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Keratin intermediate �lament networks are part of the cytoskeleton in epithelial cells.

They were found to regulate viscoelastic properties and motility of cancer cells. Due to

unique biochemical properties of keratin polymers, the knowledge of the mechanisms

controlling keratin network formation is incomplete. A combination of deterministic

and stochastic modeling techniques can be a valuable source of information since
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they can describe known mechanisms of network evolution while re�ecting the un-

certainty with respect to a variety of molecular events. We applied the concept of

piecewise-deterministic Markov processes to the modeling of keratin network forma-

tion in high spatiotemporal resolution. The deterministic component describes the

di�usion-driven evolution of a pool of soluble keratin �lament precursors fueling vari-

ous network formation processes. Instants of network formation events are determined

by a stochastic point process on the time axis. A probability distribution controlled

by model parameters exercises control over the frequency of di�erent mechanisms of

network formation to be triggered. Locations of the network formation events are as-

signed dependent on the spatial distribution of the soluble pool of �lament precursors.

Based on this modeling approach, simulation studies revealed that the architecture

of keratin networks mostly depends on the balance between �lament elongation and

branching processes. The spatial distribution of network mesh size, which strongly

in�uences the mechanical characteristics of �lament networks, mostly depends on lat-

eral annealing processes. This mechanism which is a speci�c feature of intermediate

�lament networks appears to be a major and fast regulator of cell mechanics.

Keywords: Cytoskeleton, Intermediate Filaments, Network Architecture, Network

Formation, Piecewise-deterministic Markov Process

1 Introduction

The �lament sca�old of the cytoskeleton determines the shape and biophysical properties of eu-

karyotic cells and, therefore, participates in the regulation of pivotal biological functions such as

cell migration (Ballestrem et al., 2000). It consists of three biopolymer systems (actin �laments,

microtubules, intermediate �laments - IF). Each �lament system is characterized by speci�c bio-

chemical and biophysical features (Wagner et al., 2007) which in combination with the architecture

of the network determine the mechanical properties of the particular �lament system (Heussinger
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and Frey, 2007). Although some steps of the assembly process for individual IF are now under-

stood (Herrmann et al., 2007), the mechanisms governing the formation of networks still remain

to be investigated (Oshima, 2007). IF assembly does not depend on ATP or GTP but is mo-

dulated by posttranslational modi�cations of IF proteins, i.e. phosphorylation or glycosylation,

which in�uence the solubility of IF oligomers (Coulombe and Omary, 2002). IF are non-polarized

polymers and the addition of subunits and even �laments can occur at various locations along a

preformed �lament (Herrmann and Aebi, 2000; Windo�er et al. 2004). This extends the set of

possibilities for IF network formation and remodeling in comparison to actin �laments and micro-

tubules. In contrast to the other �lament systems, there are only very few IF binding proteins

known to regulate the network architecture. Models simulating actin �lament or microtubular

network formation are based on anisotropic growth patterns due to the polarity of these polymers.

Thus, these models are not ideal to study the structural dynamics of IF networks.

IF monomers represent a heterogenous group of proteins with a tissue speci�c expression (Herr-

mann et al., 2007). Keratins are the IF proteins expressed in epithelial cells. Keratin �lament

networks were shown to be important for cellular mechanics (Coulombe and Wong, 2004; Magin

et al., 2007). Their global architecture is regulated by phosphorylation and de�nes the viscoelas-

tic properties of carcinoma cells at large deformations, thereby overriding the impact of the actin

network (Beil et al., 2003). A model-based analysis revealed distinct changes of keratin network

architecture in response to a modulation of keratin solubility by kinases in carcinoma cells (Beil

et al., 2005 and 2006). Due to the non-linear relationship between the mesh size of polymer net-

works and the elastic shear modulus (Morse, 1998), even small alterations of cytoskeletal network

architecture can signi�cantly change the elasticity of the network and, hence, the mechanical char-

acteristics of cellular compartments (Fleischer et al., 2007). Thus, the analysis of the regulation

of keratin network architecture is essential for an understanding of cell mechanics which eventually

might help to interfere with cancer cell migration. However, the currently available information on

intracellular keratin networks is insu�cient to understand the spatiotemporal regulation of their

architecture. Although mathematical models simulating intracellular processes must frequently

apply hypothetical conditions or deal with uncertainties, they can nevertheless provide important

insights (Mogilner et al., 2006). A previous model of IF network synthesis focused on the intracel-

lular distribution of �laments as modulated by external forces and did not regard particular spatial

interactions between �laments, e.g. branching (Portet et al. 2003). Thus, we developed a new
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model which combines deterministic elements with stochastic processes to model distinct network

formation events.

The basic subunit of keratin �laments is a heterodimer of a type I and type II keratin (Moll et

al., 2008). Filaments are synthesized through formation of tetra- and larger oligomers which are

still soluble and are, thus, subject to di�usion. These oligomers are eventually assembled into

unit-length �laments which are the building blocks of longer �laments and networks (Kirmse et

al., 2007). Thus, the build-up of keratin networks can be regarded at di�erent scales as it is the

case for many cellular processes (Mogilner et al., 2006). Our model is focussed on the level of

structurally interacting �laments which is relevant for cell mechanics (Heussinger and Frey, 2007)

and can be monitored by electron microscopy (Beil et al., 2005). At this level, however, the num-

ber of observable events is by at least a magnitude smaller than that at the level of biochemical

events during oligomer synthesis and distribution. These events cannot be modeled as a bulk re-

action within the limited space of cells. Thus, our approach models network growth as a sequence

of discrete points in time, when macromolecular building blocks from a pool of soluble keratin

oligomers are added to the network. These times are determined by a (continuous time) stochastic

point process, whose inter-occurrence times are chosen as for the stochastic simulation algorithm

for chemical reaction systems, which has been introduced by Gillespie (Gillespie 1977). At the

times of network growth certain network formation events, whose exact molecular mechanisms

and, hence, regulation are still unknown (Oshima 2007), are triggered according to a probability

distribution which is controlled by model parameters. A variation of these parameters allows for

studying the e�ect of particular network formation mechanisms on structural properties of the

network. In addition, our model has to monitor the system at the scale of precursor molecules,

i.e. di�usion of soluble oligomers, which can either be described as a set of random walks of

individual molecules or as a bulk process by a partial di�erential equation (PDE). In this study,

we assume that the number of soluble keratin subunits is always large enough to be modeled by

a deterministic approach. By using this approach a wide range of subunit concentrations can be

investigated through simulations. The spatial distribution of soluble oligomers as governed by dif-

fusion eventually determines the speci�c locations of network formation events, thus, functionally

interconnecting the two scales of the model.

