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A Laguerre tessellation is a generalization of a Voronoi tessellation where
the proximity between points is measured via a power distance rather
than the Euclidean distance. Laguerre tessellations have found significant
applications in materials science, providing improved modeling of (poly)crystalline
microstructures and grain growth. There exist efficient algorithms to construct
Laguerre tessellations from given sets of weighted generator points, similar to
methods used for Voronoi tessellations. The purpose of this paper is to provide
theory and methodology for the inverse construction; that is, to recover the
weighted generator points from a given Laguerre tessellation. We show that,
unlike the Voronoi case, the inverse problem is in general non-unique: different
weighted generator points can create the same tessellation. To recover pertinent
generator points we formulate the inversion problem as a multimodal optimization

problem and apply the cross-entropy method to solve it.
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1. INTRODUCTION

The Voronoi tessellation of a given set of generator
points in the Euclidean plane divides the plane into
disjoint cells (regions, tiles), such that, for all points
in a cell, the Euclidean distance to the generator point
within that cell is less than the distance to all other
generator points. Applications of Voronoi tessellations
may be found in fields as diverse as computational
geometry, cell-biology, architecture, image analysis,
ecology, and materials science. Various generalizations
of the Voronoi tessellation have been proposed and
investigated to better fit tessellations appearing in
nature. These include tessellations that use different
distance metrics and tessellations that use different
geometric objects (e.g., lines and areas, instead of
points); see, for example, [1].
An important generalization is the Laguerre tessella-

tion, also called power diagram, which employs weighted
generator points and uses the power distance to measure
the proximity of points; see, e.g., [1, 2, 3]. It has been
shown that many convex tilings in three or more dimen-
sions are Laguerre tessellations (see [3]), and also in two
dimensions Laguerre tessellations are common. In addi-
tion, Voronoi tessellations in a number of non-Euclidean
geometries can be represented as Laguerre tessellations
(see [4]). For these reasons, Laguerre tessellations have
been a popular choice for modeling grain growth struc-
tures (see [5, 6]), foams (see [7, 8]), and boundaries of
polycrystalline materials (see [9]).
In the statistical analysis of spatial data described

by Laguerre tessellations (for example, in the study
of microscopic materials and cell-tissue), it is often
the case that the positions of the generator points
are unknown. Knowledge of these sites is useful
for statistical inference on the properties of random
tessellations. In particular, the weighted generator
points provide important information for constructing
stochastic models and fitting them to experimental
data. For example, stochastic models based on
Laguerre tessellations can be used to investigate
the effect of production parameters on stochastic
realizations of material microstructures and their
resulting functionality. This is done using computer
simulations without the need to generate physical copies
of the material. This process is known as virtual
materials design (see, e.g., [10]). Another application
where knowledge of the generating points is important is
the modeling of grain growth via Laguerre tessellations.
Here, it is useful to initialize computer simulations
with exactly the same grains as are present in the
real specimen. This makes it possible to compare and
evaluate the evolution of individual grains.

The problem of inverting Voronoi tessellations — that
is, recovering the generator points from the tessellation
— has been well studied; see, for example, [11, 12, 13,
14, 15, 16]. However, the inversion problem for Laguerre
tessellations seems to be much less studied. Recently,
an approximate inversion method was given in [17],
although with a different motivation, i.e., the possibility
of reconstructing the complete tessellation using only
cells’ centers of mass and cell volumes. An alternative
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approach was presented in [18], where experimental
3D data was described by extraction of (parametric)
cells using orthogonal regression — but without using
Laguerre tessellations.
The goal of the current paper is to provide a better

understanding of the inversion properties of Laguerre
tessellations, and to formulate a simple and effective
method for computing such inversions for 2D Laguerre
tessellations. We find that, in contrast to Voronoi
tessellations, the Laguerre inversion problem admits
many solutions. We identify pertinent solutions with
useful optimality properties. Our method involves a
minimax optimization problem that is solved via the
cross-entropy method ([19]).
The rest of this paper is organized as follows. In

Section 2 we provide the mathematical background for
Laguerre tessellations. In Section 3 we give the problem
description and show that there may be multiple
solutions to the inversion problem. We provide a simple
algorithm to generate possible solutions, and discuss
a minimization approach to obtain pertinent generator
points. Section 4 details the cross-entropy algorithm for
finding generator points that minimize the maximum
weight (radius) of the Laguerre generator points.
Numerical experiments in Section 5 demonstrate the
effectiveness of the approach. Finally, Section 6 gives
the conclusions and proposes directions for future
research.

