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Abstract

A stochastic microstructure model is developed in order to describe and simulate
the 3D geometry of two-phase microstructures (solid and pore phase), where the
solid phase consists of spherical particles being completely connected with each
other. Such materials appear e.g. in La0.6Sr0.4CoO3−δ (LSC) cathodes of solid
oxide fuel cells, which are produced by screen printing and sintering of a paste
consisting of LSC powder manufactured by flame spray synthesis. Thus, as a
model type, we consider (fully parameterized) random sphere systems which
are based on ideas from stochastic geometry and graph theory. In particular,
the midpoints of spheres are modeled by random point processes. In order to
assure the complete connectivity of the spheres, a modified version of the relative
neighborhood graph is introduced. This graph controls the radii of spheres such
that a completely connected sphere system is obtained. The model parameters
are exemplarily fitted to three different materials for LSC cathodes, produced
with sintering temperatures of 750, 850 and 950◦C, respectively. Finally, the
goodness of fit is validated by comparing structural characteristics of real and
simulated image data.

Keywords: 3D Imaging, Connectivity, FIB-Tomography, Germ-Grain Model,
Hough Transform, MIEC Cathode Material, Point Pattern Analysis, Random
Geometric Graph, SOFC, Sphere Representation, Watershed Transformation

1. Introduction

In this paper the microstructure of La0.6Sr0.4CoO3−δ (LSC) cathodes in solid
oxide fuel cells (SOFC) is investigated. For classical SOFC electrodes (e.g. Ni-
YSZ anodes or LSM-YSZ cathodes) microstructure effects are widely discussed
in literature, see [1, 2, 3, 4, 5, 6]. However, modern electrode frequently consists
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of mixed ionic-electronic conductors (MIEC), such as LSC [7, 8, 9, 10, 11, 12,
13]. The microstructure effects of these MIEC materials on the electrochemical
kinetics are not yet well understood. For this purpose quantitative investigations
of their microstructures are required.

SOFC operate at high temperatures up to 1000◦C, which increase the ki-
netics of transport processes (e.g. diffusion of oxygen-ions through the solid
electrolyte) and of electrochemical reactions (i.e. oxidation of fuel on the anode
side and reduction of oxygen on the cathode side). Current research activities
are strongly focusing on intermediate temperatures, i.e. 500-600◦C, in order
to decrease degradation rates and enhance the life-time. When lowering the
temperature, transport and reaction kinetics decrease and, consequently, many
of the traditional materials used in high temperature SOFC are not suitable
for intermediate temperature applications. However, LSC is a material which
still provides fast charge transport kinetics and a high efficiency towards oxygen
reduction at intermediate temperatures, see e.g. [14, 15, 16, 17].

As a MIEC, LSC provides several parallel reaction pathways, including trans-
port of oxygen through the bulk of the perovskite, through the pores and along
the particle surface [18]. In the last decade, most of the attention has been fo-
cused on the investigation of the bulk pathway that is seen as dominant for the
La0.6Sr0.4CoO3−δ composition [17]. The bulk pathway comprises the incorpora-
tion of oxygen within the crystalline structure of the MIEC (also called ”oxygen
exchange”) followed by oxygen bulk diffusion towards the electrode/electrolyte
interface where charge transfer, which is assumed as facile, occurs. The overall
kinetics of oxygen reduction as well as the optimized microstructure are there-
fore controlled by the competition between oxygen exchange and bulk diffusion.
When oxygen bulk diffusion is rate-determining, thin dense electrodes are de-
sired. In contrast, if oxygen exchange is a slow reaction step, as often reported
for LSC, porous microstructures with large inner surface area are favored to
create as many oxygen exchange sites at the electrode/air interface as possible.
This can be achieved either by increasing the cathode thickness [11] and/or de-
creasing the grain size down to the nanoscale [9, 10]. The working hypothesis of
the current experimental investigation was to reduce the sinter temperature as
far as possible in order to limit grain growth, keep nanoscaled particles and pro-
vide high surface area for oxygen exchange. However, when using this strategy,
bottlenecks between the LSC grains tend to define narrow constrictions that
may question to a large extent the starting assumption of fast bulk diffusion.

In order to study the effect of varying sinter temperatures on the cathode
performance it is necessary to analyse the resulting changes of the microstructure
which influences oxygen transport (i.e. tortuosity, constrictivity, solid and pore
volume fractions) and oxygen reduction kinetics (i.e. surface area). Therefore,
in the present paper, we focus on developing a stochastic model which is able
to describe and simulate the 3D morphology of LSC cathodes in solid oxide fuel
cells produced with varying sinter temperatures.

The motivation for the development of a stochastic microstructure model is
related to the methodologies for virtual materials design, which we intend to
establish for SOFC electrodes. For the virtual materials design it is crucial to
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detect quantitative relationships between the production process (e.g. variation
of sinter temperatures and/or change of pore former contents) and the resulting
microstructures on a statistical basis. In a further step, microstructure realiza-
tions from the stochastic model can be combined with physical simulations, e.g.
finite element modeling (FEM), for virtual scenario analyses. Thereby, model-
based morphologies of LSC cathodes are transformed into grid representations
of the microstructures which are used as a basis for FEM, in order to simu-
late the effect of microstructure variations on the electrode performance (e.g.
ohmic resistance, polarization resistance). In this way, the results of our simu-
lations can be used for microstructure optimization while reducing the amount
of expensive experiments in real laboratories. The development of a suitable
stochastic model for LSC-cathodes, which is the focus of the present paper,
represents an important corner stone in the methodological framework of a fu-
ture virtual materials design that enables the purposeful optimization of the
electrode microstructures.

Our investigations are based on grayscale images gained by high-resolution
focused-ion-beam (FIB) tomography, see [19]. In particular, the stochastic mi-
crostructure model is fitted to three data sets from FIB-tomography, represent-
ing LSC cathodes where the sinter temperature is varied from 750 over 850 to
950◦C, see [13]. We denote these three materials according to the considered
sinter temperature by LSC-750, LSC-850 and LSC-950, respectively.

Since the LSC microstructure is dominated by a dense packing of spheri-
cal particles, our first aim is to represent the LSC phase by a union of mod-
erately overlapping spheres, similar to the structural segmentation procedure
proposed in [20] for networks of nanoparticles in organic-inorganic composites.
This structural segmentation reduces the number of parameters describing the
3D microstructure of LSC cathodes drastically, since the representation of 3D
image data is changed from billions of voxel to thousands of spheres.