The speci�c approach to combine two scale-dependent methods linking temporal dynamics with

a spatial component for simulating keratin network formation appoints this model to the class of
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piecewise-deterministic Markov processes (PDMP - Davis, 1984).

This paper will �rst present the modeling concept followed by the description of the implemented

algorithms for network simulations and analysis. These simulations were performed to investigate

the impact of speci�c structure-de�ning events on network architecture, notably on the formation

and distribution of meshes and connectivity, and to analyze the interplay between these events

and di�usion. The results will show that the system is reaction-limited. Branching is found to

be pivotal for modulating the mesh size and thereby the elasticity of keratin networks (Morse,

1998) and for generating structural inhomogeneities within networks, i.e. microgel patterns. This

latter process was recently observed in carcinoma cells (Beil et al., 2005) and might be responsi-

ble for �ne-tuning the mechanical properties of subcellular compartments as required during cell

migration through a physically inhomogeneous environment.

2 Model

A detailed analysis of network architecture requires high spatial resolution of the simulation results.

Thus, the model has been designed for small observation windows. In our previous studies, we

investigated two-dimensional electron microscopy images of keratin networks taken from periph-

eral cytoplasmatic compartments (Beil et al., 2005 and 2006) which is pivotal for keratin network

dynamics (Windo�er et al., 2004). These compartments are very thin and contain mostly a single

layer of keratin �laments. Thus, network formation in this study is simulated on a planar square

observation window W = [0; l]2 � IR2 for some l > 0. To avoid any bias caused by speci�c con-

�gurations of preexisting �lament systems, our model is designed to study the de novo formation

of a keratin network within this observation window. The initial concentration of soluble oligomers

was estimated from the total length of the �lament system observed in electron microscopy images

of carcinoma cells (Beil et al., 2005 and 2006).

The model is based on a Markovian sequence of random network formation times, which are

determined as by the Gillespie algorithm. Whereas, the classical Gillespie algorithm assumes a

spatially homogeneous reaction system, the model in this study focusses on the spatial distribution

of events, since it is crucial for network morphology. Therefore, the model complements the global

reaction kinetics given by the Gillespie algorithm by a mechanism controlling the spatial distri-

bution of locations for network growth. Since network formation is fueled by the pool of soluble
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�lament precursors, locations for �lament assembly are picked based on the spatial distribution

of soluble precursors. The latter is modeled as a concentration �eld, which, in order to determine

growth locations, is interpreted as a probability �eld. Apart from local consumption due to �la-

ment assembly, the distribution of soluble precursor molecules is governed by a di�usion process

proceeding between network formation events and described by a deterministic partial di�erential

equation (PDE).

2.1 Soluble and �lamentous keratin pool

Assembly of IF proceeds from a pool of soluble keratin tetramers. Since IF are highly insoluble

in physiological bu�ers (Kirmse et al., 2007) we assume that no disassembly occurs. Filaments

are the result of a longitudinal annealing process involving a variety of oligomeric subunits, which

are formed through various stages of lateral annealing. Phosphorylation of monomers is a crucial

mechanism regulating the transfer of keratin oligomers between the soluble and the �lamentous

pool. Whereas in a dephosphorylated state, keratins tend to assemble to �lamentous structures

(Strnad et al., 2002), phosphorylation induces dissolution of keratin �laments (Strnad et al.,

2002; Omary et al., 2006). In the dephosophorylated con�guration, keratin dimers exhibit a

strong tendency to form tetramers of � 45nm length (Geisler et al., 1998). During �lament

assembly, lateral aggregation of eight tetramers results in a �lament subunit referred to as a unit-

length �lament (ULF) which has a length of about 60nm (Herrmann et al., 1999). However, it is

not yet fully understood which of the various oligomeric subunits contribute most substantially to

the annealing process of �lament formation in vivo (Herrmann et al., 2002; Herrmann and Aebi,

2004). We assume that the transition from the soluble pool to the �lamentous compartment is

initiated by dephosphorylation events starting with a pool of fully solubilized keratin oligomers.

The resulting keratin �laments are represented by a track of connected line segments. Since each

of the line segments models a �lament building block consisting of 8 tetramers, the segment

length is chosen as 45nm. This length is approximately gained when a 60nm long ULF is added

to a �lament end, taking into account that longitudinal annealing involves an overlap of the

ULFs participating. The intracellular distribution of soluble keratins is assumed to be governed

by di�usion (Portet et al., 2003). The soluble pool is regarded as a concentration �eld on the

observation window W . Keratin molecules transfer from the soluble into the �lamentous pool
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during the course of network formation. Besides soluble pool consumption by network growth, the

model assumes time evolution of the soluble pool to be controlled by a di�usion process, which

is described by the following partial di�erential equation (PDE):

@

@t
C(t; x) = D

�
@2

@x21
C(t; x) +

@2

@x22
C(t; x)

�
;

where C(t; x) denotes the soluble pool concentration at time t > 0 and at the location x =

(x1; x2) in the interior intW of the observation window; the di�usion constant D > 0 determines

the velocity of the di�usion process. Keratin molecules may leave as well as enter the observation

window. Assuming a homogeneous soluble keratin concentration outside the observation window,

this is re�ected by imposing periodic boundary conditions for the di�usion PDE. These bound-

ary conditions force keratin molecules which are leaving the observation window at a particular

boundary location to reenter on the opposite side. Mathematically, by imposing periodic boundary

conditions the solutions of the above PDE are required to satisfy

C(t; (r; 0)) = C(t; (r; l)) and C(t; (0; s)) = C(t; (l; s)) for all r; s 2 [0; l]:

It can be shown that the above PDE with periodic boundary conditions has a unique solution

for all of the bounded initial conditions C(0; x) = f(x), x 2 intW , arising in the context of

our model. Moreover, the solution of the initial value problem is mass-preserving, i.e., the total

amount of soluble keratin remains constant in time. Numerical solutions may be obtained by

means of standard techniques such as �nite di�erence schemes.

The initial state of the soluble pool is modeled as a constant tetramer concentration �eld on the

observation window W . The total amount of soluble keratin at t = 0 is given by
R
W
C(0; x)dx =

cl2.

