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Abstract

A stochastic multi–layer model is developed describing the microstructure of
materials which are built up of strongly curved, but almost horizontally oriented
fibers. This fully parametrized model is based on ideas from stochastic geometry
and multivariate time series analysis. It consists of independent layers which are
stacked together, where each single layer is described by a 2D germ–grain model
dilated in 3D. The germs form a Poisson point process and the grains are given
by random polygonal tracks describing single fibers in terms of multivariate time
series. Exemplarily, on the basis of 2D data from SEM images, the parameters
of the multi–layer model are fitted to the microstructure of a non–woven ma-
terial which is used for gas–diffusion layers in PEM fuel cells. Therefore, an
algorithm is presented which automatically extracts typical fiber courses from
SEM images. Finally, the multi–layer model is validated by comparing struc-
tural characteristics computed for 3D data gained by synchrotron tomography
from the same material, and for realizations drawn from the multi–layer model.

Keywords: porous material, curved fibers, non–woven, germ–grain model,
multivariate time series, vectorial autoregression, SEM, synchrotron
tomography

1. Introduction

Fiber–based materials find increasing interest in various applications, e.g.
in thermal insulations, the housings of aircraft and vehicles and not to forget
in fuel cell technology. The morphology of these materials has a deep impact
on their macroscopic properties, therefore detailed structural investigations are
needed. The aim of the present paper is the development of a structural simu-
lation model and its exemplary application to gas diffusion layers (GDL) being

∗Corresponding author: phone: +49 731 50 23590, fax: +49 731 50 23649,
e-mail: gerd.gaiselmann@uni-ulm.de

Preprint submitted to Computational Materials Science February 2, 2012



a key component of polymer electrolyte membrane (PEM) fuel cells. The GDL
material is built up of carbon fibers, which are almost horizontally oriented. In
particular, the specific example which we consider in the present paper is the
non–woven GDL H2315 produced by the company Freudenberg FCCT KG. It
consists of strongly curved fibers.

Note that the microstructure of the GDL has a significant influence on the
transportation of gases and water along the percolation pathways through the
pores. Moreover, the carbon fibers manage the transport of electrons. For
further details concerning the functionality of GDL in fuel cells we refer e.g. to
[7, 12, 14].

In order to improve the understanding of these physical processes, we develop
a stochastic microstructure model which is fully parameterized. It can be used
for virtual scenario analyses with the general aim to construct microstructures
with improved physical properties. By systematic modifications of model pa-
rameters and in combination with numerical transportation models, virtual 3D
morphologies and virtual transportation processes in these morphologies can be
simulated. In this way, the identification of optimized morphologies is possible.

We propose a multi–layer approach to describe horizontally oriented fiber
systems, i.e., our 3D model consists of several (stochastically) independent layers
stacked on top of each other. Each single layer is given by a so–called germ–grain
model which is the set union of curved fibers running in horizontal direction
where, for simplicity, the fibers are allowed to interpenetrate mutually. This
single–layer model is constructed by combining tools of stochastic geometry
and multivariate time series analysis (see e.g. [9, 20] and [6, 13], respectively),
where we consider a germ–grain model such that the germs form a homogeneous
Poisson point process in 2D and the grains are random planar polygons which
are spherically dilated in 3D.

The resulting multi–layer model, i.e. the stack of modeled single layers,
is able to adequately reproduce the 3D microstructure of fiber systems with
strongly curved fibers running mainly in horizontal direction. Moreover, the
multi–layer approach enables us to fit model parameters on the basis of struc-
tural information extracted from 2D images, where we use a similar algorithm
like in [21] for the extraction of single fibers from the top layer.

Note that for industrial applications it is important to gain the necessary
structural information of a material as much as possible from 2D images since
they are relatively easy to obtain in contrast to 3D image data.

The imaging technique, used in this paper for model fitting, is scanning-
electron microscopy (SEM) which delivers 2D images for various kinds of ma-
terials. From the 2D SEM images the typical tracks of fibers located near the
top of the material can be detected. These fibers, represented as 2D polygonal
tracks, are the main data basis in order to construct a stochastic model for single
fibers. In particular, the 2D polygonal tracks are modeled by sequences of ran-
dom vectors, where these tracks extracted from the SEM images are considered
as realizations of multivariate time series. Finally, for model validation, we use
3D data gained by synchrotron tomography, where structural characteristics of
real data and simulated data sampled from the fitted model are compared to
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each other.
Recently, several approaches to stochastic modeling of fiber–based materials

have been studied in the literature, see e.g. [1, 10, 16, 17, 19, 21]. In most of
these papers materials consisting of straight fibers are considered, whereas in [1]
a stochastic model is developed which can describe materials with curved fibers.
However, in distinction to the modeling approach proposed in the present paper,
3D data are needed in [1] for model fitting.

Our paper is organized as follows. Section 2 describes the detection of fibers
located on top of 2D SEM images. In Section 3, the stochastic model for single
fibers is introduced using tools of multivariate time series analysis. Section 4 es-
tablishes the multi–layer model as a stack of independent copies of a single–layer
model which is given in terms of a germ–grain model from stochastic geometry.
Section 5 summarizes the results and provides a short outlook regarding possible
future research.

2. Detection of Typical Fiber Courses

We first state an algorithm to detect the typical courses of fibers from SEM
images, see Figure 1 (left). These fiber courses, represented as polygonal tracks,
will be the main data basis for fitting the single–fiber model introduced in Sec-
tion 3. Note that our algorithm is similar to a procedure which has been devel-
oped in [21] for fiber–based materials with straight fibers.

2.1. Preprocessing of SEM Images

A closer look at the 2D SEM image of Figure 1 (left) indicates that the
observed data contains noise that shall be removed in the first step of image
processing. A global smoothing using e.g. a Gaussian filter [3, 11, 15] has the
disadvantage that also the edges indicating the fibers get blurred. To avoid this
undesirable effect, the method of anisotropic diffusion is used.

