ [0,∞)×R× [0,∞) and with the
property that a sampling scheme for a random vector with density g is known.
By geometric arguments it follows that

ν2(Bu1,u2
s ) ≥ max{π(s/2)2, su2/2, s |u1|}

and thus we obtain

s2exp (−λν2 (Bu1,u2
s ))

≤ exp
(
−πλ/3(s/2)2

)
· s · exp(−λ(su2/6)) · s · exp(−λ(s |u1| /3))). (5)

This means a dominating density function g(s, u1, u2) can be constructed by
first drawing s as the absolute value of a normally distributed random variable
S and conditional on the value of S = s drawing |u1| and u2 as realisations
of certain exponentially distributed random variables V1 and V2. Considering
the arguments of each of the three exponential functions on the right hand side
of (5), we get µ = 0 and σ2 = 6

πλ as parameters for the N(µ, σ2)-distributed

random variable S and η = λs
3 and θ = λs

6 for the exponentially distributed
random variables V1 and V2 with parameters η and θ, respectively. We now
have to find c > 0 such that

f(s, u1, u2) =
πλ3

γ
s2exp (−λν2 (Bu1,u2

s ))

≤ c · α1exp(−λπ
12
s2) · α2s exp(−λsu2

6
) · α3s exp(−λs|u1|

3
)

= c · g(s, u1, u2)

and therefore it suffices to find c > 0 such that πλ3

γ ≤ c ·α1α2α3. Reconsidering

the parameters for the three distributions, we obtain α1 =
√

λ
3 ,α2 = λ

6 and

α3 = λ
3 so that we finally get c ≥ 18π

√
3λ

γ .
Summarizing the results derived in this section, we get the following simulation
algorithm for the Palm version T ∗ of a PDT T where T ∗(1) contains the origin
o:

1. Set i = 1

2. Simulate the random vector (S, V1, V2)i where

(i) S ∼ N(0, 6
πλ )

(ii) V1 ∼ Exp(λs3 )
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(iii) V2 ∼ Exp(λs6 )

3. Simulate Zi ∼ U(0, 1] and for h(x, y, z) = f(x,y,z)
g(x,y,z) , calculate h((S,V1,V2)i)

c =

exp
(
πλ
12 s

2 + λsu2

6 + λs|u1|
3 − λν2 (Bu1,u2

s )
)

4. If Zi ≥ h((S,V1,V2)i)
c , set i = i+ 1 and go to step 2;

else put I = i, i.e. I = min {i ≥ 1 : Zi <
h((S,V1,V2)i)

c } and determine
Y = (S, V1, V2)I ∼ F where F is the corresponding distribution function
of f(s, u1, u2) from which we want to draw random vectors

5. Put x′1 = (− s2 , 0)>, x′2 = ( s2 , 0)> and x′3 = (u1, u2)> which form the first
Delaunay triangle (see Figure 6)

Fig. 6: Starting Delaunay triangle containing the origin

6. Rotate the Delaunay triangle with a U [−π/2, π/2]-distributed random an-
gle ρ, simulate R ∼ U [−1, 1] and add R · x′1 to x′1,x′2 and x′3 respectively
in order to place the origin uniformly distributed on the segment between
x′1 and x′2. This transforms our original triangle ∆(x′1, x

′
2, x
′
3) to the new

triangle ∆(x1, x2, x3) (see Figure 7)

7. Simulate (radially around the origin) a Poisson point process outside the
circumcirle through the new points x1,x2 and x3 (see Figure 8)

8. Create further Delaunay triangles based on this Poisson process to com-
plete the tessellation (see Figure 9)
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Fig. 7: Rotated and shifted triangle ∆(x1, x2, x3)