For the con�guration of the soluble and the �lamentous pool at time t � 0 we introduce the

notationsX
(1)
t andX

(2)
t , respectively. These random variables specify the stateXt = (X

(1)
t ; X

(2)
t )

of the model at time t � 0.
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2.2 Process of network formation

2.2.1 Mechanisms of network formation

A �rst mechanism of network formation is �lament nucleation, meaning the aggregation and

annealing of small granule-like keratin particles, followed by an elongation process forming a new

�lament (Fig. 1A). Windo�er et al. (2004) report the observation of nucleation phenomena by

means of �uorescence microscopy.

In our model, we assume the elongation of keratin �laments to be caused by longitudinal annealing

of �lament building blocks at the �lament ends (Fig. 1B). Filament elongation has been studied

in vitro by Herrmann and Aebi (2000) and Kirmse et al. (2007).

For the formation of the inter-�lament connections, i.e. the nodes of the network, the model

allows for simulating di�erent mechanisms. Firstly, we consider the possibility of lateral annealing

of soluble keratin along the existing �laments. Thus, it is assumed that network building blocks

such as keratin tetramers are able to attach laterally along �lamentous structures, thereby initiating

a new network branch at the lateral annealing site (Fig. 1C). The corresponding vertex in the

network graph is of degree 3, which means that three network segments emerge from this node,

thus forming a Y-junction.

A second mechanism generating Y-junctions in the network is end-on integration of �lament tips

into the network, also referred to as merging (Fig. 1D). Merging has been observed in vivo by

Windo�er et al. (2004). In electron microscopy images of keratin networks a certain fraction of

the inter-�lament connections are of degree 4. Therefore, once the growth trajectories of two

�laments intersect, our model decides with a �xed merging probability q whether merging occurs

and a node of degree 3 is formed or a node of degree 4 is generated. In the sequel the latter

event will be referred to as crossing (Fig. 1E). The parameter q was chosen in a way that the

relative frequencies of vertex degrees in the �nal network graphs were close to the values from our

experimental data (Beil et al., 2005 and 2006).

2.2.2 Time evolution of the network formation process

The approach chosen to model the time evolution of the network is adapted to the high spatial

resolution of the simulations. At high resolution, �lament building blocks such as keratin tetramers
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and ULFs are rather large elongated objects. Network formation occurs whenever those elongated

building blocks attach to the �lament network. Times of network formation are described as

a stochastic point process f�k; k = 1; 2; : : :g on the positive real line. The random variables

�k describe random times of network formation events, i.e., at these points in time �lament

building blocks transfer from the soluble pool into the �lamentous pool by annealing. Keratin

annealing is represented by the instantaneous addition of a new line segment to the segment

system characterizing the network at the corresponding network formation time. Simultaneously,

the soluble pool concentration is locally reduced by the amount consumed by network growth.

Apart from these instantaneous local reductions of the soluble pool, the concentration �elds of

soluble keratin are regarded as permanently subjected to di�usion. Technically speaking, during

the time intervals (�k�1; �k), k = 1; 2; : : :, de�ning �0 = 0, the di�usion PDE is applied to the

initial concentration �eld X
(1)
�k�1 . For k � 2, the latter describes the soluble pool distribution

right after the last network formation event, i.e., soluble pool consumption has already been

incorporated. For k � 1, the distribution of the k-th network formation time �k is determined

by the distribution of the inter-occurrence times �1 � �0; : : : ; �k � �k�1. For the random variable

�k� �k�1 we assume a conditionally exponential distribution, given the state of the concentration

�eld at time �k�1 is X
(1)
�k�1 = C, i.e.,

IP(�k � �k�1 � t j X(1)
�k�1

= C) = 1� exp(�t�(C)) for all t > 0:

This de�nition follows both, the Gillespie algorithm and the de�nition of a PDMP. By the prop-

erties of the exponential distribution, the state-dependent parameter �(C) > 0 describes the

momentarily expected number of network formation events per unit time, given that the soluble

pool is in state C = fC(x); x 2 Wg (note that in contrast to C(t; x) we only consider a par-

ticular spatial concentration �eld without time evolution). Since network formation is dominated

by the elongation of a relatively small number of �lament ends within the soluble keratin pool,

we assume the reaction kinetics to be close to �rst order. Taking into account that 8 keratin

tetramers are consumed for the formation of a single new �lament segment, the following choice

of �(C) ensures that the reaction follows a �rst order kinetics (Gillespie, 1977 and 1992):

�(C) =
k

8
C;
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where the reaction constant k governs the velocity of the reaction and C =
R
W
C(x)dx denotes

the total amount of keratin in the concentration �eld C.

2.2.3 Choice of the mechanism for network formation

At any time �k of network formation, which has been determined by the stochastic point process

f�kg introduced in Sec. 2.2.2, the mechanism of network formation needs to be speci�ed. This

is done in a two-step procedure that is illustrated in Fig. 2, part 1. First of all, based on certain

conditional probabilities it is decided whether a new �lament is initiated (event A1) or an existing

one elongates (event A2). This step of the random decision process will be referred to as choice

of the basic network growth type. Given that immediately before the event the soluble pool

concentration �eld is C and the set of �lament ends of the current network con�guration �

possibly elongating is s(�), the following conditional probabilities are assigned to A1 and A2:

IP(A1 j X�k� = (C; �)) =
M1C

M1C + js(�)j
;

IP(A2 j X�k� = (C; �)) =
js(�)j

M1C + js(�)j
;

where js(�)j denotes the �nite number of elements in s(�). Note that by the notation �k� we

refer to left limits of the state at the time �k . The constant M1 > 0 is a model parameter

controlling the likelihood of those network formation events that are initiations of new �laments.

By the above de�nition, the conditional probability of A2, i.e., of a network formation event being

�lament elongation, is modeled to be increasing in the number js(�)j of �lament ends possibly

attracting �lament building blocks for longitudinal annealing. Filament initiation (event A1) in-

cludes nucleation as well as lateral annealing. Observations by Windo�er et al. (2004) suggest

that the initiation of new �laments is preceded by the formation of small keratin clusters. There-

fore, this event is assumed to require high levels of soluble keratin concentration. Consequently,

the probability of A1 is modeled to be decreasing with reduction of the amount C of soluble pool.