Figure 1: Left: 2D SEM image of non–woven GDL, right: Smoothed SEM image using
anisotropic diffusion.
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2.1.1. Smoothing, Linear Filtering, and Binarization

The principle idea of anisotropic diffusion is quite simple. First, the edges
to be preserved are detected, and then the smoothing is not performed across
them, see e.g. [18] for details. The advantage of this smoothing technique is
that the loss of structural information is minimized, i.e., the edges remain sharp
but noise is reduced, see Figure 1 (right).

In the next step, the edges of fibers are further emphasized by convoluting
the smoothed image with a linear filter [3], see Figure 2 (left).

Figure 2: Left: 2D SEM image after convolution for edge enhancement, right: SEM image
after binarization.

The smoothed and convoluted image is subsequently thresholded where we
apply the isodata algorithm [3] to determine the threshold value non-interactively,
see Figure 2 (right). Notice that in order to enhance the clarity of presentation,
the images beginning from the right part of Figure 2 are inverted, i.e., black and
white pixels are interchanged.

The binarized image contains small foreground clusters which obviously do
not contribute to those fibers located on top of the SEM image. To remove them,
an algorithm for the detection of isolated clusters [8] is used and small clusters
with a size below a certain threshold are removed where this threshold has been
set to 50 pixel. Furthermore, the connectivity of the remaining foreground phase
is improved by dilation using a small disc as structuring element [18].

2.1.2. Skeletonization; Transformation into Vector Data

The next processing step is the skeletonization of the binarized SEM image.
This means that foreground pixel, i.e., those belonging to the objects we are
interested in, are changed to background pixel in a way that the remaining
(still pixel–given) paths have a thickness of one pixel, where the connectivity
has to be preserved [3, 18]. The result of skeletonizing the binary image on the
right–hand side of Figure 2 is shown in Figure 3 (left).

In order to transform the skeletonized image into vector data, the foreground
pixel are subdivided into three groups, where the number of neighboring fore-
ground pixel is counted with respect to the 8–neighborhood. A pixel with exactly
one neighbor is considered as endpoint, a pixel with exactly two neighbors is
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classified as linepoint, and all other pixel are interpreted as crosspoints. Then,
all pixels classified as crosspoints are removed, see Figure 4. This seems to be
particularly reasonable for the detection of curved fibers, since in Section 2.2 an
algorithm is introduced which appropriately connects parts of the fiber courses
to be detected. Subsequently, the remaining set of foreground pixel is trans-
formed into polygonal tracks which consist of relatively short line segments.

Figure 3: Left: Skeletonized image, right: Representation by vector data

Figure 4: Left: Skeletonized data; right: Removement of crosspoints

Figure 5: Transformation of pixel–given paths into polygonal tracks

The transformation of the connected clusters of foreground pixel into polyg-
onal tracks is done in the following way. For each pixel cluster, starting from
one of its endpoints, the (Euclidean) line segment between the current pixel and
the endpoint is compared to the corresponding pixel–given path. If the discrep-
ancy between the pixel–given path and the line segment is too large, i.e., if the
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pixel-given path is too curved, the previous pixel is said to be the endpoint of
the current line segment and, simultaneously, the starting point of the next line
segment, see Figure 5. This procedure is repeated until the other endpoint of
the pixel cluster is reached.

The final result of this transformation is a family of polygonal tracks, which
can be interpreted as a graph structure, representing the pixel–given structure
of the skeletonized SEM image, see Figure 3.

2.2. Reconstruction of Fibers

In this section we discuss a stochastic algorithm to connect the polygonal
tracks, whose extraction from SEM images has been described in Section 2.1, in
such a way that the curvature properties of the fibers on top of the considered
SEM image are represented correctly.

2.2.1. Connection of Polygonal Tracks

The family of polygonal tracks p1, . . . , pn, n ≥ 1, obtained in Section 2.1.2
from the skeletonized SEM image, contains relatively short parts of the fiber
courses to be detected, see Figure 1 and Figure 3 (right). Hence, for an adequate
reconstruction of the fibers, the polygonal tracks considered in Section 2.1.2 have
to be appropriately connected.

Figure 6: Connection of polygonal tracks

The basic idea of our algorithm is to look for sequences of polygonal tracks
representing the courses of single fibers. More precisely, let pi and pj be two
candidates of polygonal tracks to be possibly connected via their ‘end–segments’
li and lj . Then we connect the polygonal tracks pj and pi only if the connecting
line segment lij has nearly the same direction as li and lj and if it is not too long.
If so, the union pi ∪ lij ∪ pj of segments is considered as one single polygonal
track. At the end point of this new polygonal track, a next polygonal track is
searched in the same way as before. This procedure is repeated until no further
pairs of polygonal tracks can be found to be connected.

Since, for a given polygonal track, there can be several possibilities of con-
necting other polygonal tracks with it, a decision rule has to be established which
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chooses the next polygonal track. In the following, some criteria are described
which are used for this selection.

For connecting a polygonal track pi to another one, we are looking for all
end–segments li1 , . . . , lim ∈ {l1, . . . , ln} \ {li} with an endpoint belonging to a
certain sector around the considered endpoint of li, see Figure 6. In case of
the exemplary material (for non–woven GDL) studied in the present paper, this
sector has been chosen with a length |lmax| of 85 pixel and an angle α = �max

of 0.9 because these values provide very good visual results. This means that
a connection of the line segment li to one of the line segments li1 , . . . , lim is
possible. Notice that the line segment li is only connected to exactly one line
segment contained in the set li1 , . . . , lim . The probability that a polygonal track
pi is connected to a polygonal track pj ∈ {pi1 , . . . , pim} via a line segment lij
depends on

1) the angle between the direction of the line segment lij and the directions
of the end–segments li and lj , where the probability that pi and pj get
connected increases if the differences between the directions of li, lj and
lij get smaller, and

2) the length |lij | of the line segment lij , where the probability is smaller for
longer line segments lij .

Thus, a weight ωij is considered for each line segment lij possibly connecting pi
and pj , which is given by

ωij = exp

(
−1

2

(
|lij |
|lmax|

)2
)
· exp

(
−1

2

(
�lij

�max

)2
)
,

where |lij | denotes the length of the line segment lij connecting li and lj , and
|lmax| is the maximum possible length of a connecting line segment. By �lij

we denote the mean of the absolute values of the angles �(li, lij) and �(lij , lj),
i.e., the differences of directions between the line segments li and lij and the
line segments lij and lj , whereas �max is the maximum possible difference of
directions in accordance with the definition of the selection sector introduced
above. Note that |lmax| and �max are the parameters of our random connection
algorithm.

