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Abstract: Laue microdiffraction is an X-ray diffraction technique that allows for the non-destructive 1

acquisition of spatial maps of crystallographic orientation and strain state of (poly)crystalline speci- 2

mens. To do so, diffraction patterns, consisting of thousands of Laue spots, are collected and analyzed 3

at each location of the spatial maps. Each spot of these so-called Laue patterns has to be accurately 4

characterized with respect to its position, size and shape for subsequent analyses including indexing 5

and strain analysis. In the present paper, several approaches for estimating these descriptors that 6

have been proposed in the literature such as methods based on image moments or function fitting are 7

reviewed. However, with increasing size and quantity of Laue image data measured at synchrotron 8

sources, some datasets become unfeasible in terms of computational requirements. Moreover, for 9

irregular Laue spots resulting e.g. from overlaps and extended crystal defects, the exact shape and, 10

more importantly, the position is ill-defined. To tackle these shortcomings, a procedure using convo- 11

lutional neural networks is presented allowing for a significant acceleration of the characterization of 12

Laue spots, while simultaneously estimating the quality of a Laue spot for further analyses. When 13

tested on unseen Laue spots, this approach led to a speedup of 77 times by using a GPU, while 14

maintaining high levels of accuracy. 15

Keywords: Laue microdiffraction; Laue spot morphology; Laue spot quality; convolutional neural 16

network; polycrystalline material; runtime performance 17

1. Introduction 18

With the advent of sources, optics and detectors dedicated to X-ray characterization, 19

X-ray diffraction techniques have become highly used tools for quantitative studies of 20

microstructures in many materials science and engineering applications due to their non- 21

destructive nature and high spatial resolution. Among them, Laue microdiffraction is a 22

spatially resolved X-ray scattering technique which is particularly sensitive to the structural 23

arrangement of the atomic lattice planes. It allows to capture spatial maps of crystallo- 24

graphic orientation and strain state of (poly)crystalline specimens [1,2]. The maps are 25

obtained by systematically scanning the specimens with a polychromatic incident X-ray 26

beam and a subsequent analysis of the resulting scattering patterns recorded on a planar 27

detector. These so-called Laue patterns, see Figure 1, consist of individual Laue spots 28

(i.e., local maxima in the recorded image) which originate from the diffraction phenomena 29

corresponding to geometrical reflections on the lattice planes in the crystals of the probed 30

area in the specimen. Here, each crystal produces a characteristic pattern of spots, all of 31

which superimpose to the recorded Laue pattern. The precise position of the Laue spots 32

in the experimental Laue pattern is crucial for the reliable determination of the structural 33

crystal parameters, in particular the strain or, equivalently, the lattice parameters of the 34

crystallographic unit cell. 35

More precisely, the usual workflow for analyzing a Laue pattern of a single probed 36

position in the specimen under consideration consists of three main steps [3–5]: First, the 37

local (sub-pixel) maxima in the recorded image are determined, which are assumed to be 38
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Figure 1. Laue pattern of a ZnCuOCl single crystal (hexagonal unit cell).

the positions of the Laue peaks (peak search routine) featuring the geometrical orientation 39

of the corresponding reflecting lattice planes with respect to the incoming X-ray beam 40

direction. Then, for each peak obtained in this way the corresponding crystal and reflecting 41

planes—namely their Miller indices hkl—are sought (indexing routine). Finally, for each 42

crystal the lattice parameters of the unit cell of the crystals are refined (given a reference 43

deviatoric strain tensor for the unit cell) by matching the expected/simulated peak positions 44

with the observed ones from the image. 45
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Figure 2. Cutouts of Laue spots of bad (a, b) and good quality (c) with Sim0-values of 0.738, 0.923 and
0.992, respectively. The corresponding (rescaled) Sim-values are 0, 0.487 and 0.952, respectively. For
the definition of Sim0-values and Sim-values, see Section 2.2.1. Moreover, the blue dot and red cross
indicate the peak position predicted by the neural network and the approach based on Gaussian
functions, respectively. The cutouts are centered on the peak position predicted by the initial peak
search algorithm.

During the peak search step, instead of simply proceeding with the initial peak char- 46

acterization given by the brightest pixels of a Laue spot, spot shape properties and, most 47

importantly, the peak position have to be estimated with sub-pixel accuracy in order to 48

keep the subsequent analyses as precise as possible. Challenges are polycrystalline mate- 49

rials with small variations of orientations and/or strains. Furthermore, the presence of a 50

complicated spatial distribution of extended crystal defects is problematic. The reason for 51

this is that they cause overlapping Laue patterns originating from the individual crystals 52

and complex/non-circular Laue spots, respectively, see Figure 2. Defining a precise peak 53

position for these multimodal spots that allows for a stable estimation without being af- 54

fected by small changes of pixel values is hardly possible. The ideal approach would be to 55

split them and treat their sub-peaks individually. However, this would involve a complex 56
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and time-consuming spot analysis that is unfeasible in practice: Currently, several thou- 57

sand of highly resolved images (4 ˆ 106 pixel) per dataset corresponding to a raster scan 58

sample map have to be processed. Each of these images in turn contains more than 1000 59

spots corresponding to the superposition of Laue patterns each coming from individual 60

grains. In the near future the demand will raise to several tens of thousands of images with 61

36 ˆ 106 pixel per image. For this reason, the analysis workflow has to be as fast as possible 62

to keep up with the flood of data measured at synchrotron sources. Recent progress has 63

been made with machine learning approaches to unlock and speed up the limiting indexing 64

step of Laue patterns [6,7], while the previous step of peak search and segmentation has to 65

keep up in order to not be the next performance bottleneck. 66

Regarding the peak search step, different approaches can be implemented to extract the 67

positions of scattering peaks from digital images. On the one hand, see e.g. [8] employed 68

by [9], it relies on image moments [10] similar to those of bivariate probability distributions. 69