In case the above random experiment has classi�ed the basic growth type as �lament initiation, a

second random experiment determines whether nucleation (event B1) or lateral annealing (event

B2) occurs. Lateral annealing is more likely to occur the more potential annealing sites are availa-

ble. Therefore, the probability of lateral annealing is modeled to be increasing in the total length
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of the �lament network. This is re�ected by the following de�nition of the conditional probabili-

ties, given the length j�j of the network � immediately before the network formation time �k,

IP(B1 j A1; X�k� = (C; �)) =
1

1 +M2j�j
;

IP(B2 j A1; X�k� = (C; �)) =
M2j�j

1 +M2j�j
;

where the constant M2 � 0 is a model parameter. Note that by means of the model parameters

M1 andM2 the frequency of the single network formation mechanisms to occur can be controlled.

In particular, it is possible to simulate scenarios without any lateral annealing by setting M2 = 0.

2.2.4 Choice of the location for network formation

Once the mechanism of network formation has been determined, a location for keratin annealing,

i.e. network building, needs to be speci�ed (Fig. 2, part 2.). This is done according to a probability

distribution of locations, which is based on the momentary distribution of soluble pool in the

observation window. For this purpose, spatial probability �elds are constructed such that potential

network formation locations which are equipped with high local soluble pool concentrations are

preferred sites of keratin annealing in comparison to those whose local concentrations are rather

low. In the following let b(z; �) denote the circle with radius � centered at z. In case of an

elongation (event A2), and given the state of the system is (C; �), a �lament end z 2 s(�) is

picked from the set s(�) of all �lament ends according to the following conditional probability:

IP(z j A2; X�k� = (C; �)) =

R
b(z;�)C(x)dxP

y2s(�)

R
b(y;�)C(x)dx

:

In case of a nucleation (event B1), the random location z 2 W is modeled to be distributed

according to the conditional density

f(z j B1; X�k� = (C; �)) =

R
b(z;�)C(x)dxR

W

R
b(y;�)C(x)dxdy

:

The set of potential locations for lateral annealing (event B2) is the �lament network � at the

given network formation time. Thus, for determining a random site z 2 � for network formation
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given B2, we introduce the following conditional density concentrated on the segment system �

representing the network:

f(z j B2; X�k� = (C; �)) =

R
b(z;�)C(x)dxR

�

R
b(y;�)C(x)dxdy

:

The parameter � de�nes the circular zone in�uencing the local probability of keratin annealing.

Note that, following our periodic boundary approach, subsets of the circles b(y; �) protruding the

observation window are understood to be shifted to the opposite side of the window.

2.2.5 Filament growth and soluble pool consumption

Network growth is modeled as the instantaneous addition of small line segments to the existing

network at the network formation times.

A quantitative investigation of keratin network morphology has been performed in electron mi-

croscopy images from the cortex of human cancer cells. The �laments in these compartments

exhibited almost straight shapes (Beil et al., 2005). Bearing in mind the small persistence length

of intermediate �laments, �lament growth processes cannot be expected to directly account for

this absence of curvature. However, to relate simulation results to real image data, we assumed

straight �lament elongation for our simulations, i.e., whenever a �lament elongates there is no

orientational deviation between the new line segment and the �lament end it is appended to.

Since electron microscopy data do not suggest the existence of preferred �lament directions in

keratin networks (Beil et al., 2005), the orientation of new line segments resulting from lateral

annealing and nucleation is picked randomly according to the uniform distribution on [0; 2�).

Corresponding to the periodic boundary conditions imposed on the soluble pool di�usion, for

each �lament leaving the observation window a new one is generated at the opposite side of the

observation window. Orientations of the newly initiated �laments are assigned randomly. This

boundary behavior of the �laments re�ects the interaction of the observed part of the network

with a homogenous environment.

End-on integration of a �lament into the network (Fig. 1D) is modeled to occur with probability

q, whenever the new segment intersects parts of the already existing network.

We will now specify the consumption of soluble keratin pool resulting from keratin annealing. Be-

fore soluble pool is consumed, a new line segment `�k has been determined as described above. In
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the following, the dilation `�k � b(o; r) of `�k denotes all points in the observation window whose

distance to `�k is no more than r. Parts of the segment dilations protruding the observation

window are shifted to the opposite side.

Given that C is the concentration �eld at a network reorganization time �k�, there is a well

de�ned dilation `�k � b(0; r) of the new line segment `�k containing exactly the 8 tetramers that

are assumed to form the new �lament part. Technically speaking, given C there is a dilation

radius r > 0 satisfying Z
`�k�b(0;r)

C(x)dx = 8;

provided that C � 8. Note however, that in our simulations the pathological case C < 8, i.e.,

of concentration �elds not containing enough tetramers to �nd these dilation radii, does not

occur and was therefore neglected. We de�ne the concentration �eld immediately after network

formation by

X(1)
�k

(x) =

8><
>:

0 if x 2 `�k � b(0; r);

X
(1)
�k�

(x) else:

Note that this concentration �eld serves as the initial condition for soluble pool di�usion after

time �k.

Since protein synthesis is neglected, and phosphorylation events are not modeled, network forma-

tion is considered to be complete when the soluble pool concentration has fallen below a critical

level that does not allow for any more substantial polymerization.

For investigations of network architecture concerning the mean number of network vertices and

edges it must be taken into account that keratin �laments have a certain width, whereas their

model representation as line segments reduces them to their longitudinal axis. For this reason,

vertices located closely to each other (< 20nm) should not be interpreted as distinct, i.e. they

have to be contracted. A recursive procedure is applied for this task, which has been established

in Beil et al. (2005).

3 Simulations and analysis of network architecture

The aim of this study was to investigate the e�ects of distinct network formation mechanisms as

controlled by model parameters (Tab. 1) on the morphology of keratin networks. For this purpose

13



Simulating the formation of keratin �lament networks by a PDMP

a simulation algorithm was implemented in Java within the GeoStoch software library (Mayer et

al., 2004).

3.1 Settings

The observation window was discretized by a grid of 500 � 500 pixels with a spatial resolution

of 5:3nm per pixel length. Given this grid, the solution of the di�usion PDE was numerically

approximated by means of a �nite di�erence scheme.

The simulation outputs, i.e. the �nal states of the network, were given as binary images.

Due to the transformation of the tetramer concentration �elds representing the soluble pool into

spatial probability �elds at each time of network formation, simulations were computationally

demanding. Simulation times totaled around 1:5h per run on an AMD Opteron 252 processor

(2:6GHz, 8GB RAM).

For each parameter constellation considered, we conducted 30 simulation runs in order to control

for stochastic variability between di�erent runs.

Standard settings were chosen as depicted in Tab. 2. Based on this standard scenario model

parameters were varied in order to investigate their e�ects on network morphology.