After having determined the weights ωij , they are normalized such that the
sum of the normalized weights ω̃ij equals 1. The polygonal track pi is then
connected with pij with probability ω̃iij .

2.2.2. Evaluation of Connected Tracks

Since polygonal tracks are connected according to a random selection rule,
it is obvious that the result of one single run cannot be assured to be optimal.
To find nearly optimal solutions, the simulation of connections, i.e., the random
construction of elongated polygonal tracks, is repeated several times until results
of similar good quality are found for a certain number of subsequent runs.

The evaluation is accomplished by means of the following criterion of good-
ness which is based on the smoothed 2D SEM image, given as gray value image,
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i.e., each pixel of the image is assigned with a gray value between 0 and 255.
For the detection of curved fibers as occurring in non–woven GDL, an empirical
variance of gray values of polygonal tracks is considered, where each (elon-
gated) polygonal track p is discretized and subsequently dilated by the unit disk
b(o, 1) ⊂ R2. Let I(u1, v1), . . . , I(uk(p), vk(p)) be the gray values of the smoothed
SEM image at the pixel (u1, v1), . . . , (uk(p), vk(p)) of the dilated and discretized
polygonal track p. The empirical variance of those pixel is computed only for
whose gray values which are darker than the average gray value

Ip =
1

k(p)

k(p)∑
i=1

I(ui, vi) .

More precisely, for the polygonal track p, we consider the modified set of gray
values Ĩ(u1, v1), . . . , Ĩ(uk(p), vk(p)) given by Ĩ(ui, vi) = min{I(ui, vi), Ip} for i =
1, . . . , k(p), which are used to determine the empirical ‘dark variance’

V̂ard(p) =
1

k(p)− 1

k(p)∑
i=1

(
Ĩ(ui, vi)− Ip

)2
. (1)

The idea of the dark variance introduced above is to look at locations, where the
considered polygonal track crosses darker regions which are assumed to belong
to the background. Hence, the smaller the dark variance V̂ard(p) of p, the better
the polygonal track p is assumed to be.

The above described criterion is used to identify the best track p for any
initial (not yet elongated) polygonal track pi ∈ {p1, . . . , pn} within the set of
all (randomly) elongated polygonal tracks starting from pi, i.e., the same ran-
dom connection algorithm is performed for all initial tracks {p1, . . . , pn}. The
resulting best tracks are denoted by p′1, . . . , p

′
`.

2.2.3. Ranking of Tracks

In order to identify the fibers on top of the considered material, a ranking
of the best polygonal tracks p′1, . . . , p

′
` is introduced which is based on the gray

values of the smoothed SEM image along the courses of p′1, . . . , p
′
`. The idea

for such a ranking is to indicate how close a polygonal track is to the surface.
Hence, two characterizing ‘rank factors’ ω1

i , ω2
i ∈ [0, 1] are considered for each

polygonal track p′i; i = 1, . . . , `.
The first factor ω1

i is related with the so–called ‘overlay criterion’. This
criterion is based on the assumption that fibers close to the surface lead to
longer polygonal tracks compared to fibers in the background since the latter
ones are overlaid more frequently by other fibers which are closer to the top.
Thus, the rank factor ω1

i for p′i is given by

ω1
i =

coverage length of p′i
total length of p′i

,

where the coverage length of p′i denotes the total length of those line segments
of p′i which coincide with line segments from the skeletonized image. The second
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rank factor ω2
i is a normalized version of the empirical dark variance V̂ard(p

′
i)

of p′i introduced in (1), where smaller variances are assumed to belong to fibers
closer to the top.

Then, each polygonal track p′i is equipped with a rank value rki which is given
by rki = (1−ω1

i ) ·ω2
i . This puts us in the position to rank the tracks p′1, . . . , p

′
`

according to their rank values, i.e., rkπ(1) ≤ . . . ≤ rkπ(`), where (π(1), . . . , π(`))
is some permutation of (1, . . . , `).

From the manufacturer of the non–woven GDL considered in this paper, it is
known that its porosity, i.e., the volume fraction of the pore phase, equals 75%.
Hence, we can use this information in order to determine the set of fibers on
top of the GDL, where the polygonal tracks from p′π(1), . . . , p

′
π(`) are successively

added to the top layer according to their rankings, i.e., at first, we add p′π(1) then

p′π(2), etc. This is repeated until the required volume fraction of 25% within the

top layer (or the last track p′π(`)) is reached. To determine the volume fraction of
the current set of polygonal tracks, we dilate each polygonal track using the disk
b(o, 4.75) as structuring element which has a radius of 4.75 µm. The specific
choice of this structuring element is motivated by the knowledge of the fiber
diameter which is 9.5 µm.

Additionally, it is checked whether a higher ranked track covers the cur-
rently considered track p′j too extensive. Therefore, the number of common line
segments is counted and if it exceeds a certain threshold, in our case the level
5 has been chosen, the lower ranked track is rejected and the next polygonal
track is considered. An exemplary output of our extraction algorithm is shown
in Figure 7.

Figure 7: Set of fibers detected on top of the GDL

3. Modeling of Single Fibers

In this section we introduce a two–stage approach in order to model the
typical courses of fibers, whose extraction from SEM images has been discussed
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in Section 2. Both stages of our single–fiber model are based on vectorial au-
toregressive processes. First, a time series is considered which governs the de-
composition of the random fiber into an alternating sequence of straight and
curved parts of fibers, respectively. Then, these parts are separately modeled
by means of vectorial autoregressive processes. Notice that all fibers have a
fixed Euclidean length.

3.1. Model Description

We consider three different multivariate time series and denote them by
{Ri, i ≥ 1}, {Ci, i ≥ 1}, and {Si, i ≥ 1}, respectively. The random sequence
{Ri, i ≥ 1}, which is constructed by means of a two–dimensional autoregressive
process, describes the transitions from curved to straight parts of the random
fiber, and vice versa. It distinguishes between left–curved and right–curved
parts.