The unions of spheres extracted from LSC data can be regarded as real-
izations of marked point processes in 3D where the midpoints of spheres are
the locations of points and the corresponding radii are their marks. The ad-
vantage of this off-grid representation is that the microstructure of LSC cath-
odes represented by unions of spheres can be described by point-process models
which form a fundamental class of models in stochastic geometry, see [21, 22].
We thus develop a parametric point-process model representing the solid phase
of LSC-cathodes and fit the parameters of this model to the three exemplary
sphere systems extracted from FIB-tomography data. Similar approaches have
recently been considered for modeling the ZnO phase in photoactive layers of
hybrid polymer-ZnO solar cells and the pore space of graphite electrodes in
Li-ion batteries, see [23, 24].

However, a particular challenge in modeling the solid phase of porous materi-
als is to build the stochastic microstructure model in such a way that its realiza-
tions consist of one single connected cluster only. To the best of our knowledge,
so far there are no models of this kind in literature. In the present paper, the
complete connectivity of the simulated LSC phase is achieved by using a suitably
chosen class of random geometric graphs, see e.g. [25]. In this way, a stochastic
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model is obtained which allows the description and simulation of percolating
LSC microstructures for a wide range of sinter temperatures by means of a lim-
ited number of parameters. Moreover, our stochastic microstructure model (in
combination with physical modeling of transport processes) opens new possi-
bilities for virtual materials design, by identifying rate limiting microstructure
effects and by optimizing the parameters for the fabrication of cathodes.

The paper is organized as follows. In Section 2 the fabrication process of
the LSC cathodes and the image acquisition by means of FIB-tomography are
briefly explained. Subsequently, in Section 3, the structural segmentation of the
LSC material is discussed, where the solid phase is represented by a union of
moderately overlapping spheres. In Section 4, the stochastic modeling of the
sphere systems extracted from FIB-tomography data is described. Last but not
least, in Section 5, the microstructure model is validated by the comparison of
image characteristics computed for real and simulated data.

2. Experimental Setup

2.1. Materials processing

In a previous paper, see [13], the electrochemical activity is described for
the same LSC cathodes as investigated in the present study. Furthermore, in
[13] also the fabrication process and the experimental procedure are considered
for LSC cathodes with different microstructures, where the fabrication process
can be summarized as follows. Powders of La0.6Sr0.4CoO3−δ were produced
by flame spray synthesis, see [26]. The resulting LSC powder is characterized
by a bimodal particle size distribution, with a major component of nano-sized
particles (15-20 nm) and a minor component of coarser particles (>1µm). The
specific surface area measured by BET is 29m2g−1. LSC cathodes are then
fabricated by screen printing. For this purpose, pastes with a solid loading of
25 wt % (including LSC and pore former) were prepared. Solsperse3000 (from
Avecia) was used as a dispersant and Terpineol (from FLUKA) as solvent. The
LSC cathodes tend to form cracks during the sintering and associated shrinkage,
which is caused by the high sinter activity of the nano-particles. In order to
reduce the crack formation, graphite pore former (Timrex KS4, D50 = 2 µm)
was included in the paste mixture. The samples, which are used in the present
study contain 17 wt % of LSC and 8 wt % of graphite. These pastes are screen
printed on a Ce0.8Gd0.2O1.9 electrolyte substrate, using a 75 µm mesh with a
thickness of 36 µm. Sintering in air was then performed at 750, 850 and 950◦C.

2.2. Image acquisition

FIB-tomography of the three samples (LSC-750, LSC-850, LSC-950) was
performed according to the procedures described in previous papers, see [19,
27, 28, 29]. The sample preparation included polymer impregnation, grinding
and polishing. For impregnation of the pores, a polymer system with Araldit
BY158 / Aradur 21 (supplied by Huntsman) was used. Mechanical polishing
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was performed on textile substrates with diamond suspensions of 6, 3 and 1 µm
(MetaDi mono-crystalline diamond suspension, Buehler).

For the FIB-tomography experiments we used a ZEISS NVision 40, which
is located at the Electron Microscopy Center of ETH Zürich (EMEZ). The
FIB-procedure includes the following steps: 1) Gas assisted metal deposition
of 1 µm thick Pt layers. The layer covers a small area of 20 × 20 µm at the
location of analysis, in order to protect the surface from ion milling artefacts.
2) Preparation of cubes with edge lengths between 10 to 15 µm. Freestanding
cubes are prepared in order to reduce shadowing effects during the acquisition
of image stacks (i.e. avoid artificial gray scale gradients). 3) Serial sectioning:
Automated acquisition of image stacks is obtained by repeated and alternating
execution of erosion (FIB) and imaging (SEM).

During serial sectioning the FIB-slicing is performed with an acceleration
voltage of 30 kV and a beam current of 1.5 nA. The ESB detector is used for
BSE imaging at low kV (i.e. at 1.2 to 1.8 kV), with an aperture size of 60 µm.
The original images consist of 2048× 1536 pixel with pixel sizes between 5 to 8
nm. For each sample, 800 to 1200 images are acquired with a slicing distance
between 5 and 8 nm (in order to achieve cubic voxels). The resolution in the raw
data then reduces to 1024×768 pixel. Hence, the voxel sizes after binning of the
raw data is then between 10 and 16 nm. The procedure for the subsequent image
analysis consists of a) alignment of the stack, b) cropping of a region of interest
(cube sizes between 400 and 900 µm3), c) noise filtering, d) segmentation, e)
visualization and f) quantification.

For the steps a) to e) the software packages Avizo and Fiji are used, see
[30] and [31]. For the quantitative analyses in step f) with c-PSD (continu-
ous pore/particle size distribution) and with MIP-PSD (simulation of mercury
intrusion porosimetry), we use home-made software, which is developed with
Matlab and Java, see [32].

3. Structural Segmentation of Image Data

In this section we describe a technique which allows us to represent the LSC
phase by a union of moderately overlapping spheres, where several tools from
mathematical image analysis are combined with each other.

After decomposing the LSC phase in disjoint sets by means of a watershed
algorithm, each of these sets is represented by a sphere, whose parameters are
calculated with the aid of the Hough transform, see also [20]. Furthermore,
in order to assure that the extracted sphere system is completely connected,
an algorithm is introduced which connects separate clusters of spheres without
causing a significant change in the structure. This structural segmentation is
exemplarily accomplished for the three FIB-tomography images of LSC cathodes
sintered with different temperatures (i.e. LSC-750, LSC-850, LSC-950).