2. LAGUERRE TESSELLATIONS

A Laguerre tessellation, also called a power diagram or
a Laguerre diagram, is a weighted version of the well-
known Voronoi tessellation. In this section we introduce
the mathematical notation and review some basic facts
about these objects. See [1] and [2] for more details on
Laguerre tessellations.

2.1. Definitions

Let p ∈ Rd be a fixed point and w ∈ R be a fixed value,
called the weight of point p. We call the pair (p, w) a
weighted point. For all x ∈ Rd, we define the power of
x with respect to (p, w) as

pow(x, (p, w)) = ∥x− p∥2 − w.

Suppose P = {(p1, w1), (p2, w1), . . . , (pn, wn)} is a
(finite) set of weighted (generator) points in Rd. The
Laguerre tessellation of P divides Rd into cells, using
the power of these points. The cell associated with the
i-th generator point, Ci, is defined by

Ci =
{
x ∈ Rd : pow(x, (pi, wi)) 6 pow(x, (pj , wj)), i ̸= j

}
.

Note that if all the weights are equal, the
Laguerre tessellation reduces to the standard Voronoi
tessellation.

Remark 1. Laguerre tessellations on a locally finite
but possibly infinite set of generator points are defined
in the same way.

TABLE 1. Tessellation storage format

cell i cell j
edge ei,j

v1(x) v1(y) v2(x) v2(y)

1 4 126.14 138.02 140.86 156.07
1 11 98.75 150.55 126.14 138.02
1 14 93.26 164.39 98.75 150.55
2 6 100.97 84.85 107.45 89.69
2 10 107.45 89.69 112.99 113.46
2 11 112.99 113.45 83.46 126.78
...

...
...

...

When all weights are positive, each weighted
generator point (p, w) ∈ P can be interpreted and
visualized as a sphere (denoted by S(p, r)) with radius
r =

√
w > 0 centered at point p. The power of a point

x with respect to the sphere S(p, r) is thus given by

pow(x, S(p, r)) = ∥x− p∥2 − r2.

Geometrically, this means that for a point x outside the
sphere S(p, r), the value of pow(x, S(p, r)) is equal to
the squared length of the tangent line from x to S(p, r).

The boundary between two adjacent cells generated
by spheres S1 = S(p1, r1) and S2 = S(p2, r2), consists
of all points z ∈ Rd such that pow(z, S1) = pow(z, S2).
These points form a hyperplane H(S1, S2), where

H(S1, S2) = {z ∈ Rd : 2⟨z, p1−p2⟩ = ∥p1∥2−∥p2∥2+r22−r21}.

This boundary is perpendicular to the line joining p1
and p2 and is called the radical axis of S1 and S2.

In this paper, for simplicity, we will only consider
Laguerre tessellations in R2. In this case, the generators
can be interpreted as circles.

2.2. Representations

A Laguerre tessellation can be represented mathemat-
ically as a geometric graph — a collection of vertices
V = {v1, . . . , vm} (also V(P)) and edges {(vi, vj)},
where the vertices are assigned positions in space. Note
that some cells are not only bounded by segments but
also by rays that extend to infinity in a certain direction,
because we consider finite sets of generators. Such edges
are often represented using a ‘dummy’ vertex. That is,
one vertex of the edge is set to be an arbitrary point on
the ray extending to infinity, see [15]. Interior vertices
of the tessellation have equal power with respect to at
least three separate circles. In contrast, ‘dummy’ ver-
tices only have equal power with respect to two circles.