More precisely, the random vectors Ri = (Ri1, Ri2) take their values on the
discrete grid {−1, 0, 1} × {1, 2 . . .}, where Ri1 = −1 stands for a right–curved
part of the fiber, Ri1 = 0 indicates a straight part, and Ri1 = 1 a left–curved
part. Note that each left–curved part can be represented as a right–curved
part if the sequence of its segments is considered in reverse order. The second
component Ri2 of Ri denotes the number of line segments of the i-th part of
the fiber.

The times series {Ci, i ≥ 1} and {Si, i ≥ 1} are also constructed by means
of two–dimensional autoregressive processes. They describe the curved and
straight parts of fibers themselves.

For each n ≥ 1, let {C(n)
i , i ≥ 0} and {S(n)

i , i ≥ 0} be independent
copies of {Ci, i ≥ 1} and {Si, i ≥ 1}, respectively, which are independent
of {Ri, i ≥ 1}. Furthermore, let {Xi, i ≥ 1} be the multivariate time series
which describes the (complete) random fiber consisting of an alternating se-
quence of curved and straight parts. It is given in the following way. Suppose
that i ∈

(∑k−1
j=1 Rj2,

∑k
j=1Rj2

]
for some k ≥ 1. Then, we put

Xi =


C

(k)

i−
∑k−1

j=1 Rj2
if Rk1 = 1,

S
(k)

i−
∑k−1

j=1 Rj2
if Rk1 = 0,

C
(k)∑k

j=1 Rj2−(i−1)
if Rk1 = −1.

(2)

We assume that the time series {Ri, i ≥ 1}, {Ci, i ≥ 1}, and {Si, i ≥ 1}
are stationary and, therefore, can be extended to stationary random sequences
{Ri, i ∈ Z}, {Ci, i ∈ Z}, and {Si, i ∈ Z} indexed by the set Z = {. . . ,−1, 0, 1, . . .}
of all integers. Furthermore, we assume that these time series can be repre-

sented by means of some stationary autoregressive processes {Y (1)
i , i ∈ Z},

{Y (2)
i , i ∈ Z}, and {Y (3)

i , i ∈ Z} such that

Ri = Φ(Y
(1)
i ), Ci = Ψ(Y

(2)
i ), Si = Ψ(Y

(3)
i ) for each i ∈ Z, (3)
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where the functions Φ : R2 → R2 and Ψ : R2 → R2 are given by

Φ(s, t) =


(−1,max{q + 1, btc}) if s < −0.5,

(0,max{q + 1, btc}) if −0.5 ≤ s ≤ 0.5,

(1,max{q + 1, btc}) if s > 0.5,

(4)

where q > 0 is some integer and

Ψ(s, t) = (s− 2kπ,max{0, t}) if (2k − 1)π ≤ s < (2k + 1)π (5)

for some k ∈ Z, and btc ∈ Z denotes the integer closest to t, i.e. −0.5 ≤ btc−t ≤
0.5. The specific form of Φ and Ψ is related with the incremental representation
of polygonal tracks introduced in Section 3.2.1 below.

Thus, an important building stone of our stochastic modeling approach to
strongly curved, but almost horizontally oriented fibers, are stationary auto-
regressive processes {Yi, i ∈ Z} of some order q ≥ 0, where

Yi = µ+A1 Yi−1 + . . .+Aq Yi−q + εi for each i ∈ Z. (6)

Note that q > 0, µ ∈ R2, and the coefficient matrices A1, . . . , Aq ∈ R2×2 are
considered as model parameters. The ‘residuals’ {εi , i ≥ 1} are assumed to
form a sequence of two–dimensional random vectors which are independent and
identically distributed with vanishing mean vector E εi = o and some (non–
singular) covariance matrix Σ = E (εiε

>
i ) where Σ is a further model parameter,

see e.g. [6, 13].

Figure 8: Incremental representation of polygonal tracks

3.2. Model Fitting

3.2.1. Incremental Representation of Polygonal Tracks

In order to fit the single–fiber model {Xi, i ≥ 1} introduced in Section 3.1 to
track data extracted from SEM images, we consider the following incremental
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representation of polygonal tracks. Instead of describing a polygonal track p =
(p1, . . . , pn) by the endpoints ai, bi ∈ R2 of its line segments pi like in Section 2,
we now consider an angle–length representation, where we assume that the first
segment has one endpoint at the origin and some direction α0 ∈ [0, 2π] (with
respect to the x–axis). The further course of the track p can then be described by
the lengths l1, l2, . . . of the consecutive line segments and the angles α1, α2, . . .,
where αi denotes the change of direction from the i-th to the (i+1)-th segment.
Thus, altogether, polygonal tracks beginning at the origin can be characterized
by the initial angle α0 and the angle–length increments (α1, l1)>, (α2, l2)>, . . .,
see Figure 8.

Figure 9: Changes of direction before (black) and after (red) smoothing; the horizontal black
lines indicate the thresholds ρ and −ρ

Our next goal is to decompose the polygonal tracks into curved and straight
parts. The decision at which positions the polygonal track is split depends on
the angles α1, α2, . . .. If there is a sequence αi, . . . , αi+k of consecutive angles
with the same algebraic sign which are significantly different from zero, then the
corresponding line segments are considered to form a curved part, otherwise a
straight part. Since outliers and variability of the αi can influence the splitting
in an inappropriate way, a local smoothing is applied to the sequence α1, α2, . . .,
leading to a smoothed sequence α̃1, α̃2, . . . of angles, see e.g. [2, 4]. If k ≥ 3
and α̃i, . . . , α̃i+k > ρ for a certain threshold ρ > 0, then the corresponding
sequence of line segments is considered to form a left–curved part of the polyg-
onal track. Vice versa, α̃i, . . . , α̃i+k < −ρ indicates a right–curved part, and
−ρ ≤ α̃i, . . . , α̃i+k ≤ ρ a straight part, see Figure 9.