3.1. Transformation to Isotropic Microstructure

It turns out that in LSC-850 and LSC-950 the nanoparticles are formed
more like ellipsoids rather than spheres, whereas in LSC-750 most particles
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Figure 1: Original (left) and rescaled isotropic (right) 3D images from FIB-tomography for
LSC-850

have a spherical shape. A closer inspection shows that the particles in LSC-850
and LSC-950 are compressed in z-direction, see Figure 1 (left). Since isotropic
microstructures are much easier to be handled mathematically, the images from
LSC-850 and LSC-950 are retransformed to isotropic structures by scaling the
z-component accordingly. Segmentation and modeling is then performed on the
rescaled isotropic structures, see Figure 1 (right). After rescaling, for all three
microstructures we obtain a voxel size of 7.5 nm3. Notice that all structural
characteristics and model parameters in the present paper are given with respect
to this voxel size.

Figure 2: 2D slice (of size 7.4× 6.0 µm2) of filtered grayscale (left) and binary (right) image
of LSC-850

3.2. Binarization

To be brief, the following steps of structural segmentation are explained for
LSC-850 only. The segmentation of LSC-750 and LSC-950 is analogous.

At first, the scaled grayscale image I = {I(x, y, z), (x, y, z) ∈ D} gained
by FIB-tomography of LSC-850 is converted into a binary image, on which the
sphere detection will be arranged. As a preparation step, we apply a median
filter of size 3 × 3 to the grayscale image in order to eliminate noise, see [33].
Then, the filtered grayscale image is binarized by global thresholding with a
threshold value of 83, i.e., voxel with grayscale values lower than 83 are set
to 0 (black = pore), otherwise to 255 (white = LSC). The threshold has been
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chosen manually according to a good optical match, which is adequate because
the phase contrast between solid and pore phase (filled with epoxy) is very high,
see Figure 2.

3.3. Watershed Transformation

Subsequently, the (solid) foreground {(x, y, z) ∈ D : B(x, y, z) = 1} of the
binarized image B = {B(x, y, z), (x, y, z) ∈ D} obtained from I is partitioned
into pairwise disjoint sets Z1, . . . , Zn. For this purpose the watershed transfor-
mation is used, see [34, 35, 36]. The idea of the watershed algorithm is that
a grayscale image is interpreted as a topographic relief, where the height of a
certain point is given by its grayscale value. Then, metaphorically speaking the
relief is flooded, starting at the local minima. In addition, if water from differ-
ent local minima merge at a certain point we separate the water at this point
by a so-called watershed. Thus, we get a partition of the grayscale image into
disjoint sets.

Note that the watershed transformation is designed for grayscale images only.
However, we do not apply it directly to I, but to the so-called distance transfor-
mation of the binary image B, which gives a better separation of the individual
objects, see [35]. In the distance transformed image T = {T (x, y, z), (x, y, z) ∈
D} we associate each voxel (x, y, z) ∈ D with its shortest distance T (x, y, z) to
the background phase. This can be done very efficiently using e.g. the algorithm
proposed in [41]. The resulting grayscale image T is then inverted such that it
fits better to the watershed framework, i.e., we consider the image T ′ given by

T ′(x, y, z) = max(x′,y′,z′)∈D T (x′, y′, z′)− T (x, y, z), (x, y, z) ∈ D .

The result of the watershed transformation applied to T ′ is a subdivision of
the domain D into disjoint sets Z ′1, . . . , Z

′
n ⊂ D. The binary image displaying

the union of boundaries ∂Z ′1 ∪ . . . ∪ ∂Z ′n between the sets Z ′1, . . . , Z
′
n, so-called

watershed lines, is denoted by W , see Figure 3 (left). We ,subtract’ W from B,
where the resulting binary image shows the partitioning of the solid phase of
image B into disjoint sets Z1, . . . , Zn, see Figure 3 (right).

3.4. Hough Transform

In the next step we represent each of the components Z1, . . . , Zn of the solid
phase derived in Section 3.3 by one spherical object. Note that the Hough
transform is a suitable technique to detect geometrical objects, which can be
uniquely described by a few parameters, see e.g. [37] and [38]. In our case,
spheres are uniquely determined by their midpoint (x, y, z) and radius r.

The key idea of the Hough transform is to build up the Hough spaces cor-
responding to the sets Z1, . . . , Zn, whose elements are 4-dimensional vectors
(x, y, z, r) each representing a sphere. For each i = 1, . . . , n, the possible values
of (x, y, z) are given by all points contained in Zi and the values of r are in
R = {1, . . . , rmax}, where the maximum radius rmax = 300 is chosen manu-
ally. Then, denoting by A(x, y, z, r) the number of voxel which simultaneously
belong to the surface of the discretized sphere (x, y, z, r) and the surface of Zi,
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Figure 3: Binary image (top left), watershed lines (top right), the partition of the solid phase
in B (bottom left) obtained by the watershed transform of T ′ and the sphere representation by
means of the Hough transform (bottom right) on a observation window of size 7.4× 6.0 µm2

the result of the Hough transformation for the set Zi is a sphere (x, y, z, r) such
that A(x, y, z, r) ≥ A(x′, y′, z′, r′) for all (x′, y′, z′) ∈ Zi and r′ ∈ R.

A comparison of the binary image B and its sphere representation B′ after
applying the Hough transform is given in Figures 3 (right) and 4, which shows
that the 3D structures of B and B′ are in good accordance. Merely, the volume
fraction of the foreground phase of B′ is slightly smaller than that of B.

3.5. Improvement of Connectivity and Volume Fraction

The LSC particles in the porous electrodes form a grain-supported texture,
where all particles are in contact with each other. This means that also in
the segmented image the solid phase should be perfectly connected, i.e., each
sphere has to be connected to another one. This requirement can not directly
be ensured by the sphere extraction algorithm described above. Thus, in order
to achieve complete connectivity of the sphere system, the following iterative
procedure is proposed, which changes the structure of the original sphere system
only marginally: 1) Determine the clusters of connected spheres and allocate the
corresponding cluster number to each sphere by using the algorithm described
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Figure 4: 3D cutout (of size 7.4× 6.0× 1.1 µm3) of the binary image B before (left) and after
(right) applying the sphere detection algorithm

in [39]. 2) Find the pair of spheres (xi1 , yi1 , zi1 , ri1), (xi2 , yi2 , zi2 , ri2) which
belong to different clusters and have the smallest Euclidean distance d from
each other. 3a) If d ≤ 2 and max{ri1 , ri2} < 20, the radii are increased such
that the two spheres overlap, i.e., the new radii r′i1 = ri1 + d/2 and r′i2 =
ri2 + d/2 are considered. 3b) Otherwise, a new sphere (x, y, z, r) is put such
that x = xi1 + s · (xi2 − xi1), y = yi1 + s · (yi2 − yi1), z = zi1 + s · (zi2 − zi1)
and r = d/2 + 0.1, where s = (ri1 + d/2)/(|xi1 − xi2 |+ |yi1 − yi2 |+ |zi1 − zi2 |).
4) Repeat steps 1 to 3 until only one cluster of spheres remains.