Using the above representation, the vertices and
edges of the Laguerre tessellations can be stored in the
format given in Table 1. The cells are labeled from 1 to
n. The first two columns of Table 1 correspond to the
labels of adjacent cells. For example, cell 1 is adjacent
to cells 4, 11, and 14. The coordinates of the vertices of
the edge that separates two cells are given in columns
3–6. Note that a more compact representation can
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be achieved by storing the coordinates of each vertex,
together with the indices of the adjacent vertices.

A normal tessellation is one in which adjacent cells
are face-to-face, i.e., (in 2D) they share edges and
vertices; furthermore, each edge borders exactly two
cells, and each vertex is shared by exactly three cells.
An example of a normal 2D Laguerre tessellation,
generated by 15 circles, is given in Figure 1. The
boundaries between the cells are the edges of the
geometric graph. The powers of the points in each
boundary are equal with respect to the two neighboring
circles. Notice that the degree of each (interior) vertex
is 3. The powers of the vertices are therefore equal with
respect to three neighboring circles.
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FIGURE 1. Laguerre tessellation for 15 circles

Typical 2D Laguerre tessellations are normal. For
example, when the generator points are randomly and
uniformly chosen within a bounded sampling window,
the tessellation is normal with probability 1. From now
on, we consider only normal tessellations.

2.3. Properties

We next discuss some properties of Laguerre tessella-
tions which are important for the problem of inverting
Laguerre tessellations.

Property 1. A Laguerre cell does not necessarily
contain its generator and a generator does not
necessarily generate a cell.

p1

p2

p3

p4

p5

p6

FIGURE 2. Laguerre tessellation for six circles

This property is well known (see, for example, [2]).
Figure 2 (from [2, 3]), shows that the generator point of
a Laguerre cell can lie outside its cell; in particular, p4
lies outside cell 4. The same figure shows a generator
circle, S(p6, r6), for which the corresponding Laguerre
cell is empty.

A consequence of Property 1 is that the generator set
for a given tessellation is not unique. Namely, one can
add circles that do not generate additional cells, and
the new set will give the same Laguerre tessellation as
the original one.

However, even when each circle generates a cell, the
generators of a Laguerre tessellation are not necessarily
unique.

Property 2. Two completely different sets of circles
can generate the same Laguerre tessellation.

FIGURE 3. One Laguerre tessellation generated by two
completely different sets of circles

An extreme example is given in Figure 3, where
both the gray circles and yellow circles yield the
same tessellation. The method for constructing such
generating circles is discussed in Section 3. Property
2 has been mentioned in the literature (see [3, 20]).
However, in our view, it has received surprisingly little
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attention. In particular, it has not been stressed that
two entirely different (in both location and radii) sets
of circles can generate the same tessellation.

3. PROBLEM DESCRIPTION

The problem of efficiently generating tessellations
has been extensively studied in computer science
and computational geometry. In this problem, the
generators of the tessellation are given, but the
tessellation itself is unknown. A less studied problem,
but one with extensive applications, is the inverse
problem. In this problem, the tessellation is given, but
the generators are unknown.
In the case of Voronoi tessellations, the inverse

problem has a number of elegant solutions. See, for
example, [16, 15, 11, 13, 14]. Unfortunately, these
approaches do not easily extend to the Laguerre case.
One reason for this is that the inverse Voronoi problem
has more structure than the inverse Laguerre problem.
Another reason is that the inverse Voronoi problem has
a unique solution, whereas the inverse Laguerre problem
in general has an infinite number of solutions.
Finding a set of weighted generating points that

generate a given Laguerre tessellation is not too
difficult; see Algorithm 1 below. However, finding
pertinent solutions — that is, more suitable, meaningful
solutions — is considerably harder. Pertinent solutions
possess extra structure that is imposed by the modeler.
Typical requirements arising in materials science (see,
e.g., [8, 17]), geometry (e.g., sphere packing [21]),
molecular biology and biochemistry (see, e.g., [22]),
include the following:

1. The weights of the generating points should be
non-negative, so that the weighted points can be
interpreted as circles.