The reaction constant k was chosen such that the whole network formation process was �nished

after around 15 minutes, which is a time span found to separate the time of maximal keratin

phosphorylation and reestablishment of the network when keratin networks are exposed to a

phosphorylation pulse (Beil et al., 2005). Network formation was considered to be �nished as

soon as the mean soluble pool concentration had fallen below 150 tetramers per �m2.

3.2 Model parameters to be varied

Apart from the concentration c of the initial soluble pool, which determines the amount of building

material for the network and was estimated from the mean network length per unit area in images

of cancer cells (Beil et al., 2006), the key parameters M1 and M2, which control the likelihood of

speci�c network formation mechanisms, were varied. Note that M1 a�ects the choice of the basic

network growth type, i.e. the probability of a network formation event being a �lament initiation

rather than the elongation of an existing �lament. In case of a �lament initiation, the parameter

M2 controls the probability of this initiation being a lateral annealing event rather than a free
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nucleation. Whenever one of the above parameters was varied, the others remained �xed, their

values being set to c = 6200, M1 = 0:002 and M2 = 0:22.

3.3 Statistical analysis of network characteristics

First order characteristics such as the mean number of network nodes (i.e. vertices whose degree

was at least 3), the mean number of edges and the mean number of meshes were considered.

Each of these quantities was estimated with respect to the unit area. We also considered features

of network connectivity and second order characteristics to evaluate clustering tendencies of the

network meshes.

3.3.1 Connectivity

One of the objectives of our statistical analysis was the assessment of the e�ciency of a network

formation scenario in establishing inter-�lament connectivity, which is a pertinent feature of net-

works that determines their mechanics (Blumenfeld, 2006; Huisman et al., 2007). To obtain a

measure for connectivity, a Euclidian minimum spanning tree (MST) was computed for each con-

nectivity component of the network graph using Prim's algorithm (Jungnickel, 1999). An MST of

a fully connected graph is a subgraph with the same set of vertices where the latter are connected

by line segments from the original graph's edge set in such a way that the total length of all

the edges is minimal while any vertex can still be reached from any other by following the edges.

After the minimum spanning trees had been constructed for each connectivity component, their

lengths were added and divided by the length of the entire graph. This quotient will be referred

to as the relative MST-length. It is a measure for redundancy in the network graph. Highly

connected networks exhibit a low relative MST-length since a high percentage of their edges can

be discarded without destroying the connectivity of the graph. On the other hand, in networks

with low connectivity many of the edges could only be removed at the cost of disconnecting the

network. Therefore a high percentage of the original edges is still contained in the MST and hence

the relative MST-length is relatively large.
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3.3.2 Pair-correlation function of mesh centers

Network clustering was studied by considering second order statistics of network meshes. First, a

center point was attributed to each mesh by taking the center of a circle with maximum possible

radius to be inscribed into this mesh. The in-circles were determined after truncation of all dead

ends in the network graph, since the latter do not contribute to the constitution of the meshes

and are mechanically not relevant. Mesh clustering was quanti�ed by the analysis of clustering

e�ects in the point patterns of mesh centers. For this purpose we determined the empirical pair

correlation function bg(r), r > 0 of the mesh centers (Stoyan and Stoyan, 1994). Note that

the theoretical pair-correlation function of a homogeneous Poisson-type point pattern, which is

a model for complete spatial randomness (without clustering), is constant and equals 1. Values

of bg(r) greater than 1 indicate that point pairs of distance r occur rather frequently, whereas

values of bg(r) smaller than 1 occur if point pairs with this distance are relatively rare. Networks

exhibiting clusters of small meshes will thus show a peak of their empirical pair correlation function

at small distances r. Given a point pattern fS1; : : : ; Smg, the de�nition of bg(r) is as follows:
bg(r) = 1

(m=jW j)2

X
n1 6=n2

K(kSn2 � Sn1k � r)1IW�W (Sn1 ; Sn2)

2�rjW \ (W + (Sn2 � Sn1))j
;

where kx � yk is the distance between mesh centers x and y, W + x denotes the observation

window shifted by the vector x and jBj the area of a set B � IR2. K denotes the Epanechnikov

kernel (Stoyan and Stoyan, 1994). The bandwidth for K was chosen as 0:15=
pb�, where �̂ is

the mean number of mesh centers per unit area. The empirical pair-correlation functions for the

simulated data were obtained by distance-wise averaging of the estimators over all 30 simulation

runs that were performed for each of the scenarios.

4 Simulation results

For each parameter constellation, the results of the 30 simulation runs performed were visualized

by boxplots. Regression lines and curves were �tted to the mean values.

All sample images displayed were randomly selected among the simulation runs.
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4.1 Role of the initial soluble pool concentration c for network architecture

Fig. 3, 4A, and 4B show the response of the network morphology if the concentration c of soluble

keratin at the beginning of the simulation was varied in steps of 500 tetramers per �m2 over the

interval [1500; 7500].

Note that the mean number of edges, meshes and network nodes increased with c. Network

connectivity increased with the background concentration since the relative MST-length decayed

exponentially (Fig. 4B). As a consequence, the e�ciency in establishing network connectivity was

almost una�ected by variations of c as soon as a critical level of 3500 tetramers per �m2 was

exceeded.

The pair-correlation function did not indicate a major e�ect of c on the clustering tendency of

network meshes (Fig. 9A). Note that for c < 3500 the point pattern of mesh centers did not

contain enough points for a reliable estimation of the pair-correlation function.

4.2 Role of �lament initiation type for network architecture

In our model, initiation of new �laments during network formation could either occur as a nucle-

ation in free space or as lateral keratin annealing at an existing �lament (Fig. 1A and 1C). The

probability of the latter was controlled by the model parameter M2. Sample images of simulations

for di�erent values of M2 can be seen in Fig. 5.

Fig. 4C shows that increasing the probability of lateral annealing hardly changed the mean-value

characteristics of the network. Furthermore, the e�ciency in establishing network connectivity

was also almost una�ected by variations of M2 (Fig. 4D).