For the considered image data of LSC-850, the volume fraction of the fore-
ground phase of B′ has been increased from 30.14% to 30.96% by applying the
iterative procedure described above, i.e., the structure of the sphere system has
been changed only marginally in order to achieve complete connectivity.

Figure 5: Difference image B−B′′ (of size 7.4×6.0 µm2), illustrating that the radii of spheres
in B′′ are slightly underestimated

Finally, the volume fraction (30.96%) of the completely connected sphere
system, denoted by B′′ in the following, is fitted to the volume fraction (35.21%)
of the binary image B. For this reason, we examine the difference image B−B′′.
In view of the homogeneous distribution of non-detected foreground voxels of
B, see Figure 5, we can assume that in the sphere system B′′ the radii of the
detected spheres are slightly underestimated. Thus, the radii of all spheres in
B′′ are increased by 0.8, leading to a volume fraction of 35.36%, where this final
sphere representation is denoted by R.
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Figure 6: 3D cutout (of size 7.4× 6.0× 1.1 µm3) of binary image B (left) and sphere system
R (right)

It turns out that not only the volume fractions of the foreground phases of
B and R nicely coincide, see Figure 6. A very good agreement is also observed
for further image characteristics of B and R.

3.6. Structural Analysis of Sphere Representation

In order to analyze if the sphere system R represents the most important
properties of the real microstructure (as captured by FIB-tomography), several
structural characteristics of R and the original binary image B are calculated
and compared to each other. In particular, the spherical contact distribution
functions H, H̃ : [0,∞) → [0, 1] of background (pore) and foreground (solid)
phase are computed, where H(t) is the probability that the minimum distance
from a randomly chosen point of the pore phase to the solid phase is not larger
than t > 0. Similarly, H̃(t) is the probability that the minimum distance from a
randomly chosen point of the solid phase to the pore phase is not larger than t.
It turns out that the spherical contact distribution functions H and H̃ obtained
from B and R, respectively, are nearly identical, see Figure 7.

As further structural characteristics, the continuous particle and pore size
distributions P, P̃ : [0,∞)→ [0, 1] have been calculated for B and R, where P (t)
is the volume fraction, which can be covered by spheres with center belonging to
the foreground phase, and radius t, such that these spheres have no intersection
with the background phase. The value P̃ (t) of the continuous pore size distri-
bution is defined analogously, but now from the perspective of the background
phase, see [32]. Note that the continuous particle and pore size distributions P

and P̃ computed for B and R, respectively, are very similar, see Figure 8.
Thus, it is reasonable to consider the sphere representation R as the data

basis for our stochastic microstructure model of LSC cathodes.

4. Stochastic Microstructure Model

In this section we present our approach to stochastic modeling of the 3D
microstructure of LSC cathodes, where we fit the model parameters to three dif-
ferent LSC cathodes produced with sinter temperatures of 750, 850 and 950◦C,
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Figure 7: Spherical contact distribution functions H (top row), H̃ (bottom row) computed
for LSC-750 (left), LSC-850 (center) and LSC-950 (right)

respectively. A particular challenge in modeling the solid phase of LSC elec-
trodes is to construct the model in such a way that with probability 1 its real-
izations consist of one single cluster only.

The basic idea is to consider the sphere systems, whose extraction from FIB-
tomography images has been described in Section 3, as realizations of random
marked point processes, which can be interpreted as random germ-grain models
with spherical grains, i.e. random sphere systems. To achieve the goal that
the random sphere systems are completely connected with probability 1, we
introduce a suitably chosen class of random geometric graphs, being a modified
version of so-called relative neighborhood graphs. The vertices of the graphs
will be the midpoints of the spheres to be constructed, whereas their edges
correspond to pairs of (moderately) overlapping spheres.

Note that the model type described above will be the same for all three
LSC electrodes considered in this paper. Just the specification of the model
parameters is different in each case. This means in particular that our stochastic
microstructure model can be used for computer-based scenario analyses with the
general objective of developing improved materials and technologies for LSC
electrodes.

4.1. Modeling of Sphere Midpoints

We first introduce a point-process model, which accurately describes the
geometrically complex patterns of sphere midpoints as observed in the sphere
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Figure 8: Continuous particle (top row) and pore size distribution (bottom row) computed
for LSC-750 (left), LSC-850 (center) and LSC-950 (right)

systems extracted from FIB-tomography data for LSC-750, LSC-850 and LSC-
950. For details regarding marked point processes as well as their statistical
inference and simulation, we refer e.g. to [21, 22].

In order to appropriately select the model type for the patterns of sphere
midpoints extracted in Section 3, the following key properties of these point
patterns should be taken into account: 1) There are clusters of points in the
neighborhood of large spheres, see Figure 9 (left). 2) There exist large regions
of empty space, where are no points at all, see Figure 9 (right). The latter
property can be explained by the manufacturing process described in Section 2.

Figure 9: Key properties of extracted sphere systems: clusters of small spheres (left) and large
regions of empty space (right)
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4.1.1. Large Spheres

To begin with, we consider the midpoints of those spheres whose radii are
larger than a certain threshold t1 > 0. The point patterns of these midpoints are
modeled by a Matérn hardcore point processes {Sn} in R3 with some intensity
λh > 0 and hardcore radius rh > 0, see [21]. Furthermore, the radii of large
spheres are modeled by sequences of independent and identically distributed
random variables {Mn}, which are independent of {Sn}. The distribution of
Mn belongs to a class of (shifted and truncated) inverse Gaussian distributions.
More precisely, Mn has an inverse Gaussian distribution IG(µ1, µ2, t1, t2) with
parameters µ1, µ2 > 0, which is shifted to the right by the threshold t1 > 0
introduced above and truncated at some t2 > t1, i.e., the random variables Mn

take their values in the interval [t1, t2] in view of the fact that the radii can not
become arbitrarily large as the production process yields a bounded size of the
LSC particles.

The marked point process {Sn,Mn} then yields the random system of large
spheres Ξ =

⋃∞
n=1 b(Sn,Mn), where b(x, r) = {y ∈ R3 : |x− y| ≤ r} denotes the

sphere with midpoint x ∈ R3 and radius r > 0.