2. The generating points should ideally lie within the
cells they generate and, if they do not, they should
not be too far away.

3. The maximum radius should be as small as
possible.

4. The average radius should correspond to a circle
whose average volume equals the average volume
of a cell.

5. The generating points should be close to the centers
of mass of the cells.

3.1. Weighted points that generate a given
Laguerre tessellation

We begin by describing how, for a given (normal)
tessellation, a set of weighted generator points can
be determined by specifying only the coordinates
and weight of one weighted generator point and
one coordinate of the weighted generator point of a
neighboring cell.

p

lab

a

o
lbc

c

lac

b

FIGURE 4. Two generators determine the third

Theorem 3.1. The weighted generator points of a
given normal 2D Laguerre tessellation can be entirely
determined from the weighted generator point of one
interior cell, and one coordinate of the weighted
generator point of an adjacent cell.

Proof. For simplicity we assume that the weights of the
generator points are positive, although the proof does
not use this assumption — the advantage is that the
weighted generator points can be interpreted as circles;
see Figure 4. Let S1(p1, r1) be the generator circle of
some interior cell, C1, and let S2(p2, r2) be the generator
circle of an adjacent cell, C2. Let the coordinates of
p1 and p2 be (x1, y1) and (x2, y2), respectively. The
assumption of the theorem is that x1, y1, r1, and x2 are
given.

Let e1,2 be the edge of the tessellation separating C1

and C2. For Laguerre tessellations, the line segment
connecting p1 and p2 is perpendicular to e1,2. Let m1,2

be the slope of e1,2. It follows that y2 is determined by

y2 − y1
x2 − x1

= − 1

m1,2
. (1)

(Note that while it is possible that m1,2 = 0, this is
not relevant in practical applications. The problem
can be solved, for example, by rotating the tessellation.
Therefore, we assume the slope to be non-zero.) From
this we can determine r2 via

∥p1 − q∥2 − r21 = ∥p2 − q∥2 − r22, (2)

for any point q on the line containing segment e1,2. In
particular, we can take q = p1,2, the intersection of the
line through p1 and p2, and the line containing the edge
e1,2.

Because the tessellation is assumed to be normal
and C1 is an interior cell, there is a cell adjacent to
both C1 and C2, say C3. The generating circle of C3,
S3 = (p3, r3), is determined as follows. The point
p3 = (x3, y3) is the intersection of (1) the line that
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passes through p1 and is perpendicular to e1,3 (the edge
between C1 and C3) and (2) the line that passes through
p2 and is perpendicular to e2,3 (the edge between C2

and C3). It follows that the coordinates x3 and y3 of p3
satisfy

y3 − y1
x3 − x1

= − 1

m1,3
and

y3 − y2
x3 − x2

= − 1

m2,3
, (3)

where m1,2 and m2,3 are the slopes of e1,2 and e2,3,
respectively. Hence,

x3 =
m2,3(m1,3y1 + x1)−m1,3(m2,3y2 + x2)

m2,3 −m1,3

y3 =
m1,3y1 + x1 − (m2,3y2 + x2)

m1,3 −m2,3
.

(4)

The radius, r3, is then determined as in (2); that is,

∥p1 − q∥2 − r21 = ∥p3 − q∥2 − r23, (5)

where q is any point on the line containing the edge e1,3.
It is also possible to determine r3 by considering the

pair C2, C3 rather than C1, C3, giving

∥p2 − q∥2 − r22 = ∥p3 − q∥2 − r23, (6)

where q is any point on the line containing the edge e2,3.
To prove that (5) and (6) give the same value for r23, it
suffices to show that

r21 − ∥p1 − u∥2 = r22 − ∥p2 − u∥2 , (7)