The main e�ect of lateral annealing was an increased tendency of the network to form microgel

structures, i.e., clusters of small network meshes. If M2 was increased, the empirical pair correla-

tion function bg(r) indicated a substantial rise in likelihood of mesh center distances between 50

and 150nm (Fig. 9B). Even without any lateral annealing, i.e., in case M2 = 0, the peak of bg(r)
indicated a small clustering e�ect of the meshes. Once M2 � 1:0, the e�ect of further increases

of M2 on mesh clustering subsided (besides Fig. 9B see also the simulation results in Fig. 5) .
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4.3 Role of basic growth type for network architecture

By construction of our model, at each network formation time the outcome of a Bernoulli experi-

ment determined the basic type of network growth, i.e., wether a new �lament was initiated or an

existing one elongated. Increasing the parameter M1 resulted in a higher probability for �lament

initiation in relation to the elongation probability of the existing �laments. Sample simulation

results are displayed in Fig. 6. The mean numbers of edges and network vertices were hardly

a�ected by variations of M1 (Fig. 4E).

However, network connectivity was harmed if by an increase of M1 the elongation tendency of

the �laments was diminished. This was indicated by the linear growth behavior of the relative

MST-length (Fig. 4F). Furthermore, the mean number of network meshes substantially decreased

with growing M1 (Fig. 4E). Thus, the ability of the �laments to form meshes was reduced if

the elongation tendency of the �laments was diminished in favor of more �lament initiations.

Considering Fig. 7, which displays simulated networks for large values of M1, namely M1 = 0:016

and M1 = 0:032, the negative impact of decreased �lament elongation tendencies on network

connectivity becomes ostensive, since in these cases the keratin tended to form �lament clusters

rather than a homogeneous network. Notice that both the mean number of network meshes and

the relative MST-length appeared to be hardly a�ected if small values of M1 were considered, i.e.

M1 2 [0:004; 0:0055]. A substantial linear growth behavior occurred only for M1 � 0:006.

Besides its e�ect on network connectivity, M1 also a�ected mesh clustering. If M1 was increased,

the empirical pair correlation function bg(r) indicated a substantial rise in likelihood of mesh center

distances between 50 and 150nm (Fig. 9C).

4.4 Interaction of parameters M1 and M2

As soon as a network formation event had been classi�ed as �lament initiation, it was decided

according to a state-dependent discrete distribution if the new �lament was initiated by lateral

annealing or by free nucleation in the cytoplasm. Given a �lament initiation event, the conditional

probability for lateral annealing was controlled by the parameter M2. As a consequence of this

modeling approach, not only an increase of the parameter M2 but also an increase of M1 resulted

in a higher mean number of lateral annealing events as soon as M2 > 0. Therefore, simulations

were performed in order to clarify the impact of lateral annealing on mesh clustering as well as
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network connectivity. More precisely, we compared the above simulations for variations of M1,

which included lateral annealing since M2 = 0:22 > 0, to the case where lateral annealing was

excluded by setting M2 = 0. Sample simulation outputs can be found in Fig. 8.

The response of network connectivity to variations of M1 occurred independently of lateral an-

nealing; if lateral annealing was excluded by setting M2 = 0, the relative MST-length behaved

similarly to the standard scenario.

The impact of M1 on mesh clustering was however sensitive to the choice of M2. Fig. 9D shows

that in case M2 = 0, clustering e�ects were not only less pronounced but una�ected by variations

of M1, i.e., of the nucleation intensity (see also Fig. 8). Thus, in our simulations the network

formation mechanism of lateral annealing solely accounted for pronounced mesh clustering, i.e.

the formation of microgel structures.

4.5 Role of di�usion

Visualizations of concentration �elds of soluble oligomers as presented in Fig. 10 illustrate that low

di�usion coe�cients can lead to a localized depletion of the soluble pool. For these simulations

parameter values were selected in a way, that promoted mesh clustering and a high network

connectivity (M1 = 0:012, M2 = 0:22). Both scenarios are associated with a fast soluble

pool consumption at a local level and, thus, were expected to result in a maximum depletion

of soluble oligomers. However, depletion zones and thus di�usion limitations disappeared for a

di�usion coe�cientD � 8�10�4�ms�1, which is still a magnitude smaller than theoretical values

calculated by Portet et al. (2003). Thus, under these conditions the system can be regarded as

reaction-limited.

The density of nodes, meshes and edges did not change if D was varied between 5 � 10�5 and

3:2 � 10�3�ms�1. In contrast, clustering was in�uenced by very small values for D, which,

however, are more than a magnitude smaller than the values estimated by Portet et al. (2003)

(Fig. 11).
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5 Discussion

Whereas many details of the �lament assembly and network formation processes for the actin and

microtubular cytoskeleton are now well understood (Raynaud-Messina and Merdes, 2007; Schaus

et al., 2007) most of the mechanisms involved in the synthesis of keratin intermediate �lament

networks still remain elusive. Thus, quantitative models can be useful to identify and character-

ize mechanisms which determine the architecture of these networks. The comparison of keratin

networks simulated in this study with such from electron microscopy images of cancer cells em-

phasizes this fact (Figure 10). Models developed to investigate the formation of networks of actin

�laments or microtubules are based on the speci�c biochemical properties of these �lament sys-

tems. Due to the polarity of �lament growth and restrictions for the angle of �lament branching,

such models are anisotropic in nature (Maly and Borisy, 2001; Haviv et al., 2006). A recent paper

by Fass et al. (2008) presented a Gillespie-like model to investigate actin �lament fragmentation

and annealing, but did not analyze these issues in the context of network architecture. Although

actin �lament dynamics are well studied it still appears to be di�cult to address the issue of actin

network architecture at all necessary scales (Mogilner, 2006). Nevertheless, several aspects of our

model can be regarded as simpli�cations of existing models for actin networks. Apart from the

lack of �lament polarity, there is no restriction for the angles of �lament branching or interactions

as observed by Windo�er et al. (2004) in living cells. Consequently, keratin networks can be

isotropic and �ll the cytoplasm without the need to align with the other (polarized) networks.

Intermediate �lament networks can thereby ful�ll their fundamental role as integrators of cells in a

mostly independent way (Lazarides, 1980). Moreover, since new building blocks can be added at

any place along existing �laments, mesh clusters can easily be produced. Thus, keratin networks

could represent a fast and energy-e�cient bu�er system for mechanical stress regardless of its

direction and location.