4.1.2. Large Empty Regions

In the next step the large empty regions are included into our microstructure
model by considering the random set Ξ′ =

⋃∞
n=1 b(Pn, r0), where r0 > 0 is some

constant and {Pn} is a (conditional) Poisson point process in the complementary
set (Ξ⊕ b(o, r0))

c
with some intensity λ > 0. Note that by definition it holds

that Ξ′ ∩Ξ = ∅, i.e., the random set Ξ′ can be interpreted as union of forbidden
zones for midpoints of spheres.

4.1.3. Remaining Sphere Midpoints

The midpoints of the remaining spheres, i.e. spheres with radii smaller than
t1, are modeled by clustered Coxian point processes, see [21], under the condition
that the random sets Ξ (union of large spheres) and Ξ′ (empty space) are given.

Note that the midpoints of small spheres should neither be contained in
the union set Ξ of large spheres, nor in the empty space Ξ′. Furthermore,
the midpoints of small spheres are clustered and their intensity increases with
decreasing distance to the set Ξ. Thus, the clustered Cox processes of midpoints
of small spheres are built as follows. First, for some constant λc > 0, we
consider an inhomogeneous Poisson point process {P̃n} (of cluster centers) in
the complementary set (Ξ ∪ Ξ′)c with intensity field λp(·) = λ(·)/λc, where

λ(x) =

{
a · (min{|x− y| : y ∈ Ξ})b if x 6∈ Ξ ∪ Ξ′,
0 if x ∈ Ξ ∪ Ξ′,

(1)

and a, b ∈ R are some parameters. Then, within the union set
⋃∞
n=1 b(P̃n, rc)

of spheres with some radius rc > 0, intersected by the set (Ξ ∪ Ξ′)c, a homo-

geneous Poisson process {S̃n} with intensity λc is considered, which models the
midpoints of small spheres.
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4.1.4. Model Fitting

The stochastic model of sphere midpoints introduced in Sections 4.1.1–4.1.3
has 12 parameters: λh, rh, µ1, µ2, t1, t2, a, b, λc, rc, λ, and r0.

The parameter λh can easily be estimated by λ̂h = #{Sn : Sn ∈ W}/|W |,
where #{Sn : Sn ∈ W} is the number of midpoints of large spheres in some
sampling window W ⊂ R3 and |W | denotes the volume of W . The hardcore
distance rh is estimated as the minimum distance r̂h = minn 6=m{|Sn − Sm|}
observed between two points of {Sn}. Furthermore, µ1, µ2 are estimated by
means of the maximum likelihood method.

Figure 10: Pair correlation function (left), nearest-neighbor-distance distribution function
(center) and spherical contact distribution function (right) for extracted (black) and simulated
sphere midpoints for LSC-750 (top), LSC-850 (center) and LSC-950 (bottom)
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The (unscaled) intensity field λ(x) at location x ∈ R3, introduced in (1),
depends on the distance dΞ(x) = min{|x− y| : y ∈ Ξ} between x and the union
set of spheres Ξ, where we put λ(x) = 0 if x ∈ Ξ ∪ Ξ′. Thus, the value of λ(x)
at locations x 6∈ Ξ ∪ Ξ′ can be estimated by analyzing the intensity of sphere
midpoints in the sets BΞ

i = {x ∈ R3 : dΞ(x) ∈ (2i, 2i+ 2]} for i = 0, 1, 2 . . .. In
particular, for any i = 0, 1, 2 . . ., the intensity λ(x) at locations x ∈ BΞ

i can be
estimated by

λ̂(x) =
#{S̃n : S̃n ∈ BΞ

i }
|Bξi |

.

Then, inserting λ̂(x) into (1), estimates â and b̂ for a and b can be computed
using least squares methods of non-linear regression analysis.

The parameters t1, t2 are estimated manually taking into account the em-
pirical distributions of radii of the sphere systems extracted in Section 3 from
FIB-tomography data. The remaining four parameters λc, rc, λ, and r0 are es-
timated by the so-called minimum contrast method, where the following cost
function has been considered:

L(λc, rc, λ, r0) =

∫ r2

r1

(
|N(r)−Nλc,rc,λ,r0(r)|+ |g(r)− gλc,rc,λ,r0(r)|

)
dr . (2)

Here, N,Nλc,rc,λ,r0 and g, gλc,rc,λ,r0 denote the nearest-neighbor-distance dis-
tribution function and the pair correlation function, see [21], computed for the
midpoints of spheres which have been extracted from the FIB-SEM images and
for point patterns simulated from the point-process model described above, re-
spectively, and the constants r1, r2 in (2) are appropriately chosen integration

limits. A vector (λ̂c, r̂c, λ̂, r̂0) such that L(λ̂c, r̂c, λ̂, r̂0) ≤ L(λc, rc, λ, r0) holds
for all admissible values of (λc, rc, λ, r0) is called a minimum contrast estimator
for (λc, rc, λ, r0).

The numerical values of the fitted parameters which have been obtained for
LSC-750, LSC-850 and LSC-950 are given in Table 1. Furthermore, Figure 10
shows that not only the nearest-neighbor-distance distribution functions and
the pair correlation functions computed for the FIB-SEM images and for the
point patterns simulated from the fitted point-process models coincide nicely.
This is also true for the spherical contact distribution function, see Figure 10,
which has not been used for model fitting.

4.2. Graph-based Modeling of Connectivity

Note that the sphere representation R derived in Section 3 can be seen as a
completely connected graph GR = (VR, ER), where the vertex set VR is the set
of sphere midpoints, the edge set ER corresponds to pairs of overlapping spheres,
and, in addition, the vertices of GR are weighted by the radii of spheres. Our
goal is now to determine a mathematical rule for setting edges such that 1) the
resulting edge set has similar structural properties as ER, given the vertex set
VR, and 2) considering the realizations of the point-process model introduced in
Section 4.1 as vertex sets, the resulting (infinite) graphs should be completely
connected with probability 1.
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Table 1: Fitted parameters of point-process model for different sinter temperatures computed
with respect to the voxel size of 7.5 nm3

LSC-750 LSC-850 LSC-950

λ̂h 0.00000227 0.0000013 0.00000082
r̂h 19.95 22.93 20.22
µ̂1 6.24 8.38 12.48
µ̂2 2.07 2.56 6.05

t̂1 20 20 30

t̂2 300 300 300

λ̂ 0.0005 0.000037 0.005
r̂0 11 22 6
â 0.00011 0.00013 0.000027

b̂ -0.3883 -0.3187 -0.6447

λ̂c 0.000087 0.00014 0.000023
r̂c 14 12 25

Regarding the first criterion (of structural similarity) mentioned above, a
connection rule is constructed such that there is a high accordance in the dis-
tributions of the edge length and the coordination number (i.e. the number of
edges emanating from a vertex). It turns out that a modified version of so-called
relative neighborhood graphs fulfills these requirements. Furthermore, it can
be shown that with probability 1 this approach leads to completely connected
graphs if the random vertex set is given by the point-process model introduced
in Section 4.1.