Most importantly, the centroid (which corresponds to the intensity-weighted mean value 70

of the spatial distribution of peak pixels) is used as estimator for the peak position for 71

further analyses. In order to do this, first, the region of interest (ROI) located at each Laue 72

spot, also known as blob, has to be determined, for which the moments are then computed. 73

The classical strategy to build the ROIs is to apply thresholds [8], but procedures based 74

on machine learning [11] have also been proposed. While the image moments are always 75

well defined regardless of whether the spatial distribution of pixel intensities looks like 76

a Laue spot or not, it is crucial to find well-fitting ROIs that contain exactly one peak, in 77

order to obtain valid peak characteristics. Additionally, when a peak is subdivided into 78

several overlapping components, a reliable determination of each individual subpeak is 79

hard to perform automatically, see e.g. Figures 2a,b. 80

On the other hand, instead of using the non-parametric approach stated above, other 81

methods are based on fitting a parametric function to the Laue spots, usually using least- 82

squares minimization techniques. For this, mainly Gaussian functions (related to the 83

bivariate normal probability distribution), but also Lorentzian functions (related to the 84

Cauchy probability distribution) or combinations of the two, namely pseudo-Voigt func- 85

tions, are used [12–14]. The parametric approach has the advantage that the descriptors of 86

well-fitting spots are easier to interpret (provided a suitable physical or structural model). 87

Additionally, goodness-of-fit measures can be used as estimates of the model applicability. 88

However, a drawback of the parametric approach is that it can be rather time consuming 89

when the experimental Laue spot differs from the fitted function. 90

In the present paper, a procedure using convolutional neural networks (CNNs) is 91

proposed to rapidly estimate geometric descriptors of Laue spots and select high-quality 92

peaks for a subsequent strain refinement step. While minimum human intervention is 93

sought for the highest throughput in the Laue analysis workflow, relying on a black-box 94

classification system for selecting peaks would make it hard or even impossible to adapt 95

for difficult specimens/datasets. For this reason, the neural network takes a cutout of the 96

recorded image and returns the precise peak position and key descriptors that are essential 97

for the quality of Laue spots, instead of simply providing a binary decision whether a Laue 98

spot is of good or bad quality. This way, the exact criterion for removing a Laue spot is 99

still explainable and customizable based on these spot descriptors without sacrificing the 100

computational speed. 101

2. Materials and methods 102

In Laue diffraction, a crystal is irradiated with X-rays and the resulting diffraction 103

pattern is captured on a detector. The diffraction pattern consists of a series of peaks, which 104

correspond to the diffraction of the X-rays by the crystal lattice. For analyzing the image 105

data collected in this way, the following steps are typically performed (for example in 106

LaueTools [14]): 107
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1. Pre-processing: The recorded Laue diffraction image is pre-processed to remove noise 108

and to improve the contrast. This may involve techniques such as smoothing, filtering, 109

or contrast enhancement. 110

2. Peak detection: A peak detection algorithm is used to locate the approximate positions 111

of the peaks in the diffraction pattern. This may involve thresholding the image to 112

identify regions of elevated intensity corresponding to the Laue spots, and then using 113

the pixel with the highest intensity as the initial location of the potential peak for each 114

spot. 115

3. Peak fitting: Once the initial peak positions have been identified, parametric func- 116

tions (such as a Gaussian or Lorentzian function, which are related to the bivariate 117

normal and Cauchy probability distribution, respectively) are fitted for a precise 118

characterization of the peaks with sub-pixel accuracy. 119

4. Peak indexing: The positions of the peaks in the diffraction pattern are used to 120

determine the crystal structure. This is done by comparing the observed peak positions 121

to the expected positions of a known crystal structure, or by using a peak-matching 122

algorithm to determine the most likely crystal structure. 123

5. Data analysis: The precise characterization of the peaks can be further utilized to 124

determine the crystal structure of each individual crystal, namely the crystallographic 125

unit cell lattice parameters or equivalently the strain tensor components. Compiling 126

the results over a dataset of images collected during a sample raster scan allows the 127

imaging of the location of crystals and crystalline defects. 128

Overall, the process of peak search in Laue diffraction image analysis involves several steps 129

that are designed to identify and analyze the diffraction peaks in the diffraction pattern, 130

in order to obtain structural parameters of experimental crystals. The present paper is 131

concerned with the first step (peak fitting), whose outcome—the accurate characterization of 132

peaks—strongly affects the subsequent steps. The following sections describe the employed 133

methods and materials in detail. 134

2.1. Description of experimental datasets 135

The Laue diffraction patterns used in the present study were collected during a series 136

of experiments conducted at the BM32 beamline at the European Synchrotron Radiation 137

Facility (ESRF). The data comprises of five datasets from a variety of materials, namely 138

defect-free single crystals of Ge, Si, ZnCuOCl, and Al2O3, as well as polycrystalline Laue 139

patterns from materials (low to high absorption) with strains ranging from 0.001 % to 0.2 %. 140

This includes a dataset from a thick single crystal of Al2O3, where the elongation of Laue 141

spots is a result of depth effects. These scans were chosen to cover a range of strain levels, 142

as well as to represent different types of crystalline structures. 143

The Laue diffraction images were collected using top-reflection geometry, where the 144

2D detector was mounted at the top of the sample and perpendicular to the incoming X-ray 145

beam (collected scattering angles ranging from 2θ “ 50˝ to 130˝ and the sample surface 146

was tilted by 40˝. The sample-detector distance for all datasets was between 78.5 mm and 147