where u is the vertex on the intersection of the lines
containing edges e1,2 and e2,3. But this follows directly
from the definition of the Laguerre tessellation, and the
fact that u lies also on the line through edge e1,2.
Proceeding in this fashion, it is possible to iteratively

determine the generator circle of each cell. 2

Remark 2. Theorem 3.1 was given in 2D, but the
idea of the proof is applicable for higher dimensions.
Using normal vectors for hyperplanes separating cells,
e.g., edges in 2D or planar faces in 3D, it is clear that
generators have to lie on lines with the same orientation.
See also [20], where a related non-unique construction is
given for the orthogonal dual of a Laguerre tessellation
(in the Voronoi case this corresponds to the Delaunay
triangulation).

Remark 3. The proof of Theorem 3.1 shows that
if we add the same constant to all squared radii, the
tessellation does not change. Namely, if ∥pi−q∥2−r2i =
∥pj−q∥2−r2j for every q on an edge separating adjacent

cells Ci and Cj , then the same is true if r2i and r2j are

replaced by r2i + c and r2j + c. As a consequence, it
is always possible to find a set of generators that all
have positive weights. If some weights are negative,
we simply find the minimum of these and subtract this
value from all weights.

Theorem 3.1 and Remark 3 suggest the following
algorithm for determining the generator circles of a
Laguerre tessellation, given x1, y1, r1 and x2. Note that
in the algorithm we start with a pair of (internal) cells
(C1, C2). This may be replaced with any pair of internal
cells by relabeling.

Algorithm 1 Generator Construction

Input: x1, y1, r1(> 0), x2 and tessellation data such as
in Table 1.

Output: a set of generators P = {(pk, r2k)} with non-
negative minimum radius.

1: Initialize P = {(p1, r21), . . . , (pn, r2n)} to NANn×3.
2: Compute y2 and r22 using (1) and (2). Flag that C1

and C2 have been assigned generators.
3: while not all cells have generators do
4: for k = 1 : n do
5: if (pk, r

2
k) has not been assigned and more than

two of its adjacent cells have been assigned
then

6: Choose two of the adjacent cells of Ck with
assigned generators.

7: Compute pk using equation (3).
8: Compute r2k using equation (2).
9: end if

10: end for
11: end while
12: if min{r2k} < 0 then
13: set {r2k} = {r2k} −min{r2k}
14: end if

3.2. Choosing a pertinent solution

Algorithm 1 provides a method for recovering the
generating circles of a tessellation given a small number
of inputs, namely x1, y1, r1, and x2. However,
depending on how these inputs are chosen, very
different results can be obtained. Although the
algorithm guarantees positive weights, in some cases
the generating circles can lie far outside the cells they
generate. An example is given in Figure 3. In other
cases, the radii of the generating circle can be much
bigger than the cells or even the observation window;
see Figure 5.

As stated above, many applications based on
Laguerre tessellations ascribe meaning to the generating
circles. For this reason, it is important that we have a
method that chooses a solution that satisfies a number
of criteria such as those listed above. Some of these
criteria are model dependent. Others, however, are
fairly universal. In particular, it is almost always
desirable to have generating points lie within the cells
they generate and it is almost always desirable to have
real-valued radii.
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FIGURE 5. Another example of a Laguerre tessellation
that is generated by two completely different sets of circles.

We encode these universal criteria into our algorithm
by requiring that the generating circles produced all lie
within their cells and all have real-valued radii. We call
the set of points that satisfy these two criteria P. We
then choose the inputs to Algorithm 1, (x1, y1, r1, x2),
so that the resulting set of generators, P, belongs to P.

In addition to requiring that the set of generator
points lies in P, we also require that the generators
satisfy an additional optimality criterion that is
determined by the application. In the following, we
choose to solve

min
P∈P

max
r∈P

r. (8)

That is, we wish to find the generator set P ∈ P for
which the maximum radius is minimal.

However, the method we propose is more general.
We could, for example, seek to minimize the difference
between the average circle area and the average cell
area, or minimize the average distance of a generating
point from the center of mass of its cell.