Visual comparison of decompositions obtained for different values of ρ have
shown that putting ρ = 0.12 provides very good results for the polygonal tracks
which have been extracted in Section 2 from the SEM image of the GDL material
considered in the present paper, see Figure 10.
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Figure 10: Straight (left) and curved (right) parts of the polygonal tracks

3.2.2. Estimation of Parameters

We now explain how the parameters of the single–fiber model {Xi, i ≥ 1} can
be fitted to the angle–length data described in Section 3.2.1. This model fitting
will be performed separately for each of the stationary autoregressive processes

{Y (1)
i , i ∈ Z}, {Y (2)

i , i ∈ Z}, and {Y (3)
i , i ∈ Z} introduced in Section 3.1,

i.e., we will determine three specifications of the parameters q > 0, µ ∈ R2,
A1, . . . , Aq ∈ R2×2, and Σ ∈ R2×2 of the autoregressive model {Yi, i ∈ Z} given
in (6).

As data basis, we use a large number of (short) trajectories of the time se-
ries {Ri, i ∈ Z}, {Ci, i ∈ Z}, and {Si, i ∈ Z}, respectively, obtained from the
incremental representation and splitting of polygonal tracks described in Sec-

tion 3.2.1. Actually, to get trajectories of the autoregressive processes {Y (1)
i , i ∈

Z}, {Y (2)
i , i ∈ Z}, and {Y (3)

i , i ∈ Z}, these data should be transformed by some

random functions Φ̃, Ψ̃ : Ω × R2 → R2, which in a sense are ‘inverse’ to Φ and
Ψ introduced in Section 3.1. However, for simplicity, we will consider the (non–

transformed) data directly as trajectories of {Y (1)
i , i ∈ Z}, {Y (2)

i , i ∈ Z}, and

{Y (3)
i , i ∈ Z}. Thus, in all three cases, we assume that a large number k of

(short) trajectories {y11, . . . , y1n1
}, . . ., {yk1, . . . , yknk

} is given which are inde-
pendently sampled from a stationary autoregressive process {Yi, i ∈ Z}, where
ni ≥ 3 for each i = 1, . . . , k.

Since a considerable fraction of the curved and straight parts of polygonal
tracks which have been determined by the method stated in Section 3.2.1 just
consists of three or four segments, we put q = 2 in all three cases.

In order to fit the remaining model parameters, we consider estimators of
maximum–likelihood type where we assume for simplicity that the residuals εi
in (6) have a normal distribution with vanishing mean vector and some (non–
singular) covariance matrix Σ, i.e., εi ∼ N(o,Σ). This implies that also the
2n–dimensional random vector (Y1, . . . , Yn) given in (6) is normally distributed
for each n ≥ 1. In particular, both components of Yn are normally distributed
random variables.

Statistical analysis shows that the normal distribution is not perfectly re-
flected by our data (see Figure 11, first row). It is well known that the applica-
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tion of a Box–Cox transformation [4] can improve this situation, see Figure 11
(second row). However, because the fitting procedure via maximum–likelihood
estimation stated below is quite robust with respect to deviations from nor-
mality, we decided to apply this method of model fitting using the original
(non–transformed) data.

Figure 11: Standardized empirical densities of changes of direction (left) and segment lengths
(right) for straight parts before (first row) and after (second row) Box–Cox transformation;
plotted with the N(0,1)–density (red line)

It is useful to introduce some further notation. Let a
(`)
ij be the (i, j)-th

entry of the 2 × 2 matrix A`, i.e., A` = (a
(`)
ij ) for ` = 1, 2. Furthermore,

let a∗ = (a
(1)
11 , a

(1)
21 , a

(1)
12 , a

(1)
22 , a

(2)
11 , a

(2)
21 , a

(2)
12 , a

(2)
22 )> denote the (column) vector

consisting of the columns of the 2× 2 matrices A1 and A2, i.e., the vector a∗ is
just another (equivalent) representation of the 2× 4 matrix (A1, A2).

We preliminarily assume that the expectation η = EYi is known. In order to
fit the parameter θ = (a∗,Σ) of the centered autoregressive process {Zi, i ∈ Z}
with Zi = Yi − η, where Zi = A1 Zi−1 + A2 Zi−2 + εi for each i ∈ Z, to the
centered data {z11, . . . , z1n1

}, . . ., {zk1, . . . , zknk
} with zij = yij−η, we consider

the likelihood function

L(z11, . . . , zknk
; θ) =

k∏
i=1

fZ3,...,Zni
(zi3, . . . , zini

; θ) ,

where fZ3,...,Zni
denotes the joint density of the random vector (Z3, . . . , Zni)

assuming that Z1 and Z2 are given fixed numbers, i.e., Z1 = zi1 and Z2 = zi2.

14



Then, the solution θ̃ = (ã∗, Σ̃) of the likelihood equation

d

dθ
L(z11, . . . , z1n1 , . . . , zk1, . . . , zknk

; θ) = 0

is given by (see e.g. [6, 13])

ã∗ =

(
k∑
i=1

B̃iB̃
>
i

)−1( k∑
i=1

(
B̃i ⊗ I2

) (
(yi3 − η)>, . . . , (yini

− η)>
)>)

,

Σ̃ =

(
k∑
i=1

ni

)−1 k∑
i=1

(
B̃0
i − (Ã1, Ã2)B̃i

)(
B̃0
i − (Ã1, Ã2)B̃i

)>
,

where B̃i =
(
B̃i3, . . . , B̃ini

)
and B̃ij =

(
(yi,j−1 − η)>, (yi,j−2 − η)>

)>
, B̃0

i =(
yi3 − η, . . . , yini − η

)
, and Ã` = (ã

(`)
ij ). Furthermore, ⊗ denotes the Kronecker

product and I2 the 2× 2 unit matrix.
By Â1, Â2, and Σ̂ we denote the sample functions corresponding to Ã1, Ã2,

and Σ̃, where η is replaced by the sample mean

η̂ =
1∑k

ti=1 ni

k∑
i=1

ni∑
j=1

yij , (7)

everywhere in the above definitions of Ã1, Ã2, and Σ̃. Finally, we put µ̂ =
(I2 − Â1 − Â2)−1η̂. Then, µ̂ ∈ R2, Â1, Â2 ∈ R2×2, and Σ̂ ∈ R2×2 are the
parameters of the fitted autoregressive model {Yi, i ∈ Z} of order q = 2.