79.5 mm. The X-ray energy used in the experiments was in the range from 5 keV to 23 keV 148

with a beam size of about 500 nm ˆ 500 nm. 149

The images were recorded using a sCMOS detector with a resolution of 2016 pixel ˆ 150

2018 pixel, a pixel size of 73.4 µm and a bit depth of 16 bits per pixel. Further details 151

regarding the experimental setup at the BM32 beamline—including the synchrotron source, 152

the optics and beamline components, are given in [15]. 153

2.2. Geometric characterization of Laue spots 154

Before the individual Laue spots can be characterized, they first have to be detected 155

and located in the Laue image. For this reason, an initial approximation of the peak 156

positions is obtained by the peak search algorithm implemented in the LaueTools software 157

package, see [14]. Specifically, connected components in the thresholded Laue image, 158

corresponding to the Laue spots, are determined and the initial peak position of each spot 159
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is then given by the position of the maximum pixel intensity or the center of mass of these 160

regions. However, not all spots obtained in this way are useful with respect to subsequent 161

Laue image analysis. In particular, it is important to avoid irregular or asymmetrical spots 162

whose description by a simple single crystal model is not relevant. Including such spots in 163

a strain refinement based on a single crystal model provides a poor average estimation of 164

strain levels in the case of crystal defects or assemblies of crystals. To detect these hereafter 165

called low-quality Laue spots rapidly, a new algorithm was developed to model shape 166

properties of 2D Laue spots. 167

For that purpose, a Laue image is written as a map I : W Ñ R, where W Ă Z2
168

is a rectangular pixel array and Ipvq is the 16 bits integer value of the pixel located at 169

v “ pv1, v2q P W. The array of pixel intensity values of an individual Laue spot is usually 170

described by an 2D Gaussian function [16]. More precisely, if we let s “ ps1, s2q P W 171

be an initial guess of a Laue spot peak position, then normalization constants α, β ą 0 172

should exist such that for small vectors a “ pa1, a2q P Z2 it holds that Ips1 ` a1, s2 ` a2q « 173

α ¨ gpa1, a2q ` β. Here g : R2 Ñ R is a normalized (bivariate) Gaussian function (also known 174

as the probability density of the bivariate normal distribution with vanishing covariances) 175

given by 176

gpx1, x2q “
1

2πσ1σ2
exp

«

ˆ

x1 ´ µ1

σ1

˙2
`

ˆ

x2 ´ µ2

σ2

˙2
ff

for all px1, x2q P R2,

where µ1, µ2 P R and σ1, σ2 ą 0 are some location and scale parameters, respectively. Thus,
to analytically describe the Laue spot at the initially predicted peak position s “ ps1, s2q,
the restriction IpApsqq of the Laue image I : W Ñ R to the 32 pixel ˆ 32 pixel cutout

Apsq “ ts1 ´ 16, . . . , s1 ` 15u ˆ ts2 ´ 16, . . . , s2 ` 15u Ă W

around s “ ps1, s2q is considered, where IpApsqq denotes the elementwise application of 177

I on Apsq, in the sense that the output is a matrix IpApsqq P R32ˆ32. The normalization 178

constants α, β ą 0 as well as the location and scale parameters µ1, µ2 P R and σ1, σ2 ą 0 179

of the Gaussian function g are then fitted to the restricted image IpApsqq using a gradient 180

descent algorithm as implemented in the LaueTools software package [14]. 181

In the following, we show how 2D Gaussian functions, fitted to image data, can be 182

utilized to effectively characterize Laue spots with respect to their size, shape and position, 183

in order to judge their usefulness for the subsequent strain analysis. 184

2.2.1. Similarity to a Gaussian function 185

As noted in [5], not all Laue spots are well described by Gaussian functions. Therefore, 186

before analyzing the fitted parameters of a Gaussian function, we first have to verify that 187

it fits well to the image data of the considered Laue spot candidate. For that purpose, we 188

investigate the goodness of fit on the 32 pixel ˆ 32 pixel cutout Apsq Ă W introduced above. 189

More specifically, we compute a descriptor of similarity of IpApsqq and αgpApsq ´ sq ` β, 190

given by 191

Sim0psq “

ř

a1,a2PApsq Ipa1, a2q ¨ pαgpa1 ´ s1, a2 ´ s2q ` βq
b

ř

pa1,a2qPApsq I2pa1, a2q ¨
ř

pa1,a2qPApsqpαgpa1 ´ s1, a2 ´ s2q ` βq2
.

However, when using this similarity descriptor directly, Laue spot candidates featuring 192

non-Gaussian properties, such as asymmetry (see Figure 2), will still have a high Sim0- 193

value. On the other hand, Laue spot candidates which appear to be well described by a 194

Gaussian function will usually have a Sim0-value of above 0.95. In order to make the entire 195
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interval r0, 1s descriptive with respect to the goodness of fit, we instead use the rescaled 196

value Simpsq to evaluate the similarity of a Laue spot at s P W to a Gaussian function, where 197

Simpsq “

$

&

%

0, if Sim0psq ď 0.85,
Sim0psq ´ 0.85

0.15
, else.