4.2.1. Modified Relative Neighborhood Graphs

For a given set of vertices V = {v1, v2, . . .} ∈ R3, the relative neighborhood
graph (RNG) is defined as follows, see e.g. [40]. Two vertices u, v ∈ V are
connected by an edge if and only if

d(u, v) ≤ max{d(v, v′), d(v′, u)} for all v′ ∈ V \ {u, v}, (3)

where d(u, v) = |u− v| denotes the Euclidean distance between u and v.
It is not difficult to see that the RNG corresponding to a finite vertex set

is completely connected. Thus, in principle, the RNG would be an appropriate
model for the edge set of GR, given the vertex set VR. However, in the graph
GR corresponding to R we observe vertices with huge nearest-neighbor distances
and, in addition, with very large coordination numbers (up to 36). These fea-
tures can not be comprehended by the RNG. Thus, in order to get a good fit to
the empirical distributions of edge lengths and coordination numbers of GR, we
modify the RNG by substituting the Euclidean distance in (3) for new distance
functions d0, d

′
0 : R3 × R3 → [0,∞) defined as follows.

For each vertex v ∈ V , let w(v) = min{d(u, v) : u ∈ V \ {v}} denote the
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nearest-neighbor distance of v. Then, for any u, v ∈ V , we put

d0(u, v) =


d(u, v)

max{w(u), w(v)}α
if max{w(u), w(v)} > c,

d(u, v) if max{w(u), w(v)} ≤ c,
(4)

and

d′0(u, v) =

 d0(u, v) if
d(u, v)

w(u) + w(v)
< δ,

∞ otherwise,

(5)

where α ∈ R and c, δ > 0 are some constants. The resulting modified RNG
with vertex set V is denoted by Gα,c(V ) and Gα,c,δ(V ), respectively, where we
do not put an edge in Gα,c,δ(V ) connecting u, v ∈ V if d′0(u, v) =∞.

Note that the large coordination numbers appearing in GR in combination
with large nearest-neighbor distances are reasonable because due to the struc-
tural segmentation considered in Section 3, it happens that many small spheres
are attached to large ones, see Figure 12. This provides star-shaped regions
within the graph GR, which do not appear in the relative neighborhood graph if
the Euclidean distance between vertices is considered. But, by means of the dis-
tance function d′0, the modified RNG Gα,c,δ(VR) can generate such star-shaped
regions for α > 0, because then a vertex v ∈ VR with a large Euclidean nearest-
neighbor distance w(v) has a smaller nearest-neighbor distance with respect to
d′0. As a result the coordination number of these vertices increases, while in
regions with relatively densely packed vertices the modified RNG Gα,c,δ(VR) is
built in the classical way because d0(u, v) = d(u, v) if max {w(u), w(v)} ≤ c.

Using proving techniques which have recently been developed in [25], it is not
difficult to show that the graph Gα,c(X) with respect to the distance function d0

defined in (4) is completely connected with probability 1 if the (random) vertex

set X is given by the union X = {Sn} ∪ {S̃n} of the point processes {Sn} and

{S̃n} introduced in Section 4.1.
Unfortunately, the graph Gα,c(VR) with distance function d0 still contains

very long edges connecting different clusters of points. Since putting an edge
(u, v) connecting u, v ∈ VR means that the corresponding spheres b(u, ru) and
b(v, rv) to be constructed should intersect each other, i.e., the radii ru, rv have to
be very large. Thus, these large spheres influence and bias the resulting sphere
system to a high degree. In order to avoid this type of phenomena, we only
set an edge connecting the vertices u, v ∈ VR if the Euclidean distance d(u, v)
is not too large with respect to the nearest-neighbor distances w(u) and w(v),
i.e., d(u, v) < δ(w(u) + w(v)) for some δ > 0. However, under this additional
condition the complete connectivity of the random graph Gα,c,δ(X) can not be

ensured anymore for X = {Sn} ∪ {S̃n}.
We solve this problem by adding a few more edges to Gα,c,δ(VR). Since it is

desirable that the lengths of these additional edges are as small as possible, the

so-called creek-crossing graph G
(n)
α,c(VR) with respect to the distance function

d0 is considered for some n > 1 which is defined as follows. For any vertex set
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Table 2: Fitted parameters of connectivity model for different sinter temperatures computed
with respect to voxel size 7.5 nm3

LSC-750 LSC-850 LSC-950
α 2.00 1.00 1.00
c 36.00 1.00 11.00
δ 0.97 0.97 0.95

V = {v1, v2, . . .} ∈ R3, two vertices u, v ∈ V are connected in G
(n)
α,c(V ) if and

only if there exists no integer m ≤ n and vertices u = v0, v1, . . . , vm = v ∈ V
with d0(vi, vi+1) < d0(u, v) for all i ∈ {0, . . . ,m− 1}, see [25].

Using again the proving techniques developed in [25], it can be shown that

G
(n)
α,c(X) is connected for each n > 1 with probability 1. We therefore consider

the graph G
(n)
α,c,δ(VR) = Gα,c,δ(VR)∪G(n)

α,c(VR) as our connectivity model, where

n > 1 is chosen a very large (fixed) integer. More precisely, if G
(n)
α,c,δ(VR) is

simulated on a bounded observation window W , then we put n equal to the

number of vertices in VR∩W and thus G
(n)
α,c(VR) is equivalent with the minimum

spanning tree.

4.2.2. Model Fitting

Using the minimum-contrast method, the parameters α, c, δ of G
(n)
α,c,δ(VR)

are fitted to the sphere systems extracted in Section 3 for LSC-750, LSC-850
and LSC-950. The following cost function is used:

L(α, c, δ) = sup
r≤rmax

|D(r)−Dα,c,δ(r)|+|K(r)−Kα,c,δ(r)|+
(

1− |ER ∩ Eα,c,δ|
|ER|

)
,

where rmax > 0 is a sufficiently large constant, and D,Dα,c,δ and K,Kα,c,δ are
the empirical distribution functions of edge lengths and coordination numbers

computed for the graphs GR = (VR, ER) and G
(n)
α,c,δ(VR), respectively. Further-

more, |ER ∩Eα,c,δ| denotes the number of edges which simultaneously occur in

the graphs GR = (VR, ER) and G
(n)
α,c,δ(VR).