Problem (8) is an optimization problem with
complicated constraints and many local optima. As
a result, it is a difficult problem to solve numerically.
In particular, numerical solutions based on local search
are very dependent on the choice of initial conditions.
Small changes in initial conditions can result in very
different generator sets.

Stochastic algorithms tend to outperform determinis-
tic approaches in such settings. In particular, these al-
gorithms are able to escape many local optima and are
not so sensitive to initial conditions. We use a stochastic
global optimization technique, the cross-entropy (CE)
method, which is both effective and straightforward to
implement.

4. CE METHOD FOR INVERTING LA-
GUERRE TESSELLATIONS

The CE method has been successfully applied to
many complicated integer non-linear programming
and continuous multi-extremal optimization (see, for
example, [23]). In this section we describe how
the method can be used to determine pertinent
(meaningful) Laguerre generators.

The idea behind the CE method is that the global
optimum can be described by a degenerate probability
density (that is, a density that ascribes all its mass to
a single point). The algorithm iteratively generates a
sequence of probability densities that converge to this
degenerate density. In general, the densities are chosen
to be normal densities. This is because normal densities
allow for the whole parameter space to be explored, are
easily updated, and converge to degenerate densities as
their variances go to zero. For more details on the
method we refer to [19] and [24]. The convergence
properties of the Cross-Entropy method are discussed
in [23] and the references given therein.

For the minimization problem (8), we wish to find
a generator set P∗ in the collection all feasible sets P,
that attains the minimum maximum radius:

γ∗ = min
P∈P

max
r∈P

r,

where P is generated via Algorithm 1. Since we
are interested in the minimizer P∗ rather than the
minimum γ∗, we can, in view of Remark 3, reduce
the dimension of this constrained minimization problem
from four to three, by setting r1 = 0 in the input of
Algorithm 1.

The CE algorithm now comprises the following
iterative steps:

1. Generate a random sample of starting values
(x1, y1, x2) according to a multi-variate normal
distribution.

2. For each of these starting values generate the set
of generators via Algorithm 1 and compute the
corresponding maximum radii.

3. Update the parameters of the sampling distribu-
tion, based on the best performing samples (the
so-called elite samples), using cross-entropy mini-
mization. The best performing samples are those
with the smallest maximum radii.

The CE method produces a sequence of parameters
{(µt,σ

2
t )} for the multivariate normal sampling

distribution and a sequence of levels {γt} decreasing
to γ∗. To run the CE method, we need to specify the
initial sampling parameters, the sample size N , a rarity
parameter ϱ, and a stopping criterion.

At iteration t we generate N independent samples

(x
(k)
1 , y

(k)
1 , x

(k)
2 ), k = 1, . . . , N from a three-dimensional
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normal distribution, where each component is sam-

pled independently. We write (x
(k)
1 , y

(k)
1 , x

(k)
2 )∼iid

N(µt,σ
2
t ), where µt is the three-dimensional vector of

expectations and σ2
t is the three-dimensional vector of

variances. For the normal distribution the CE updating
rule in Step 3 above is particularly easy (see [24]): the
expectation vector becomes the vector of sample means
of the elite samples, and the vector of variances becomes
the vector of sample variances of the elite samples.
The detailed steps of the CE method for inverting

Laguerre tessellations are as follows.

Algorithm 2 Generators of minimax radius

Input: Sample size N , rarity parameter ϱ, and initial
sampling parameters µ0 and σ2

0.
Output: The minimizer, P∗, of (8).
1: Set the iteration counter to t = 1.
2: while stopping criterion is not met do

3: For k = 1, . . . , N , set r
(k)
1 = 0 and draw (x

(k)
1 ,

y
(k)
1 , x

(k)
2 )∼iid N(µt−1, σ

2
t−1) using the following

acceptance–rejection step: compute y
(k)
2 , x

(k)
3 ,

y
(k)
3 , x

(k)
4 , and y

(k)
4 . If the four generators lie in

their cells, then accept (x
(k)
1 , y

(k)
1 , x

(k)
2 ), otherwise

reject.
4: Compute P(1),P(2), . . . , P(N) via Algorithm 1.