In cases where the Sim-value is low, the description of Laue spots using the fitted Gaussian 198

functions is not accurate. Thus, such Laue spots should not be used for further analysis. 199

2.2.2. Precise peak position 200

For the analysis of Laue patterns, accurate estimation of peak positions is of great 201

importance. For a peak located at pixel s “ ps1, s2q, the peak of the fitted Gaussian function 202

is given by Pospsq “ ps1 ` µ1, s2 ` µ2q. This precise peak position can achieve sub-pixel 203

accuracy to reliably locate those Laue spots which have a high Sim-value. Similar to how 204

the fitted location parameters µ1, µ2 of the Gaussian function are used in order to estimate 205

the sub-pixel peak position of Laue spots, the scale parameters σ1, σ2 can be used to describe 206

their shape and size. 207

2.2.3. Shape and size descriptors 208

As mentioned above, it is of great importance to only consider high-quality Laue spots
for strain determination in order to achieve the highest reliability. This quality does not
only depend on the Gaussian similarity of Laue spots, but also on their shape and size.
Hence, in general, large elongated spots (even symmetrical) are discarded. For that reason,
we consider the aspect ratio and the size of spots as featuring descriptors, which are given
by

Asppsq “
minpσ1, σ2q

maxpσ1, σ2q
and Areapsq “ πσ1σ2 ,

respectively. This multivariate description approach can be utilized to reject or accept spots 209

for strain analysis. However, performing the 2D Gaussian fitting of Laue spots, as stated 210

above, for a large number of Laue images and spots can be rather time consuming. Thus, 211

we propose an alternative method for the estimation of Laue spot descriptors, which is 212

based on CNNs. 213

2.3. CNN-based prediction of geometric spot descriptors 214

In order to efficiently determine the peak position Pospsq, size Areapsq and aspect 215

ratio Asppsq of a Laue spot with preliminary peak position at s P W we will estimate 216

these descriptors directly from the image data IpApsqq corresponding to the Laue spot at s, 217

instead of using the iterative gradient descent-based approach considered in Section 2.2. 218

Since the input IpApsqq is an image, conventional methods such as linear regression, 219

random forests or dense neural networks [17] are not suitable. In particular, these ap- 220

proaches do not maintain the spatial correlation of input arguments (i.e., the values Ipvq for 221

v P Apsq), which is of great importance for analyzing image data. For that reason, CNNs, 222

which leverage this spatial structure using convolutions [18], have been popularized in the 223

literature. In the following, we present details regarding the specific network architecture 224

used in the present paper. For more information on CNNs in general, we refer to [19] and 225

[18]. 226

2.3.1. Adjusted descriptors 227

To characterize Laue spots by means of CNNs, some of the descriptors introduced 228

in Section 2.2, namely the size Areapsq and the peak position Pospsq, are not suitable. For 229

this reason these spot descriptors are adjusted. Recall that the (precise) peak position of 230

the Laue spot at s P W, is described by Pospsq “ pPos1psq, Pos2psqq P R2, while the values 231

of Simpsq and Asppsq belong to the interval r0, 1s. Furthermore, note that a spot has low 232
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quality if the precise peak position Pospsq deviates coordinate-wise by more than 1 from the 233

initially estimated peak position s, which occurs if |Pos1psq ´ s1| ą 1 or |Pos2psq ´ s2| ą 1. 234

This is due to the fact that the precise peak position Pospsq is just a refinement in the 235

sub-pixel scale of the otherwise correct initial peak position s. Therefore, the values 236

of Pos1psq and Pos2psq are only of interest when pPos1psq ´ s1, Pos2psq ´ s2q P r´1, 1s2. 237

If the precise peak position Pospsq deviates coordinate-wise by more than 1 from the 238

initially estimated peak position s, errors in the prediction of other descriptors could be 239

potentially large which would overemphasize the effect of those low-quality spots during 240

training. Thus, instead of estimating Posipsq for i P 1, 2, we consider the adjusted position 241

Pos‹psq “ pPos‹
1psq, Pos‹

2psqq given by 242

Pos‹
i psq “

$

’

’

&

’

’

%

0, if Posipsq ´ si ď ´1.1,
1, if Posipsq ´ si ě 1.1,
Posipsq ´ si ` 1.1

2.2
, else,

for i “ 1, 2. Note that the precise peak position Pospsq can be reconstructed from Pos‹psq “ 243

pPos‹
1psq, Pos‹

2psqq for spots such that Pospsq ´ s P r´1, 1s2. For the remaining (low-quality) 244

spots, the precise peak position is of no interest as its estimation cannot be assumed to be 245

reliable and these spots will thus be omitted in further analysis. 246

Similarly, the size descriptor Areapsq, given by Areapsq “ πσ1σ2, takes values in the 247

set of positive real numbers R` “ p0, 8q. However, since large Laue spots are considered 248

to be of low quality, instead of estimating the quantity Areapsq directly we consider the 249

adjusted size 250

Area‹psq “

$

&

%

1, if Areapsq ě 5π,
Areapsq

5π
, else,

which takes values in the interval r0, 1s. Again, for high-quality spots this adjustment can 251

be reversed. Thus, the quantitative characterization of a Laue spot at s “ ps1, s2q P W is 252

given by the descriptor vector Descpsq “ pSimpsq, Pos‹
1psq, Pos‹

2psq, Asppsq, Area‹psqq. In 253

order to estimate this descriptor vector directly from image data, the CNN architecture 254

stated in the next section is used. 255

2.3.2. Convolutional neural network architecture 256

The CNN architecture considered in this paper comprises a fully convolutional stage 257

followed by a fully connected stage, see Figure 3 for a schematic overview. In the fully 258

convolutional stage, convolutional layers with kernel size 3 ˆ 3 are iteratively applied with 259

the goal of identifying important features in the images through the convolution with 260

several trainable kernels. Additionally, batch normalization layers are inserted after each 261

convolutional layer. Max-pooling layers with strides of size 2 are applied after the three 262

blocks consisting of two convolutional layers each. The pooling layers serve the purpose 263

of downsampling the image size, and, thus, increasing the effective field of view of the 264

subsequent block of convolutional layers without increasing the number of weights. Since 265

the input image has a resolution of 32 pixel ˆ 32 pixel (i.e., an array of shape p32, 32, 1q), the 266

output of the fully convolutional stage is a p4, 4, 128q-array, which is then used as the input 267

of the fully connected stage. 268

The following fully-connected dense layers have 112, 56, 22 and 5 neurons, respectively, 269

where the last layer represents the final output of the CNN. The activation function of the 270

convolutional layers and the inner dense layers is the ReLU function. The output layer uses 271

a sigmoid function, which can only take values in the interval r0, 1s. In order to use this 272

neural network to the precise estimation of the descriptor vector Descpsq, the network has 273

first to be calibrated via training, as described below. 274
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Figure 3. CNN architecture used for the estimation of Laue spot descriptors. The values above the
convolutional layers and the dense/output layers specify the number of filters and the number of
neurons, respectively. For better clarity, batch normalization layers are included in layer Conv.