The numerical values of the fitted parameters which have been obtained for
LSC-750, LSC-850 and LSC-950 are given in Table 2. Figure 11 shows that
the distributions of edge lengths and coordination numbers, respectively, of the

graphs GR = (VR, ER) and G
(n)
α,c,δ(VR) nicely coincide for LSC-750, LSC-850 and

LSC-950. Furthermore, Figure 12 shows exemplarily for LSC-850 that there is
a good visual agreement between the sphere system R extracted from FIB-
tomography data, the graph GR = (VR, ER) corresponding to R, the modeled

graph G
(n)
α,c,δ(VR) with the same vertex set VR as in GR, and the random graph

G
(n)
α,c,δ(X), where X = {Sn}∪{S̃n} is the point process introduced in Section 4.1.
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Figure 11: Distributions of edge lengths in GR = (VR, ER) (first row) and G
(n)
α,c,δ(VR) (second

row), and distributions of coordination number in GR = (VR, ER) (third row) and G
(n)
α,c,δ(VR)

(fourth row) for LSC-750 (first column), LSC-850 (second column) and LSC-950 (third colum)
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Figure 12: Sphere system R and graph GR = (VR, ER) (top), modeled graph G
(n)
α,c,δ(VR)

with the same vertex set VR (bottom left) and random graph G
(n)
α,c,δ(X) (bottom right) on a

observation window of size 7.4× 6.0× 1.1 µm3
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4.3. Retransformation into Sphere System – Modeling of Radii

Using the point process X = {Sn}∪ {S̃n} and the random graph G
(n)
α,c,δ(X),

we now describe how the radii of the random sphere system to be constructed
are determined. The radii of the large spheres, i.e. spheres with radii larger
than t1, have already been modeled in Section 4.1. Thus, only the radii of the
small spheres, i.e. spheres with radii smaller than t1, have to be determined.
This is done in the following way.

First, the radii of all small spheres are put equal to t1. Then, each edge

(u, v) ∈ G(n)
α,c,δ(X) such that the spheres around the corresponding vertices u, v ∈

X do not overlap, is split into two (sub-) edges of equal length by cutting the
edge (u, v) at (u + v)/2. Subsequently, a sphere with radius t1 and midpoint
at the new vertex (u + v)/2 is added. This splitting of edges and adding of
spheres is repeated until no edges are left such that the spheres around the
corresponding vertices do not overlap.

Now, the radii of those small spheres are simultaneously decreased by some
small value ε > 0 such that the volumes of their overlappings with all direct
neighboring spheres do not become smaller than a certain threshold value ρ > 0.
Otherwise, the radius is not decreased. In our case we choose ε = 0.01.

The resulting random system of (moderately) overlapping spheres is denoted
by {Bn}. It is completely connected, where the parameter ρ is chosen such that
the volume fraction of the union

⋃∞
n=1Bn is equal to the volume fraction of the

LSC phase in the binary image B considered in Section 3. This leads to the
values ρ = 0.07 , ρ = 0.03 and ρ = 0.08 for LSC-750, LSC-850 and LSC-950,
respectively.

4.4. Fitting of Specific Surface Area

The union set
⋃∞
n=1Bn of the random sphere system {Bn} of (moderately)

overlapping spheres introduced in Section 4.3 fits the volume fraction of the
LSC phase quite well. Furthermore, the connectivity properties of

⋃∞
n=1Bn are

similar to those of the LSC phase. But the specific surface area of the LSC
phase is underestimated by

⋃∞
n=1Bn, in particular for the finest morphology of

LSC-750, see Figure 14. The reason for this is that the sphere is the geometrical
object with the smallest possible specific surface area.

We thus develop an algorithm for roughening the surface of the random set⋃∞
n=1Bn in order to increase its specific surface area, without changing the

volume fraction nor destroying the connectivity of
⋃∞
n=1Bn. For this pur-

pose, we consider a random marked point process {Pi,Mi} on the surface
∂
(⋃∞

n=1Bn
)

of
⋃∞
n=1Bn, where the points Pi ∈ ∂

(⋃∞
n=1Bn

)
indicate the lo-

cations for adding/removing small (spherically shaped) ,particles’ at the surface
of
⋃∞
n=1Bn and the absolute values |Mi| of the marks Mi ∈ R indicate the

size of these particles. More precisely, a random sphere b(Pi, |Mi|) with mid-
point Pi located on ∂

(⋃∞
n=1Bn

)
is either added to

⋃∞
n=1Bn, or the intersection⋃∞

n=1Bn ∩ b(Pi, |Mi|) is removed. Thus, the ,roughened’ microstructure model
of the LSC phase is given by

(⋃∞
n=1Bn∪

⋃
i:Mi>0 b(Pi,Mi)

)
\
⋃
i:Mi<0 b(Pi, |Mi|).
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Regarding the random marked point process {Pi,Mi}, we assume that {Pi}
is some kind of dominance competition point process on the surface ∂

(⋃∞
n=1Bn

)
of
⋃∞
n=1Bn as described in [21], where {Pi} is obtained by the following thinning

procedure of a homogeneous Poisson process {P ′i} with some intensity γ > 0 on
∂
(⋃∞

n=1Bn
)
. To control the distances between pairs of points, every ,Poisson

point’ P ′i is associated with a suitably chosen random mark M ′i , where {M ′i}
is a sequence of independent and identically distributed random variables. The
point P ′i ,survives’ if and only if there is no other point P ′j such that M ′j ≥M ′i
and P ′i ∈ b(P ′j ,M ′j).

To determine an appropriate probability distribution of the marks M ′i , we
consider the difference image B \ R between the binary image B and the cor-
responding sphere representation R derived in Section 3, see Figure 13. In
particular, we determine all white and black clusters in B \ R by means of the
Hoshen-Kopelman algorithm, see [39]. For each cluster, both white and black
ones, the radius of a sphere with the same volume as the cluster is computed
and an exponential distribution with parameter ϑ > 0, shifted by one, is fit-
ted to these radii, i.e., M ′i − 1 ∼ Exp(ϑ). In our case, we obtain the values
ϑ = 0.25 , ϑ = 0.18 and ϑ = 0.13 for LSC-750, LSC-850 and LSC-950, respec-
tively.