In particular, for the autoregressive process {Y (1)
i , i ∈ Z} governing the

transitions between curved and straight parts we get that

Y
(1)
i =

(
−0.032

2.14

)
+

(
−0.105 0.001
−0.005 0.042

)
Y

(1)
i−1 +

(
−0.278 −0.0004
0.121 0.105

)
Y

(1)
i−2 + εi ,

where εi ∼ N

((
0
0

)
,

(
0.325 −0.039
−0.039 2.251

))
. The process {Y (2)

i , i ∈ Z} corre-

sponding to the curved parts is given by

Y
(2)
i =

(
0.334

36.55

)
+

(
0.126 −0.001
−2.346 0.193

)
Y

(2)
i−1 +

(
−0.067 −0.0003

6.78 0.081

)
Y

(2)
i−2 + εi ,

where εi ∼ N

((
0
0

)
,

(
0.018 −0.658
−0.658 494.5

))
, and the process {Y (3)

i , i ∈ Z} cor-

responding to the straight parts by

Y
(3)
i =

(
0.005

64.38

)
+

(
−0.19 −0.00002
10.346 0.098

)
Y

(3)
i−1+

(
−0.137 −0.00004
−1.568 0.064

)
Y

(3)
i−2+εi ,

where εi ∼ N

((
0
0

)
,

(
0.01 −0.03
−0.03 1185

))
.
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The estimated parameters of the single fiber model can be interpreted as fol-

lows. The process means of Y
(1)
i , Y

(2)
i , Y

(2)
i , calculated by means of (7), are given

by η(1) = (−0.01, 2.51)>, η(2) = (0.26, 51.94)> and η(3) = (0.0003, 76.84)>. It
can be clearly seen that the mean value of the direction change is significantly

larger for process {Y (2)
i } (curved parts) than for process {Y (1)

i } (straight parts).
This is mainly caused by the larger first component of the corresponding inter-
cept vector. Moreover, the mean length of line segments of the polygonal tracks
representing the straight parts of the fibers is larger than the corresponding
value of the curved parts.

The mean value of the first component for process {Y (1)
i } (transition process)

is almost zero. Thus, we can conclude that left–curved parts and right–curved
parts appear in the same frequency.

3.3. Model Validation

In this section the goodness–of–fit of the single–fiber model {Xi, i ∈ Z} in-
troduced in (2) is investigated. In particular, we analyze how good the curvature
of the polygonal tracks extracted from the SEM image is reflected by the fit-
ted single–fiber model. Therefore, a curvature measure is defined which is then
computed for each (real) polygonal track extracted from the SEM image and
for simulated polygonal tracks drawn from the single–fiber model. In addition,
the same procedure of model validation is performed for the models {Ci, i ≥ 1}
and {Si, i ≥ 1} introduced in (3) which describe the curved and straight parts
of the polygonal tracks.

3.3.1. Simulation of Single Fibers

To simulate a single fiber with a given Euclidean length l, where in our case
l = 50 000µm (see Section 4.2 below), we first generate a sufficiently long tra-

jectory of the autoregressive process {Y (1)
i , i ∈ Z} governing the transitions be-

tween curved and straight parts. It turns out that trajectories (ym+1, . . . , ym+n)
of length n = 200 are long enough to achieve this goal, where we consider a so–
called ‘burn–in period’ [13] of length m = 150 in order to capture the assumed

stationarity of {Y (1)
i , i ∈ Z} sufficiently well.

Thus, using the estimated model parameters µ̂, Â1, Â2, and Σ̂ which have

been obtained in Section 3.2.2 for {Y (1)
i , i ∈ Z}, we first simulate a sequence of

independent residual vectors ε3, . . . , εm+n ∼ N(o, Σ̂). Then, putting y1 = y2 = η̂
where η̂ is the sample mean given in (7), we compute the values of y3, . . . , ym+n

recursively by yi = Â1 yi−1 + Â2 yi−2 + εi for i = 3, . . . ,m+ n.
Furthermore, for i = 1, . . . , n, we compute the vectors ri = (ri1, ri2), where

ri = Φ(ym+i) and Φ is given by (4). If r11 = 0 and r12 = n1 for some n1 ≥ 1,
then in the same way as described above we generate a trajectory (s11, . . . , s1n1)
of length n1 of the time series {Si, i ≥ 1} which is the first (straight) part
of the trajectory (α1, l1), (α2, l2), . . . of {Xi, i ≥ 1} to be simulated. Analo-
gously, if r11 6= 0 and r12 = n1 for some n1 ≥ 1, then we generate a trajectory
(c11, . . . , c1n1) of length n1 of {Ci, i ≥ 1}, and so on. Notice that si = Ψ(y′m+i)
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and ci = Ψ(y′′m+i), where Ψ is given by (5). The procedure terminates after k0

steps, where k0 = min{k :
∑k
i=1 li ≥ l}.

3.3.2. Curvature of Polygonal Tracks

We now analyze how good the curvature of the polygonal tracks extracted
from the SEM image is reflected by the fitted single–fiber model, where the
following curvature measure is considered. Let β0(p) = β(p)/`2, where β(p)
denotes the area circumscribed by the polygonal track p = (p1, . . . , pn) and ` is
the length of the (straight) line segment connecting starting point of p1 and the
end point of pn, see Figure 12.

Figure 12: Curvature measure β0(p): Circumscribed area (red) β(p) divided by the square
length `2 of the blue line

Histograms of β0(p) have been computed for (real) polygonal tracks ex-
tracted from the SEM image and for simulated polygonal tracks drawn from
the fitted single–fiber model {Xi, i ≥ 1}. Figure 13 shows that these two his-
tograms nicely coincide.

Figure 13: Histograms of β0(p) for real (left) and simulated (right) tracks
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Subsequently, distributional characteristics of β0(p) have been computed sep-
arately for curved and straight parts of extracted and simulated fibers, see Fig-
ure 14. They show that also the components {Ci, i ≥ 1} and {Si, i ≥ 1} of the
single–fiber model {Xi, i ≥ 1} are fitted quite well.