2.3.3. Training procedure 275

Given the architecture described in Section 2.3.2, the neural network can be seen 276

as a function fθ : R32ˆ32 Ñ r0, 1s5 where, for a given input image IpApsqq, the output 277

depends also on the weights θ P R347493 of the network. To ensure that the network output 278

fθpIpApsqqq approximates the ground truth descriptor vector 279

Descpsq “ pSimpsq, Pos‹
1psq, Pos‹

2psq, Asppsq, Area‹psqq

reasonably well, we first need to find suitable weights θ by training the network. For 280

that purpose, a stochastic gradient descent algorithm with mini-batches of size 32 is used. 281

Specifically, the ADAM optimizer [19,20] with a learning rate of 0.001 is applied to minimize 282

the training loss. 283

The training loss is characterized by means of the d-dimensional mean absolute 284

error (MAE), where d “ 5 corresponding to the five descriptors Simpsq, Pos‹
1psq, Pos‹

2psq, 285

Asppsq, Area‹psq considered in this paper. In the general case of d descriptors for some 286

d ą 0, the loss is given by 287

MAE
´

ytrue, ypred
¯

“
1

nd

n
ÿ

i“1

∥ytrue
i ´ ypred

i ∥1,

where ytrue “ pytrue
1 , . . . , ytrue

n q P Rnˆd is an ensemble of n true descriptor vectors and 288

ypred “ pypred
1 , . . . , ypred

n q P Rnˆd denotes their predictions, with the absolute value norm 289

(also known as L1-norm) ||y||1 “
řd

j“1 |yj| for any y “ py1, . . . , ydq P Rd. 290

In total, 70 epochs were conducted, with 100 training steps each. To avoid overfitting, 291

the initial model development was performed on a small subset of the first dataset, leading 292

to the choice of various hyperparameters such as the number of epochs and the number of 293

filters in the convolutional stage of the architecture. Additionally, in order to synthetically 294

increase the variance in the training data, input images are shifted, rotated and reflected 295

during training, with a corresponding adjustment of the position descriptor Pos‹. 296

2.3.4. Ground truth data 297

As mentioned in Section 2.1, five Laue microdiffraction scans are available for the 298

training and evaluation of the neural network. From each of these scans, a ground truth 299

dataset Di, for i “ 1, . . . , 5, is obtained by first identifying all Laue spot candidates with 300

the initial peak search algorithm and, then, fitting a 2D Gaussian function to each spot 301

candidate, see Section 2.2. From this, for a spot candidate at s P W, the true descriptor vector 302

Descpsq “ pSimpsq, Pos‹
1psq, Pos‹

2psq, Asppsq, Area‹psqq is determined, which is combined 303

with the image cutout IpApsqq. Thus, in summary, the ground truth datasets D1, . . . ,D5 304

consist of pairs of input images and corresponding ground truth descriptor vectors for each 305

Laue spot candidate. Since the datasets contain up to 5 000 000 Laue spot candidates, a 306
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quasi-random subsampling was conducted to limit the number of Laue spot candidates to 307

46 000 for each dataset. 308

During training, neural networks emphasize learning of the dependencies between 309

typical values of inputs and outputs. More specifically, these typical values appear more 310

often during training, and thus there is more pressure (i.e., higher training loss) to predict 311

the dependency between them correctly than for other values which occur less often. This 312

can lead to large errors if training and test data follow different probability distributions, 313

as shown in [21]. Unfortunately, the distribution of the similarity descriptor Sim varies 314

significantly across the five ground truth datasets, see Figure 4, and this is likely to be 315

true for datasets on which the CNN is applied in the future. To offset these differences, 316

network training is conducted on resampled datasets denoted by Dres
1 , . . . ,Dres

5 —in fact, as 317

detailed in Section 3 below, only a selection of these datasets is used during training. The 318

goal of this resampling procedure is to approximate a standard uniform distribution for 319

Sim, meaning that there are no typical values in the training data. For that purpose, the 320

interval r0, 1s is partitioned into 12 bins and ground truth pairs (i.e., Laue spots and their 321

descriptor vectors) are assigned to each bin with respect to their similarity descriptor Sim 322

until they contain 2000 elements. The procedure is also stopped when no pairs remain. For 323

the resulting resampled datasets Dres
1 , . . . ,Dres

5 , the histograms of the descriptor Sim are 324

shown in the bottom row of Figure 4. 325
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Figure 4. Histograms of the similarity descriptor Sim for original (top) and resampled datasets
(bottom).