The new approach to model the spatiotemporal distribution of the molecular events of keratin net-

work assembly re�ects both, the incomplete understanding of the biological mechanisms involved

and the probabilistic nature of a spatiotemporal reaction system at di�erent scales, i.e. the scale

of soluble keratin oligomers and of �laments. Although the number of soluble keratin oligomers is

large enough to use a PDE to model di�usion, this process is also stochastic and could be modeled

as a set of random walks. However, the latter approach is computationally not feasible for higher
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concentrations. The timing of network growth events, which are infrequent compared to oligomer

movements, was modeled by a time-continuous Markov process. This method is well established

to model chemical reactions (Gillespie 1977) and favorable in situations where the number of

molecules involved is rather small for some of the reacting species and deterministic approaches

become questionable (Gillespie, 1977 and 1992; Cao et al., 2005). Gillespie's algorithm is based

on the assumption that the distribution of the inter-occurrence times between single reactions

only depends on the state of the system immediately after the last reaction event. The design of

a piecewise-deterministic Markov process leaves this essential property unchanged. This approach

makes these models particularly e�cient for computer simulation and is an essential advantage in

comparison to other stochastic processes such as general Lévy processes or stochastic di�erential

equations whose simulation is usually based on interpolation of discrete skeletons and thus requires

analysis of approximation errors (Asmussen and Glynn, 2007).

For investigating the formation of keratin networks, the spatial structure of the reaction system

was at least as important as global reaction kinetics, the latter being modeled as being �rst order,

since the dominant component of the reaction was given by the elongating �lament ends. Conse-

quently, the state space of our stochastic process was chosen a hybrid of a geometric space, namely

the family of line segment systems, and a function space, modeling concentration �elds of soluble

keratin oligomers in the observation window. Thus, the model di�ers from classical Gillespie-type

processes, whose states simply describe the numbers of molecules for all species in the systems at

a given time instead of monitoring the spatial con�guration of the system. Moreover, whereas the

Gillespie algorithm leaves the state of the system unchanged between reaction events, our model

also captures the spatial evolution of the soluble pool between network formation events. The

Gillespie-type component was solely used to determine the times of network formation. Locations

of network formation were assigned based on the spatial distribution of the soluble keratin pool

fueling network growth. The time evolution of the soluble pool between network growth events,

which consume soluble oligomers, was modeled by a deterministic di�usion equation. This model

component constitutes a mean-value approach to what would have been obtained by modeling

Brownian-type movements of single molecules in the soluble pool. For the choice of network

formation locations, the concentration �elds were interpreted as spatial probability �elds. This

approach takes into account uncertainty about the spatial distribution of the soluble keratin pool

and re�ects the stochastic nature of the underlying physical process. Investigation of the concen-
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tration �elds during simulations allows for an easy assessment of di�usion limitations arising for

network formation scenarios of interest. This way, the model provides the opportunity to study

the interplay between di�usion, network growth events and the resulting network morphology, but

requires a more complex structure than simple Monte Carlo methods. Other situations where

stochastic models for chemical reaction systems have been combined with deterministic compo-

nents are discussed in Haseltine and Rawlings (2002).

Since the information about keratin network formation is scarce we restricted the set of possible

network formation mechanisms in our model to processes that can be veri�ed in experiments. It

includes �lament nucleation and elongation, lateral annealing and merging of �laments. Some

of these processes were already observed in-vitro or in-vivo (Windo�er et al., 2004; Kirmse et

al., 2007). These processes represent discrete events in space and time at the scales regarded in

our simulations. The mathematical model for the built up of the network was designed in a way

that permitted one event per time point, the latter being determined by a point process on the

positive real line. The selection of network formation mechanisms for the events was controlled

by only two parameters of the model, namely M1 and M2. In the simulation studies, we investi-

gated the impact of these two parameters and the initial background concentration c on network

morphology. Simulation outputs suggest that the background concentration may be viewed as

a scaling parameter of network mean value characteristics, which grew almost linearly. The rel-

ative MST-length decayed exponentially, thus, well connected networks were established once a

concentration of 3500 tetramers/�m2 was exceeded. Network connectivity was not in�uenced

by the parameter M2 controlling the frequency of lateral annealing events (Fig. 4D), whereas it

seems to be substantially dependent on the relation between �lament elongation and initiation

events, which was determined by M1 (Fig. 4F). High network connectivity seems to be favored

by rapid elongation of the �laments once they have been initiated. Rapid �lament elongation has

also been observed in vivo by Windo�er et al. (2004) and may thus be a key factor for the high

degree of connectivity found in image data of keratin networks. This process, however, might be

restricted by the di�usion-limited supply with soluble keratin oligomers. However, the di�usion

coe�cient for soluble oligomers has to be very small to create a system which is di�usion-limited.

Even in the absence of experimental data for intracellular keratin di�usion coe�cients, theoretical

values estimated by Portet et al.(2003) are much greater than the threshold for the switch from a

reaction- to a di�usion-limited system. Thus, it is fair to assume that keratin network synthesis is
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reaction-limited. However, experimental studies investigating the intracellular di�usion of keratin

oligomers are required to verify this hypothesis.

Our simulation experiments revealed lateral annealing to be a mechanism that controls the forma-

tion of mesh clusters. Clustering tendencies of network meshes can also be observed in electron

microscopy data of keratin networks (Beil et al., 2005). In order to explain the impact of lateral

annealing on clustering e�ects, series of images displaying the network at di�erent times through-

out its formation process were generated. These show that enhancing the likelihood of lateral

annealing in comparison to free nucleation favored the formation of several spatially segregated

centers of keratin annealing activity. This was due to the fact that the frequently occurring lateral

annealing events were con�ned to those locations already occupied by �laments. By the end of

network formation, these annealing centers exhibited a microgel structure. On the other hand,

if the likelihood of lateral annealing was reduced in favor of free nucleation, new �laments were

initiated evenly spread out over the observation window. As a consequence, neither preferred sites

of network formation nor pronounced microgel structures emerged.

In the standard setting of parameters the pair-correlation function also indicated pronounced mesh

clustering when the parameter M1 controlling the frequency of �lament initiations was increased.

This is plausible since for each �lament initiation the model decided randomly if the new �lament

was initiated by lateral annealing or by free nucleation in the cytoplasm. Since the standard setting

of parameters allowed for lateral annealing (M2 = 0:22), an increase of M1 resulted in a higher

mean number of lateral annealing events. Having identi�ed lateral annealing as a mechanism con-

trolling mesh clustering, the similar e�ect of the parameters M1 and M2 on the pair-correlation

function (Fig. 9C and 9B) was predictable. On the other hand, simulations without lateral an-

nealing (M2 = 0) revealed that free nucleation events did not a�ect the pair-correlation function

(Fig. 9D). Thus, in the simulations mesh clustering was purely a contribution of lateral annealing.