Figure 13: Difference image B \ R (with size 7.4× 6.0 µm2) showing LSC phase detected as
pore phase (white) and pore phase detected as LSC phase (black)

Finally, the mark Mi of Pi is defined as follows. In order to assure the con-

nectivity of
⋃∞
i=nBn, we require that P

(
min

e∈E(n)
α,c,δ(X)

d(b(Pi,Mi), e) > 0
)

= 1

holds for each i ≥ 1, where E
(n)
α,c,δ(X) denotes the edge set of the random graph

G
(n)
α,c,δ(X) introduced in Section 4.3. Thus, we put

Mi =

 min
{
M ′i/2,min

e∈E(n)
α,c,δ(X)

d(Pi, e)
}

if Ui = 1,

−min
{
M ′i/2,max

{
0,min

e∈E(n)
α,c,δ(X)

(d(Pi, e)− 1)
}}

otherwise,

where U1, U2, . . . are independent and identically distributed random variables
with P (Ui = 0) = P (Ui = 1) = 0.5.
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Note that the spheres b(P1,M1), b(P2,M2), . . . do not overlap. Further-
more, by the definition of the random radii Mi given above, the connectivity
of
⋃∞
i=nBn is not destroyed. The intensity of the point process {Pi} is chosen

such that the specific surface area of
⋃∞
n=1Bn and B coincide. However, the

maximum intensity of a dominance competition model is limited, see [21], and
eventually smaller than the required intensity in order to fit the specific surface
area of B. In this case we apply the roughening algorithm described above it-
eratively, until the desired specific surface area of B is reached, see Figure 14.
In our case, for the intensity γ the following values are obtained:
γ = 0.01 for LSC-750, γ = 0.008 for LSC-850 and γ = 0.0 for LSC-950.

Figure 14: Comparison of simulated 2D-slices before (left) and after (center) surface rough-
ening, together with a 2D slice from real data of LSC-750 (right) on a observation window of
size 7.4× 6.0 µm2

5. Model Validation

Figure 15 shows that there is a good optical resemblance between the bi-
narized LSC images and the corresponding simulated images, which have been
drawn from the stochastic microstructure model developed in Section 4.

In addition to this, we can quantitatively evaluate the goodness-of-fit of our
stochastic microstructure model, comparing image characteristics which have
been computed for the binarized FIB-SEM and simulated data, respectively. In
particular, we consider the distribution of spherical contact distances from pore
to solid phase, and vice versa, as well as the continuous pore size distribution.
Note that these characteristics have not been used for model fitting. Figure 16
shows that these distribution functions computed for simulated data are in a
good accordance to those obtained for real data.

Furthermore, for the electrode material considered in the present paper, the
geometrical properties of the percolation pathways through the pore and solid
phase, respectively, play an important role for the transport of gas-molecules
and charges (ions, electrons) within the SOFC electrode. Therefore we inves-
tigated the ,geometric tortuosity’ of the pore space and the LSC phase, which
is defined as the relative length of shortest paths along the edges of a certain
geometric graph though the pore and LSC phase, respectively, divided by the
material thickness. Note that starting from a randomly chosen location on top
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Figure 15: Real data (top) and simulated sphere systems (bottom) for LSC-750 (left), LSC-850
(center) and LSC-950 (right) on a observation window of size 6.0× 6.0× 6.0 µm3.

Table 3: Mean geometric tortuosity for pore and LSC phase with respect to voxel size of
7.5 nm3

750◦C 850◦C 950◦C
real data (pore phase) 1.41 1.21 1.41

simulated data (pore phase) 1.46 1.34 1.47
relative error 0.03 0.09 0.04

real data (LSC phase) 1.39 1.26 1.37
simulated data (LSC phase) 1.43 1.40 1.48

relative error 0.02 0.1 0.07

of the porous material, its geometric tortuosity can be represented by a proba-
bility distribution instead of looking at the mean tortuosity only, see e.g. [42].
The results given in Table 3 show good coincidence of mean values. This is
additionally supported by the small relative error between mean geometric tor-
tuosities of real and simulated data. Although there is no perfect matching,
the shapes of the distributions of geometric tortuosity computed for real and
simulated data are quite similar, see Figure 17.

6. Conclusions

In the present paper we developed a stochastic model in order to describe
and simulate the 3D geometry of two-phase microstructures (solid and pore
phase), where the solid phase consists of spherical particles being completely
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Figure 16: Distribution of contact distances from pore to solid phase (left) and vice versa
(center), and continuous pore size distribution (right) for LSC-750 (top row), LSC-850 (center
row), and LSC-950 (bottom row)

connected with each other. Such materials appear e.g. in La0.6Sr0.4CoO3−δ
(LSC) cathodes of solid oxide fuel cells, which are produced by screen printing
and sintering of a paste consisting of LSC powder manufactured by flame spray
synthesis. Thus, as a model type, we considered (fully parameterized) random
sphere systems which are based on ideas from stochastic geometry and graph
theory. In particular, the midpoints of spheres have been modeled by random
point processes. In order to assure the complete connectivity of the spheres, a
modified version of the relative neighborhood graph has been introduced. This
graph controls the radii of spheres such that a completely connected sphere
system is obtained.

Our investigations were based on 3D grayscale images which had been gained
by high-resolution FIB-tomography. The parameters of the stochastic micro-
structure model have exemplarily been fitted to three data sets, representing
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Figure 17: Histograms of geometric tortuosity of pore space (first column: real, second column:
simulated) and LSC phase (third column: real, fourth column: simulated) for LSC-750 (top),
LSC-850 (center), and LSC-950 (bottom) computed with respect to voxel size 7.5 nm3

LSC cathodes where the sinter temperature is varied from 750 over 850 to 950◦C.
The goodness of model-fit has been validated by comparing structural charac-
teristics of real and simulated image data.

The stochastic model can be used to detect quantitative relationships be-
tween the production process (e.g. variation of sinter temperatures and/or
change of pore former contents) and the resulting microstructures. In a forth-
coming paper, the stochastic microstructure model will be combined with phys-
ical simulations, e.g. finite element modeling, for virtual scenario analyses.
Thereby, model-based morphologies of LSC cathodes will be transformed into
grid representations of the microstructures which are used as a basis for FEM, in
order to simulate the effect of microstructure variations on the electrode perfor-
mance (e.g. ohmic resistance, polarization resistance). In this way, the results
of our simulations can be used for microstructure optimization while reducing
the amount of expensive experiments in real laboratories.
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