3. Results 326

The goal of this section is to evaluate the model performance on previously unseen 327

data. Results are presented that consider all Laue spots, but additionally special focus is 328

put on Laue spots that are well-fitted by the Gaussian functions. 329

3.1. Evaluation procedure 330

To evaluate the final prediction performance, the available ground truth datasets 331

D1, . . . ,D5, see Section 2.3.4, are split into disjoint training and test data. Note that, for the 332

evaluation to be accurate, test and training data have to be uncorrelated. However, Laue 333

spot candidates of a given scan tend to be highly correlated, especially when many Laue 334

patterns are collected at several places on a same crystal during the sample raster scan. 335

Therefore, we use the following cross-validation method to ensure that the performance 336

measures considered in the present paper are representative: for each choice of four datasets 337

out of the five available datasets, a CNN model is trained on the union of the resampled 338

data (e.g., Dres
2 Y ¨ ¨ ¨ Y Dres

5 ) and tested on the remaining dataset (e.g., D1). Note that, 339

in order to evaluate the prediction performance under real world conditions, testing is 340
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conducted on the original dataset (e.g., D1) that is not resampled. So, in summary, a 341

total of five models—corresponding to the five so-called cross-validation folds—are built 342

with the same architecture and hyperparameters, but trained on different combinations 343

of four (resampled) datasets, where the model with the number i uses Di as test data (for 344

i “ 1, . . . , 5). The learning progress of the models is illustrated in Figure 5 for both, the 345

training data and the unseen test data. 346
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Figure 5. Loss functions for training data (left) and unseen test data (right) during the training of the
five CNN models as well as their averaged progress (black dashed lines).

In the following, only the unadjusted spot descriptors are discussed, because they 347

are of practical concern and thus easier to interpret. Since the networks return predictions 348

for the adjusted descriptors (i.e., Area‹psq and Pos‹psq), we inverted the formulas given 349

in Section 2.3.1 in order to obtain predictions for the unadjusted descriptors. Recall that 350

the adjustments of the descriptors used for training makes them robust against outliers. 351

However, this is no longer true for their unadjusted counterparts. For example, some 352

badly fitted Gaussian functions lead to extremely high values of the spot size descriptor 353

Areapsq that are much larger than the cutout Apsq. Since these outliers lead to skewed error 354

scores, they are truncated. More specifically, for a Laue spot at s P W, the value of Areapsq 355

is set to mintAreapsq, 25πu, i.e., the area of a disk with a diameter of 10 pixel. Similarly, 356

the components of the position vector Pospsq are set to maxtmintPosipsq ´ si, 15u, ´16u for 357

i “ 1, 2 to ensure that Pospsq is inside the cutout Apsq. 358

In order to quantify the prediction errors, the (one-dimensional) mean absolute error, 359

see Section 2.3.3, is considered for three different spot descriptors. Namely, MAESim for 360

the similarity to a Gaussian function, as well as MAEArea and MAEAsp for the size and 361

aspect ration of spots, respectively. Furthermore, since the peak position Pospsq is a two- 362

dimensional spot descriptor, the averaged Euclidean norm PosErr of the position error 363

vector is employed, which the vector obtained by subtracting the true position from the 364

predicted position. Last not least, the d-dimensional coefficient of determination R2 is 365

considered, where 366

R2pytrue, ypredq “ 1 ´

n
ř

i“1
∥ytrue

i ´ ypred
i ∥2

2

n
ř

i“1
∥ytrue

i ´ Ęytrue∥2
2

for an ensemble of n true values of a (d-dimensional) descriptor ytrue “ pytrue
1 , . . . , ytrue

n q P 367

Rnˆd and their corresponding predictions ypred “ pypred
1 , . . . , ypred

n q P Rnˆd, with the 368

mean value Ęytrue “ 1
n

řn
i“1 ytrue

i and the Euclidean norm ∥y∥2 “

b

řd
j“1 y2

j for any y “ 369

py1, . . . , ydq P Rd. 370

Note that the coefficient of determination R2 relates the variation of the residuals to 371

the variation with respect to the (single) estimator Ęytrue. In the scalar case, i.e. for d “ 1, 372

the latter is proportional to the variance in the data ytrue). The best possible value of R2
373

is 1, and 0 is obtained if the predictive power (in the sum-of-squares sense) is equal to 374

that of Ęytrue, but it can get arbitrarily low (taking even negative values), see [22] for more 375
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information regarding the scalar case. In the following, the coefficient of determination is 376

denoted by R2
Sim for the similarity to a Gaussian function, by R2

Pos for the spot position, by 377

R2
Area for the spot area, and by R2

Asp for the aspect ratio of spots. 378

3.2. Numerical results for all Laue spots 379

In Table 1, the results are presented which have been obtained for various error scores 380

on the test data of each cross-validation fold as well as for aggregated error scores, where 381

the aggregated error scores were obtained by aggregating the predictions of all five CNN 382

models on the respective test data. It is important to emphasize that the ground truth for 383

all predicted descriptors is directly derived from the Gaussian functions fitted to the Laue 384

spots. In other words, for spots that can only be inadequately described by a Gaussian 385

function, the descriptors take almost arbitrary values, which are hard, if not impossible, 386

to estimate directly from the image data, see Figure 2a. This can be seen by analyzing the 387

dependence of the similarity descriptor Sim on the prediction errors. 388

Table 1. Results obtained for various error scores of the five CNN models on the respective test
datasets, as well as for aggregated error scores.

model sample size MAESim R2
Sim PosErr R2

Pos MAEArea R2
Area MAEAsp R2

Asp

1 46000 0.057 0.916 0.213 0.298 0.907 0.350 0.075 0.415
2 46000 0.011 0.621 4.155 0.072 27.584 -0.264 0.184 0.047
3 46000 0.074 0.912 0.213 0.385 0.889 0.348 0.089 0.316
4 46000 0.051 0.889 0.051 0.819 0.249 0.318 0.055 0.260
5 46000 0.147 0.594 2.282 0.218 25.297 -0.370 0.136 0.061
aggregated 230000 0.068 0.913 1.383 0.149 10.985 0.129 0.108 0.344