Fig. 8: Add further points

Fig. 9: Further triangles of the PDT

5 Numerical results

5.1 Comparisons of empirical densities of C∗

As already mentioned in the introduction, iterated tessellations representing
the underlying infrastructure provide us, compared with simple (non-iterated)
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tessellations, with much better results for potential use in models for telecom-
munication networks. Especially six of nine iterated tessellation types find their
right to exist in this argument, namely those where the initial tessellation T0
and the sequence of component tessellations T1, T2, . . . are not of the same type.
Considering the remaining three types which are PVT/PVT, PLT/PLT and
PDT/PDT, the mindful reader may ask himself if they are really necessary
or can they be replaced by their corresponding simple (non-iterated) tessella-
tion. To find an answer to this question, we compare empirical densities of C∗

where the realisation of the typical serving zone Ξ∗H is based on a simple tes-
sellation, e.g. on a PLT and on the corresponding iterated tessellation, e.g. a
PLT/PLT. In order to estimate fC∗(x), we used (3) and simulated n = 2000 typ-
ical serving zones Ξ∗H containing the typical segment system S∗H and employed

the Monte Carlo estimator f̂C∗(x;n) = λ`
1
n

∑n
j=1

∑Mj

i=1 1I
[c(A

(j)
i ),c(B

(j)
i ))

(x) for

fC∗(x) which was introduced in [16]. For all simulations, we set the length
intensity γ = γ0 + γ1 ≡ 1 and write κ = γ

λ`
for the scaling factor (for details

see [7, 17]). Figure 10 shows f̂C∗(x;n) based on PVT (black) and PVT/PVT
(gray) where γ0

γ1
= 3, γ0

γ1
= 1 and γ0

γ1
= 1

3 (from left to right). In Figure 11

and Figure 12, we display analogous results for PLT and PLT/PLT as well as
for PDT and PDT/PDT, respectively. For all nine cases, we exemplarily took
κ = 10. Remember that γ = 1 for the iterated and non-iterated cases. In the
Voronoi case and the Delaunay case, we observe only very moderate differences
between the two density functions for all three ratios of γ0 and γ1 (see Figures
10 and 12). In the PLT case the typical shortest path length C∗ based on
the scenario with iterated tessellation is clearly smaller in expectation than C∗

based on the scenario with the non-iterated tessellation regarding γ0
γ1

= 3 and
γ0
γ1

= 1 whereas for γ0
γ1

= 1
3 , the gray density (iterated scenario) approximates

the black density (non-iterated scenario) quite well. One possible reason for this
different behavior in the PLT case may be related to the relative location of the
HLC on S∗H . In [12], it was observed that by using graph-based serving zones
instead of Euclidean serving zones -where we can always observe a decrease of
C∗- this decrease is especially pronounced in the PLT case. This indicates that
the HLC lies close to the boundary of Ξ∗H relatively frequently. Therefore, we
expect that iteration reduces this effect.
Furthermore, when combining tessellations of different types, one expects clear
differences for the density of C∗ as can be seen in Figure 13. Besides this, we
investigated the differences in the behavior of the empirical density function
f̂C∗(x;n) of some iterated tessellation T = τ(T0 | T1, T2, . . .) and its reciprocal

tessellation T ′ = τ(T ′0 | T ′1, T ′2, . . .) where T ′0
d
= Ti for i ≥ 1 with length intensity

γ′0 = γ1 and where T ′i
d
= T0 for i ≥ 1 with length intensity γ′1 = γ0. This has been

done in order to find out if some of these tessellation types are redundant. Figure
14 shows f̂C∗(x;n) based on PVT/PDT with γ0

γ1
= 3 (black) and PDT/PVT

with γ0
γ1

= 1
3 (gray) on the left side, whereas the right-hand side displays the

empirical densities of C∗ based on PLT/PVT with γ0
γ1

= 3 (black) and PVT/PLT
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with γ0
γ1

= 1
3 (gray). In both cases we chose κ = 60. Depending on the type of

the nested iterated tessellation, we obtain either very similar, almost the same
empirical density functions for C∗ (on the left) or quite different ones (on the
right), based on T and T ′, respectively.

Fig. 10: f̂C∗(x;n) based on PVT (black) and PVT/PVT (gray) where γ0
γ1

= 3,
γ0
γ1

= 1 and γ0
γ1

= 1
3 (from left to right).