Find the maximum radius l(k) for each set P(k).
5: Order the maximum radii from smallest to

largest. Let γt be the largest of the ⌈ϱN⌉ smallest
radii. Let the elite set be the collection of samples

(x
(k)
1 , y

(k)
2 , x

(k)
2 ) for which the corresponding

generator set P(k) has a maximum radius less
than or equal to γt.

6: Update the parameters µt and σ2
t as the sample

mean and sample variance (component-wise) of
the elite samples, and set t = t+ 1.

7: end while

Remark 4. Algorithm 2 uses an acceptance–
rejection step to constrain the first four generators to
lie within their cells. We found experimentally that
this is sufficient to ensure that eventually all generators
end up within their cells. It is difficult to initially
constrain all generators inside their cells, as the search
space will become very small. As far as we are aware,
it remains an open theoretical problem whether every
Laguerre tessellation admits a solution in which every
cell contains one generator point.

A possible stopping criterion (which we have used
in Section 5) is to stop when the maximum standard
deviation, max(σt), is less than some small tolerance
ε > 0.

5. NUMERICAL EXPERIMENTS

In this section, two numerical examples are given to
indicate how Algorithm 2 works for inverting Laguerre

TABLE 2. Example 1: Convergence of parameters

t γt
µt︷ ︸︸ ︷ max{σt}

1 31.7198 93.4043 109.6592 122.2072 4.6120
2 21.6147 93.0674 110.9199 123.5051 1.3520
3 13.5177 93.0501 111.1407 123.7959 0.4514
4 9.9260 93.1264 111.1727 123.9915 0.1348
5 8.8108 93.1707 111.1562 124.0233 0.0553
6 8.5782 93.1934 111.1419 124.0357 0.0368
7 8.5237 93.2111 111.1350 124.0412 0.0221
8 8.4993 93.2210 111.1309 124.0441 0.0108
9 8.4857 93.2271 111.1286 124.0456 0.0062
10 8.4782 93.2301 111.1274 124.0466 0.0034
11 8.4742 93.2316 111.1267 124.0469 0.0020
12 8.4719 93.2325 111.1263 124.0471 0.0012
13 8.4706 93.2331 111.1260 124.0472 0.0007
14 8.4699 93.2334 111.1259 124.0473 0.0004
15 8.4694 93.2335 111.1258 124.0473 0.0002
16 8.4692 93.2336 111.1257 124.0473 0.0001
17 8.4690 93.2336 111.1257 124.0473 0.0001

tessellations. The tessellation data is of the format
in Table 1 and can be downloaded from http://www.

maths.uq.edu.au/~kroese/Laguerre. Matlab and
Java code is available on request.

Example 1

The first example is the running example, whose
original generators are shown in Figure 1. In Figures 3
and 5, we saw examples of poorly behaved generators,
obtained via Algorithm 1. We now employ Algorithm 2
to obtain a good generator set, whose maximum radius
is as small as possible.

In this example, we use cells 2 and 6 as our starting
cells (instead of 1 and 2; note that cell 1 is not internal
here). We choose µ0 = (µx1

0 , µy1

0 , µx2
0 ) as follows, where

µx1
0 is the average of the x-coordinates of all vertices of

C1, µ
y1

0 is the average of the y-coordinates of all vertices
of C1, and µx2

0 is the average of the x-coordinates of all
vertices of C2. The three initial variances are set to
100 (standard deviation 10), so that most of samples lie
inside the cells C2 and C6.

Table 2 shows the progress of the CE method, where
the sample size N = 4000, rarity parameter ϱ = 0.05
and stopping criterion MAX(σ) < ε = 10−4.

In Table 2, γt is the ⌈Nϱ⌉-th largest radius over all
maximum radii of each set in t-th iteration. Note that
the minimum radius of each set is 0.