In Figure 6, four top views of 2D histograms are shown, corresponding to different 389

pairs of prediction errors, where the colors indicate the heights of the histogram values at 390

the corresponding positions. These histograms were computed by using each Laue spot in 391

the five test datasets, except those identified as outliers. Note that the prominent line in 392

the bottom-left plot of Figure 6, corresponding to the absolute error of predicted similarity, 393

is caused by spots whose predicted similarity is close to 0, but whose true similarity is 394

non-zero. 395

3.3. Numerical results for good-quality spots 396

It is clear that the majority of large errors in Figure 6 occurs for spots whose similarity 397

descriptor Sim is equal to (almost) zero, see also Figure 2. For this reason, a case study 398

has been conducted where a good quality spot was defined as a spot whose similarity 399

descriptor Sim exceeds the threshold of 0.5. Furthermore, large deviations between the 400

initial guess of the peak position s P W and the position Pospsq deduced from the fitted 401

Gaussian function are also a sign of bad spots. For this reason, spots are only retained if it 402

holds that ∥Pospsq ´ s∥2 ď 0.9. For sake of simplicity, the criterion considered in this paper 403

for good quality spots only depends on the similarity descriptor and the peak position, but 404

more complex criteria based additionally on the spot size Areapsq and/or the aspect ratio 405

Asppsq could also be used, in dependence on the nature the datasets under consideration. 406

Note that in practice the true value of the similarity descriptor Simpsq is unknown and only 407

the predicted value is available. Thus, a few good quality spots are misclassified as bad 408

quality spots and vice versa, see Table 2. By restricting the error scores presented in Table 1 409

to the predicted good spots, much better results are obtained, as shown in Table 3. 410
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Figure 6. Top views of 2D histograms for different pairs of prediction errors, where the (true)
similarity Sim is plotted along the x-axis, and the absolute prediction error for size (top left), aspect
ratio (top right), and similarity (bottom left) as well as the norm of the position error vector (bottom
right) are plotted along the y-axis. Each underlying data point corresponds to a Laue spot in the five
test datasets D1, . . . ,D5. To improve visibility, the colormap was cut off at 0.015, and outliers were
removed (instead of truncating them).

Table 2. Confusion matrix for good and bad quality spots.

true
bad good

predicted bad 0.552 0.021
good 0.013 0.415

Table 3. Values of various error scores for good quality spots, computed for the CNNs on the
corresponding test datasets, as well as for aggregated error scores.

model sample size MAESim R2
Sim PosErr R2

Pos MAEArea R2
Area MAEAsp R2

Asp

1 30952 0.040 0.744 0.045 0.984 0.288 0.924 0.061 0.477
2 175 0.052 0.603 0.139 0.705 3.977 0.339 0.075 0.372
3 18320 0.061 0.603 0.050 0.980 0.227 0.950 0.068 0.425
4 41292 0.044 0.704 0.031 0.987 0.155 0.849 0.052 0.258
5 7633 0.100 0.530 0.091 0.838 2.396 0.500 0.075 0.315
aggregated 98372 0.050 0.705 0.044 0.973 0.391 0.649 0.060 0.453

4. Discussion 411

Generally speaking, the following is true for all spot descriptors considered in this 412

paper, with the exception of similarity: to accurately describe a Laue spot as seen in the 413

image data, the underlying Gaussian function has to fit the image data reasonably well. 414

Otherwise, descriptors assume almost arbitrary values. It is thus unsurprising that by 415

removing bad quality spots from Table 1 the errors go down as shown in Table 3. 416

However, the opposite is true for similarity, which is already predicted well on the 417

original data. Here, the coefficient of determination R2
Sim decreases if only the good quality 418

spots are retained. The reason for this is that spots which are obviously badly fitted (i.e., the 419

“easy cases”) are excluded, leaving only the hard cases whose precise value of similarity is 420

more difficult to predict. But this effect is of little importance for practical applications of 421

the presented approach, which can be seen by the small numbers of misclassified spots, 422

see Table 2. Only 1.3% of spots are bad quality spots that are misclassified as good ones. 423
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Moreover, the 2.1% of spots that are confused the other way around usually have even less 424

impact in practice, as there are still enough spots for an accurate peak analysis. 425

Considering only good quality spots, the peak position is predicted very well, where 426

PosErr “ 0.044 and R2
Pos “ 0.973 for aggregated error scores, see Table 3. The threshold 427

of 0.5 pixels that would nullify the peak position refinement is clearly surpassed even 428

for the worst dataset. In contrast, the aspect ratio is the hardest descriptor to predict for 429

the CNN models with respect to the coefficient of determination. While this descriptor 430

and the area are both simple functions of the scale parameters σ1 and σ2 of the Gaussian 431

function (see Section 2.2.3), the first one is given as a quotient of σ1 and σ2 in contrast to the 432

second one, which is proportional to their product. The quotient is much more sensitive to 433

slight deviations of σ1 and σ2, making the estimation less stable compared to the product 434

where errors might cancel out. When considering the mean absolute errors MAEArea and 435

MAEAsp, it is important to keep their respective range in mind: For the first one, values up 436

to 25π « 78.5 are possible (as a result of the outlier treatment), whereas for the latter only 437

values up to 1 occur (as a result of the definition of Asp). 438

When analyzing the original distributions of similarity values for each of the five 439

datasets considered in Figure 4, it becomes clear that they differ substantially from each 440

other, e.g., the second dataset D2 shows a very skewed distribution where almost all spots 441

are badly fitted by their Gaussian function. This explains the higher error scores shown in 442

Table 1. As mentioned above this is caused by the ill-defined descriptors for badly fitted 443

spots. When the bad quality spots are removed from consideration, the resulting score 444

values are more similar to those of the other datasets. Note that in the case of dataset D2 445

only relatively few (175) spots remain, but recall that only a (random) subset of all Laue 446

spots is considered in this evaluation (see Section 2.3.4). 447

One idea to improve the prediction performance of the CNNs might be to train models 448

specifically for a single descriptor such as the similarity Sim. Then, instead of having a 449

single model that predicts all descriptors of interest, multiple models have to be employed. 450