Figure 14: Histograms and cummulative distribution functions of β0(p) for real and simulated
data of curved (left) and straight (right) parts

Finally, the goodness–of–fit is analyzed for the time series {Ri, i ≥ 1} gov-
erning the transitions between curved and straight parts. This is accomplished
by comparing the histograms of the components Ri1 and Ri2 of the random vec-
tors Ri = (Ri1, Ri2) which have been computed for (real) data extracted from
the SEM image and for simulated data, respectively. Figure 15 shows that also
these histograms are similar.

Figure 15: Histograms of real and simulated data for the first (left) and second (right) com-
ponent of Ri

4. Multi-Layer Model

Using the single–fiber model introduced in Section 3, in the next modeling
step we first construct a stochastic microstructure model for single (thin) layers
of fibers. This will be a germ–grain model such that the germs form a homoge-
neous Poisson point process in 2D and the grains are random planar polygons
dilated in 3D. Then, the multi–layer model is given by a stack of the modeled
single layers. It turns out that the multi–layer model is able to adequately
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reproduce the 3D microstructure of fiber systems with strongly curved fibers
running mainly in horizontal direction.

4.1. Model Description

Our basic modeling assumption is to suppose that the considered fiber–based
material can be decomposed into stochastically independent thin layers with a
thickness equal to one fiber diameter, i.e., we assume the fibers to be mutually
interpenetrating curved tubes which are horizontally oriented within each thin
layer. The vertical cross section visualized in Figure 16 shows that the latter
assumption is nicely fulfilled for the non–woven GDL material considered in this
paper.

Figure 16: Cross section through the GDL material

This visual impression is approved by the result of a statistical analysis of
edge directions drawn from a 3D graph. It represents the fiber courses extracted
from a 3D image gained by synchrotron tomography from the same material.
The 3D graph is obtained by skeletonization of the solid phase of the binarized
3D image and by subsequent transformation into vector data, where standard
algorithms of 3D image processing have been applied, using the software system
‘Avizo’ [5]. In particular, the histogram e : [0, 2π] × [0, π2 ] → [0,∞) of edge
directions has been computed. Note that e(φ, θ) is the frequency of edges hav-
ing a normalized direction vector with spherical coordinates (φ, θ, 1), where φ
denotes the azimuthal angle, θ the polar angle, and 1 the (normalized) length.

Figure 17 shows that the edges proceed mainly horizontally. However, note
that there is a small peak in the vertical direction which is not attended in
our model. It can also be seen from Figure 17 that the edges seem to have no
preferential directions with respect to their azimuthal angle. This motivates our
choice of an isotropic germ–grain model for the thin layers.

More precisely, the single (thin) layers are described by a germ–grain model
which is given by the set union

Ξ =

∞⋃
n=1

(
(X(n) ⊕ b(o, r)) + Pn

)
, (8)
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Figure 17: Histogram of edge directions in 3D

where the germs Pn form a Poisson point process {Pn} in the x-y–plane E =
R2 × {0} ⊂ R3 with some intensity λ > 0, and the grains X(1) ⊕ b(0, r), X(2) ⊕
b(o, r), . . . are given by random planar polygons X(1), X(2), . . . of some (fixed)
length l > 0 which are independent copies drawn from the single–fiber model
X = {Xi, i ≥ 1} introduced in Section 3 and then spherically dilated in 3D by
the ball b(o, r) ⊂ R3 with some (deterministic) radius r > 0. This means that
the planar section Ξ ∩ E is a so–called ‘Boolean model’ in R2 [9, 20].

Thus, besides the parameters of the single–fiber model considered in Sec-
tion 3, the single–layer model has three further parameters λ, r and l which
have to be specified.

4.2. Model Fitting

For the fiber–based GDL material considered in this paper it is known from
the manufacturer that the fibers have a diameter of 9.5µm, i.e. r = 4.75µm, and
a length of 50mm, i.e. l = 50 000µm. Furthermore, it is known that the volume
fraction of the pore phase is 0.765 and, consequently, the volume fraction of the
fiber system is 0.235. This information can be used to determine the intensity
λ such that the volume fraction 0.235 of the solid phase is approximatively
matched.

To achieve this goal we use the following relationships. Consider a single
(straight) line segment L ⊂ R3 of length l > 0 which belongs to the (horizontally
oriented) x-y–plane E ⊂ R3. It is clear that the three–dimensional volume
ν3(L ⊕ b(o, r)) = πr2l of the spherically dilated segment L ⊕ b(o, r) can be
approximated by

ν3(L⊕ b(o, r)) ≈ πr

2
ν2
(
(L⊕ b(o, r)) ∩ E

)
, (9)

where ν2
(
(L ⊕ b(o, r)) ∩ E

)
= 2rl is the (two–dimensional) area of the planar

section (L⊕ b(o, r)) ∩ E.
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Let W = [−w,w]2× [−r, r] ⊂ R3 be a certain sampling window for some w >
0. Assuming that the individual line segments of the random planar polygons
X(1), X(2), . . . considered in Section 4.1 are sufficiently long and the intensity λ
of germs is not too high, then formula (9) can be used to justify the following
(approximative) relationship:

0.235 =
Eν3(Ξ ∩W )

ν3(W )
≈ π

4

Eν2(Ξ ∩W ∩ E)

ν2(W ∩ E)
=

π

4
ζ , (10)

where ζ = E(Ξ∩ ([0, 1]2 ×{0})) denotes the area fraction of the Boolean model
Ξ ∩ E. On the other hand, it is well known (see e.g. [9, 20]) that

ζ = 1− exp
(
−λEν2((X(1) ⊕ b(o, r)) ∩ E)

)
. (11)

Using for Eν2((X(1) ⊕ b(o, r))) ∩ E)
)

the same kind of an approximation as in

(10), i.e. Eν2((X(1) ⊕ b(o, r))) ∩ E)
)
≈ 2rl, (10) and (11) give that

λ ≈ − log(1− π−1)

2rl
. (12)

Thus, having in mind that r = 4.75 and l = 50 000, we put λ = 8.067 · 10−7.