Figure 6 indicates the difference between our
generators and the original ones. While the generator
points are very similar, the radii are significantly smaller
for the CE generators. The maximum radius reduces
from 9.5034 to 8.4690. Also, the minimum radius for
the CE case is (always) 0.
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FIGURE 6. Result of Example 1

To show the dependence of the CE algorithm on the
parameters, we ran Algorithm 2 with different sets of
parameters, such as N = 4000, ϱ = 0.1, N = 2000, ϱ =
0.05 and N = 2000, ϱ = 0.1. The progress of γt as a
function of t is shown in Figure 7. We see a robust
behavior with respect to the choice of CE parameters.
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40

 

 
N=4000,ρ=0.05
N=4000,ρ=0.1
N=2000,ρ=0.05
N=2000,ρ=0.1

FIGURE 7. CE method for Example 1

Example 2

In Figure 8, we give a relatively complicated Laguerre
tessellation, with 88 cells for which the generators need
to be recovered. The original generators are also given
in Figure 8.

TABLE 3. Example 2: Convergence of parameters

t γt
µt︷ ︸︸ ︷ max{σt}

1 31.9997 142.7428 57.1691 131.5233 2.2070
2 17.7478 142.3349 57.4951 131.2341 0.5303
3 11.8451 142.2002 57.5020 131.1021 0.2092
4 9.6158 142.1381 57.5472 131.0550 0.0712
5 9.1285 142.1171 57.6062 131.0436 0.0319
6 9.0075 142.1075 57.6289 131.0378 0.0149
7 8.9754 142.1051 57.6437 131.0365 0.0065
8 8.9624 142.1044 57.6500 131.0362 0.0031
9 8.9568 142.1041 57.6535 131.0362 0.0015
10 8.9539 142.1041 57.6553 131.0363 0.0008

70

60

FIGURE 8. Laguerre tessellation for 88 generators

We use cells 60 and 70 as starting cells and set the
initial distribution parameters µ0 and σ0 in the same
way as Example 1. As for the parameters of the CE
method, we set sample size N = 5000, rarity parameter
ϱ = 0.01 and stopping criterion max (σ) < ε = 10−3.
The progress of the algorithm is shown in Table 3.

Figure 9 shows the behavior of the method under
different sets of CE parameters. Even though the
processes are a little different, the results are almost
the same.
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FIGURE 9. CE method for Example 2
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The original and CE generators are given in
Figure 10, showing very good agreement in location,
with again slightly smaller radii for the CE case.

FIGURE 10. Result of Example 2

Remark 5. The Voronoi tessellation is a special case
of the Laguerre tessellation. In the Voronoi case, all the
generator weights are equal (and can be assumed to be
0). Algorithm 2 is easily adapted to invert 2D Voronoi
tessellations.
As in Algorithm 2, we start from two initial cells,

C1 and C2. We generate sample points in C1 and find
the corresponding points in C2 using the perpendicular
bisector. We set the radii of the generating circles in
C1 and C2 to be 0. We then use the CE method to find
points such that the maximum radius of a generating
circle is zero. Note, however, that [15] gives a more
efficient method for inverting Voronoi tessellations.

6. CONCLUSIONS AND PROPOSED EX-
TENSIONS

In this paper, we have provided a general method
for inverting normal Laguerre tessellations. We have
demonstrated that there are often a number of different
solutions to this inversion problem. Many of these
solutions have limited explanatory power. We proposed
a method, based on randomized optimization, for
finding pertinent solutions. That is, solutions that
satisfy certain criteria imposed by the application.
We have given a number of numerical results that
demonstrate the effectiveness of this approach.
There are many possible extensions to our work.

Our method can be extended to higher dimension.
Our method can be applied in a number of fields
that use Laguerre tessellations as models, for example
materials science and biology. We also believe that the
cross-entropy method could also be applied to other
tessellations, including those with non-convex cells.
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