To investigate this further, models have been trained with the same cross-validation strategy 451

as stated in Section 2.3, but whose output is only Sim. The error scores listed in Table 4 452

show that there is no major improvement compared to the previously considered all-in-one 453

models despite the significantly increased complexity. 454

Table 4. Comparison of error scores for CNN models that specifically predict the similarity Sim and
for models combining all descriptors (Sim, Pos, Area, and Asp) considered in this paper. The error
scores were evaluated for the CNNs on their respective test data.

model MAESim R2
Sim

specific 0.062 0.920
all in one 0.068 0.913

By performing cross-validation on different datasets, the generalization of the predic- 455

tion performance has been quantified. However, there might be further aspects that impact 456

the performance. While the crystal structure and orientation govern the position of the 457

diffraction peak, the shape of the Laue spot depends on the local crystal misorientation 458

distribution within the probed volume. The datasets considered in the present paper have 459

been chosen to comprise a wide variety of spot shapes from simple ones, which are well- 460

described by Gaussian functions, to very complex ones. For this reason, we assume that 461

the predictor will work equally well on other datasets whose local crystal misorientation 462

distribution is within the considered spectrum, irrespective of crystal structures. Never- 463

theless, before applying it to datasets that are outside this broad spectrum, the prediction 464

quality should be reevaluated. Another aspect that concerns the generalization is the 465

distance between the sample and the detector. As mentioned above the datasets considered 466

in the present paper have been acquired with a distance between 78.5 mm and 79.5 mm. 467

Increasing this distances leads to a homothetical transform that enlarges the Laue spots, but 468
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leaves their general shape intact. The size of the cutouts (32 pixel ˆ 32 pixel) that are fed to 469

the CNN models has been chosen to work well for these values of the detector distance. 470

However, for much larger values the Laue spots might not fully fit into the cutouts and the 471

CNN models would thus be unable to describe them accurately. In this case, the models 472

would need to be retrained with a larger cutout size, (e.g., 64 pixel ˆ 64 pixel instead of 473

32 pixel ˆ 32 pixel). 474

One of the main advantages of the CNN-based estimator presented in this paper is its 475

high computational speed. To make this clear, the runtime performance has been evaluated 476

by comparing it to that of the conventional gradient descent approach implemented in 477

LaueTools, see [14]. For this purpose, 10 repetitions of analyzing 10 000 Laue spots have 478

been conducted to determine the timings reported in Table 5. 479

The evaluation procedure of runtime performance consists of two setups: As the 480

gradient descent is using only a single processor core, the CNN-based approach has also 481

been restricted to a single core in the first setup for a fair comparison. In this case, a speedup 482

of 2.089 ms{0.647 ms “ 3.23 is obtained, see Table 5. In the second setup, the predictions of 483

the neural network are computed on a GPU. Here, a speedup of 2.089 ms{0.027 ms “ 77 484

is achieved. While the CNN-based approach is already significantly faster for the single- 485

threaded setup, on the GPU it can fully leverage its inherent affinity for parallel computing, 486

resulting in massive speedups. It is also worth mentioning that the runtime for the CNN 487

stays the same for all inputs, whereas the gradient descent algorithm takes longer for 488

difficult test datasets with many bad quality spots (such as D2). The reason for this is that 489

for irregular spots the initial parameters based on pixel values do not already lead to a 490

good fit and several iterations of optimization steps have to be computed. The experiments 491

were performed on an AMD Ryzen 9 3900x CPU and an NVIDIA RTX 2080 Super GPU. 492

Table 5. Comparison of runtimes (in milliseconds per Laue spot) of the different approaches tested
on different datasets. Note that the runtimes of the CNN-based approaches do not depend on the test
datasets used.

dataset CNN with GPU CNN with CPU Gradient descent with CPU

D1 0.027 0.647 1.655
D2 0.027 0.647 3.335
D3 0.027 0.647 1.795
D4 0.027 0.647 1.804
D5 0.027 0.647 1.857
aggregated 0.027 0.647 2.089

5. Conclusion 493

In this paper, we described a CNN-based method for the characterization of Laue spots 494

(given by a pixel intensity distribution), which is an important step when analyzing Laue 495

patterns. With the presented method, the conventional approach based on computationally 496

expensive fitting of parametric functions can be replaced by fast CNNs. This way, a 497

significant speedup (up to 77 times when using a GPU) is achieved for the prediction of 498

geometric spot descriptors. 499

Using the CNN-based method, descriptors derived from the fitted Gaussian functions 500

can be accurately estimated for Laue spots that are well described by these functions (good- 501

quality spots). The remaining spots have little similarity to the parametric functions, and 502

thus, descriptors derived from these fitted parametric functions assume almost arbitrary 503

values. For this reason, such spots are not useful for the subsequent analysis. The CNN 504

allows to quantify this similarity and, in this way, the usefulness of a Laue spot descriptors 505

for the subsequent analysis. 506

While the currently predicted spot descriptors could be estimated using traditional 507

methods (albeit slower), the approach proposed in the present paper can also be applied 508

to other descriptors which are more difficult to estimate by traditional methods. For 509
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example, there are occurrences of so-called “double peaks” which occur when two Laue 510

spots overlap. By synthetically overlapping the grayscale images of multiple Laue spots, 511

we could synthetically generate realistic training data of double peaks, where descriptors 512

for both peaks are well known. This data could be used to train a neural network in order 513

to learn descriptors of double peaks, which would allow us to further analyze Laue spots 514

that are currently not well described by parametric functions. 515
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