Fig. 11: f̂C∗(x;n) based on PLT (black) and PLT/PLT (gray) where γ0
γ1

= 3,
γ0
γ1

= 1 and γ0
γ1

= 1
3 (from left to right).

Fig. 12: f̂C∗(x;n) based on PDT (black) and PDT/PDT (gray) where γ0
γ1

= 3,
γ0
γ1

= 1 and γ0
γ1

= 1
3 (from left to right).
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Fig. 13: f̂C∗(x;n) based on PVT/PVT (black), PVT/PLT (light gray) and
PVT/PDT (dark gray) where γ0

γ1
= 3, γ0

γ1
= 1 and γ0

γ1
= 1

3 (from left to

right).

Fig. 14: f̂C∗(x;n) based on PVT/PDT (left) resp. PLT/PVT (right) and their
corresponding reciprocals

5.2 Model choice for the distribution of typical shortest path
length

Unfortunately, there exists no explicit formula for the density fC∗ of the typical
shortest path length C∗ so far. In this section, we therefore want to find an
analytical function with only few parameters approximating the density of C∗

based on an iterated tessellation T representing the infrastructure. Considering
the shape of the empirical densities of C∗ in Figure 15 as well as the limit results
derived in Section 3, it seems reasonable to use truncated Weibull distributions
as a family for approximative parametric distributions of C∗. In particular, it
is the same family which has been applied for non-iterated tessellations, see [7],
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i.e. the parametric density function f : [0,∞)→ [0,∞) we use is given by

f(x) =
a

b · exp
(
−
(
2b
κa

) a
a−1

) ·exp

(
−

(
x

b
+

(
2b

κa

) 1
a−1

)a)
·

(
x

b
+

(
2b

κa

) 1
a−1

)a−1
,

for x ≥ 0 where a, b > 0 are some parameters. Note that we can apply this
family of parametric distributions for all nine possible cases of nested iterated
tessellations based on PLT, PVT and PDT. In Figure 15, we display the em-
pirical density of C∗ (gray) together with the fitted Weibull density (black)
where on the left hand side the infrastructure is represented by PVT/PDT with
κ = 30 and γ0

γ1
= 1 whereas on the right hand side the road system is modeled

by PDT/PLT with κ = 120 and γ0
γ1

= 1
3 .

Fig. 15: Empirical densities for C∗ (gray) and corresponding fitted Weibull den-
sities (black)

6 Conclusions

We show that as γ0 → 0 and γ1 → 0, the distribution of the typical shortest
path length C∗ based on an iterated tessellation converges to the distribution of
the typical shortest path length C∗comp and C∗init, respectively. In this context,
we can consider a non-iterated tessellation as a special case of an iterated tessel-
lation. In general, i.e. if neither γ0 nor γ1 is close to 0, analytical formulas for
characteristics related to Cox-Voronoi cells are not known. Therefore, we derive
an explicit description of the Palm version of a stationary Poisson-Delaunay
tessellation. Combined with a simple acceptance-rejection scheme, it provides
us with a new direct simulation algorithm for the Palm version of a PDT which
can be used to obtain the Palm version T ∗ of an iterated nested tessellation T
where a PDT is involved. This is an important improvement of the SSLM since
we can now combine PVT, PLT and PDT in iterated tessellations as representa-
tion for the underlying infrastructure. We obtain much more flexibility than we
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had before by only using simple (non-iterated) tessellations. Finally, the family
of parametric distributions for point-to-point distances in telecommunication
networks obtained in [7] turns out to provide a good fit in case that the road
system is represented by iterated tessellations. Knowing the parameters a and b
for all κ and all ratios γ0

γ1
, we can avoid time consuming simulations or network

reconstructions in the future and efficiently analyse networks.
For future work, it would be also interesting to develop simulation algorithms
for the typical cell Ξ∗H and the typical segment system S∗H based on further
models like Crack-STIT tessellations (see [11]) which would extend our wide
range of good fits for distance distributions observed in real networks.

Acknowledgement

This work was supported by Orange Labs through Research grant No. 46146063-
9241. Christian Hirsch was supported by a research grant from DFG Research
Training Group 1100 at Ulm University.

References
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