The architecture of the keratin cytoskeleton plays a pivotal role for cell migration by regulating cell

viscoelasticity (Beil et al., 2003). The classical models for determining mechanical properties of

biopolymer networks relate the mean mesh size to the elastic shear modulus (MacKintosh et al.,

1995). Structural homogeneity and isotropy constitutes prerequisites for this approach (Storm et

al., 2005). Since these conditions do not appear to be applicable to intracellular keratin �lament

networks, our model is not restricted to produce this type of networks. Consequently, we did

not focus our descriptive analysis on mean mesh sizes but on complex structural features such
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as connectivity and clustering processes. By modulating connectivity cells may control the trans-

duction of forces and information (Blumenfeld, 2006). Clustering processes within the non-polar

network, as regulated by branching, provide cells with the opportunity to adapt to local demands

without changing the total amount of keratin proteins. Finite element modeling may be applied

to establish a relationship between these features and network mechanics by determining global

as well as local mechanical properties of simulated networks (Heussinger and Frey, 2006). This

way, molecular events which govern the biophysical features of the cytoskeleton can be identi�ed

in simulation experiments.
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A Nucleation of a �lament B Elongation of a �lament

C Lateral keratin annealing D Merging of a �lament end with the net-
work

E Crossing of two �laments

Figure 1: Mechanisms of network formation
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Figure 2: Illustration of model behavior at a network formation time �k. De�nitions: A1 initiation of a new
�lament; A2 elongation of a �lament; B1 free nucleation of a �lament; B2 lateral annealing; x location
in the observation window W ; X

(2)
�k�

and s(X
(2)
�k�

) network and �lament ends before the formation
event, respectively; M1, M2, q model parameters determining the probabilities of �lament initiation vs.
elongation, nucleation vs. lateral annealing and merging of a �lament end with other network parts vs.
crossing, respectively.
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c = 2000 c = 3500

c = 5000 c = 7500

Figure 3: Sample simulation outputs for di�erent initial concentrations c of soluble keratins.
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A B

C D

E F

Figure 4: A, B Response of the network morphology to variations of c in tetramers per �m2. The mean number
of vertices of degree more than 2, the mean number of edges and the mean number of meshes per �m2

grew almost linearly in c. The exponential decay of the relative MST-length indicates that network
connectivity increased in c and showed a stabilizing tendency above a critical level of c = 3500 tetramers
per �m2. C, D Response of the mean value characteristics to variations of the parameterM2 controlling
the likelihood of lateral keratin annealing vs. free nucleation. Neither the mean value characteristics nor
the network connectivity were substantially a�ected by variations of M2. E, F Response of the mean-
value characteristics to variations of the parameter M1 controlling the likelihood of �lament initiation
in comparison to elongation. For M1 � 0:006 there was a substantial decay of the mean number
of meshes in M1, whereas the other mean value characteristics were hardly a�ected. The increasing
relative MST-length indicated a loss of network connectivity if by increasing M1 �lament initiation was
favored in comparison to �lament elongation
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M2 = 0 M2 = 0:25

M2 = 1:5 M2 = 2:0

Figure 5: Sample simulation outputs for di�erent values of M2. It is visually noticeable that clustering e�ects
were strengthened if M2 was increased.
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M1 = 0:004 M1 = 0:006

M1 = 0:008 M1 = 0:01

Figure 6: Sample simulation outputs for di�erent values of M1. It is visually noticeable that network connectivity
decreased in M1.
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M1 = 0:016 M1 = 0:032

Figure 7: Response of the network morphology to high values of M1. These networks exhibit a rather low degree
of connectivity since the keratins tend to form clusters rather than network structures.

M1 = 0:004 M1 = 0:012

Figure 8: Sample simulation outputs for varying M1 without lateral annealing (M2 = 0). Network connectivity
appears to have decreased inM1, whereas none of the simulation outputs exhibits substantial clustering
e�ects.
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A Mesh clustering in response to variations of c in
tetramers=�m2

B Mesh clustering in response to M2

C Mesh clustering in response to M1 with lateral
annealing (M2 = 0:22)

D Mesh clustering in response toM1 without lateral
annealing (M2 = 0)

Figure 9: A Clustering tendency of network meshes in response to variations of c. The pair correlation function was
hardly a�ected by variations of c. B Clustering tendency of network meshes in response to variations
of the parameter M2 controlling the frequency of lateral annealing. The likelihood of mesh center
distances between 50 and 150nm increased in M2 indicating the formation of mesh clusters. C, D
Clustering tendency of meshes in response to the parameter M1, controlling the likelihood of �lament
initiation in comparison to �lament elongation. In the standard scenario, which included lateral keratin
annealing, clustering e�ects increased in M1. If lateral annealing was excluded (M2 = 0) and all new
�laments were initiated by free nucleation, M1 did not a�ect the pair correlation function.
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D = 5� 10�5�m2s�1 D = 1� 10�4�m2s�1

D = 8� 10�4�m2s�1 D = 3:2� 10�3�m2s�1

0 6200

Figure 10: Samples of concentration �elds at time t = 120s for di�erent di�usion coe�cients D.
The parameter choices of M1 = 0:012 and M2 = 0:22 resulted in rapidly elongating
�laments and the formation of mesh clusters and thus require relatively high di�usion
coe�cients in order to avoid local soluble pool depletion. For higher di�usion coe�-
cients such as D � 8�10�4�m2s�1 depletion zones could not be observed. For small
values of D all depletion zones appeared to have only small diameters.
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Figure 11: Mesh clustering in response to variations of the di�usion coe�cientD. Very small di�usion coe�cients
interfered with the formation of mesh clusters, whereas mesh clustering was enhanced by rapid di�usion
of �lament precursor molecules.

elongation lateral annealing "

Figure 12: Comparison of simulated keratin networks (upper row) with intracellular keratin networks visualized
by scanning electron microscopy (lower row) for two scenarios: preference of �lament elongation (left)
and branching (right).
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l length of the observation window

D di�usion constant

k reaction constant for keratin annealing

� radius of the circle whose soluble pool determines
the probability of local keratin annealing

q probability for end-on integration

c background concentration in keratin tetramers per
�m2

M1 controls the probability of �lament initiation in
comparison to �lament elongation

M2 controls the probability of lateral annealing in com-
parison to free �lament nucleation

Table 1: Model parameters

l length of the observation window 2:65�m (500 pixels)

D di�usion constant 0:0005�m2s�1

k reaction constant for keratin annealing 0:004=(tetramer � s)

� radius of the circle whose soluble pool determines
the probability of local keratin annealing

25nm

q probability for end-on integration 0:8

Table 2: Standard settings for the simulations
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