4.3. Simulation Algorithm; Plus Sampling

To avoid edge effects when simulating the germ–grain model Ξ introduced
in (8), the sampling window W = [−w,w]2 × [−r, r] ⊂ R3 has to be increased,
i.e., we consider so–called ‘plus sampling’ with respect to the enlarged window
W̃ = [−(w + l), w + l]2 × [−r, r] ⊂ R3. Thus, in order to simulate a multi-layer
model being a stack of m > 1 single–layer models, we can proceed as follows:

1. Simulate the random number N which has a Poisson distribution with
mean value 4λ(w + l)2.

2. If N = 0, then repeat step 1.

3. If N = n > 0, then simulate n independent and uniformly distributed
points P1, . . . , Pn in [−(w + l), w + l]2.

4. Simulate the random planar polygons X(1) . . . , , X(n) of length l > 0 by
independent sampling from the single–fiber model X = {Xi, i ≥ 1}, using
the algorithm stated in Section 3.3.1.

5. Generate the dilated fiber systems X(1) ⊕ b(0, r), . . . , X(n) ⊕ b(o, r).
6. Determine the set ΞW =

(
X(1) ⊕ b(0, r) ∪ . . . ∪X(n) ⊕ b(o, r)

)
∩W

7. Generate m independent copies Ξ
(1)
W , . . . ,Ξ

(m)
W of ΞW .

8. Determine the set Ξ
(1)
W ∪ (Ξ

(2)
W + (0, 0, 2r)) . . . ∪ (Ξ

(m)
W + (0, 0, 2r(m− 1))).

In Figure 18 (right) an examplary output of our simulation algorithm is
shown. By visual comparison, one feels that the simulated image coincides
quite nicely with the (real) synchrotron image which is shown on the left–hand
side of Figure 18.
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Figure 18: Binarized synchrotron image (left) and simulated 3D image drawn from the multi-
layer model (right)

In Section 4.4, we check more formally if the multi–layer model describes the
microstructure of the non–woven GDL sufficiently well. Therefore, the stochas-
tic simulation model will be validated by comparing structural characteristics
computed from the 3D image gained by synchrotron tomography, and from
realizations of the multi–layer model, respectively. The goal is to show that
transport–relevant structural properties of the stochastic model match those of
the (real) synchrotron image quite well.

4.4. Model Validation

We now show how the fitted multi–layer model can be validated by com-
paring structural characteristics computed for 3D data gained by synchrotron
tomography and for simulated 3D morphologies drawn from the multi–layer
model. In particular, it turns out that the porosity of 0.235 is perfectly fit-
ted by our model. Moreover, we consider two further structural characteristics
which are relevant for the performance of fiber–based materials.

4.4.1. Spherical Contact Distribution Function

An example of such a characteristic is the cumulative distribution function
H : [0,∞]→ [0, 1] of spherical contact distances of the pore phase, where H(t)
denotes the probability that the minimum distance from a randomly chosen
location of the pore phase to the fiber phase is not larger than t.

The values of H(t) which have been obtained for the 3D data gained by
synchrotron tomography and for simulated 3D morphologies drawn from the
multi–layer model, are very similar, see Figure 19. This means that the fit of
the multi–layer model is quite good with respect to spherical contact distances
of the pore phase.

4.4.2. Geometric Tortuosity

For the GDL material considered in the present paper, the geometrical prop-
erties of the percolation pathways through the pore phase play an important role
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Figure 19: Distribution function H of real (black) and simulated (red) data

because the main function of GDL in PEM fuel cells is the transportation of
gases towards the electrodes, and the drainage of water. It is well known that
the quality of these transportation processes is closely related with the tortuosity
of the pore phase which is often defined as the ratio of the mean effective path
length through the pore space divided by the material thickness. As an alterna-
tive, the notion of ‘geometric tortuosity’ has been investigated in the literature,
where the lengths of shortest paths along the edges of a certain geometric graph
though the pore phase are considered instead of effective path lengths. More-
over, starting from a randomly chosen location on top of the porous material,
its geometric tortuosity can be represented by a probability distribution instead
of looking at the mean tortuosity only, see e.g. [22, 23].

Figure 20: Histograms of tortuosity for real (left) and simulated data (right)

The results which have been obtained for the distribution of geometric tortu-
osity are given in Figure 20, see also Table 1. These results show that there is no
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perfect matching of the distributions of geometric tortuosity computed for the
3D data gained by synchrotron tomography and for simulated 3D morphologies
drawn from the multi–layer model. However, the histograms given in Figure 20
are similarly shaped and the difference between the two mean values is relatively
small. Thus, also with respect to geometric tortuosity, the stochastic multi-layer
model proposed in the present paper provides a reasonable fit to real data.

Table 1: Mean and standard deviation of geometric tortuosity

mean value standard deviation
real data 1.60 0.079

simulated data 1.52 0.076
Relative error 0.05 0.03

5. Conclusions and Outlook

We propose a stochastic multi–layer model describing the 3D microstructure
of materials which are built up of strongly curved, but almost horizontally ori-
ented fibers. This fully parametrized model is based on ideas from stochastic
geometry and multivariate time series analysis. It consists of independent layers
which are stacked together, where each single layer is described by a 2D germ–
grain model dilated in 3D. The multi–layer approach enables us to fit model
parameters on the basis of structural information extracted from 2D images.
This is important for industrial applications since 2D images are relatively easy
to obtain in contrast to 3D image data. The fitted multi–layer model has been
validated by considering structural characteristics which are relevant for the
performance of fiber–based materials, like the distributions of spherical contact
distances and geometric tortuosity of the pore phase. These characteristics have
been computed for 3D data gained by synchrotron tomography and for simu-
lated 3D morphologies drawn from the multi–layer model, where the obtained
results were quite similar in each case. Thus, the multi–layer model can be
an appropriate tool for the examination of the microstructure of fiber–based
materials.

In particular, our model can be used for virtual scenario analyses with the
general aim to construct microstructures with improved physical properties. By
systematic modifications of model parameters and in combination with numer-
ical transportation models, virtual 3D morphologies and virtual transportation
processes in these morphologies can be simulated. In this way, the identification
of optimized morphologies is possible which will be the subject of a forthcoming
paper.
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