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Abstract

We consider asymptotic properties of two functionals on Euclidean shortest-path trees appearing in random geometric

graphs in R2 which can be used, for example, as models for fixed-access telecommunication networks. First, we

determine the asymptotic bivariate distribution of the two backbone lengths inside a certain class of typical Cox-

Voronoi cells as the size of this cell grows unboundedly. The corresponding Voronoi tessellation is generated by a

stationary Cox process which is concentrated on the edges of the random geometric graph and whose intensity tends

to 0. The limiting random vector can be represented as a simple geometric functional of a decomposition of a typical

Poisson-Voronoi cell induced by an independent random sector. Using similar methods, we consider the asymptotic

bivariate distribution of the total lengths of the two subtrees inside the Cox-Voronoi cell.
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1. Introduction

The topology and geometry of fixed-access telecommunication networks is strongly influenced by the respective

properties of the underlying road system. Typically, inside a so-called serving zone (the supply area of higher-level

components) all lower-level components (e.g. end users) are connected to a fixed higher-level component along the

shortest Euclidean path in the road system, which is always assumed below. Tracing the path from the lower-level

components to the higher-level component induces a natural tree structure, the so-called shortest-path tree, see [7]

and [11]. Therefore, a detailed understanding of distributional properties of shortest-path trees on random networks

can allow telecommunication companies to compute elements for accurate cost-estimates for large-scale operations

such as upgrading copper networks to optical fiber networks.

∗Corresponding author
Email addresses: christian.hirsch@wias-berlin.de (Christian Hirsch), david.neuhaeuser@uni-ulm.de (David Neuhäuser),
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Deriving a simple description for the distribution of the entire shortest-path tree, which is applicable to various

network models for underlying road systems (such as Poisson-Delaunay, Poisson-Voronoi and Poisson line tessel-

lation), is considered to be a daunting task; see [10] for the setting of sparse trees. A feasible approach to tackle

this problem is to develop a good description of several important characteristics of the shortest-path tree in order

to gradually improve the understanding of the complex tree structure. If the intensity of higher-level components is

not too small, i.e., the shortest-path tree is not too large, a parametric copula approach has been proposed in [11, 12]

for directly simulating various functionals of shortest-path trees. In the present paper, we consider the asymptotic

bivariate distribution of the backbone lengths (Theorem 1) as well as the asymptotic bivariate distribution of the total

lengths (Theorem 2) of the two subtrees at the network root as the intensity of higher-level components tends to zero.

Here, the backbone of a subtree is understood to be its longest branch.

The rest of this paper is organized as follows. In Section 2, we state our main results (Theorems 1 and 2). Section 3

provides some preliminary tools, which are used in the proofs of these results. Finally, in Sections 4 and 5, we use

these tools to prove Theorems 1 and 2, respectively.

2. Main results

In the present section, we introduce the principal objects of investigation in this paper, namely shortest-path trees.

We also state our main results. Loosely speaking, a shortest-path tree can be thought of as the union of all shortest

Euclidean paths (on the road system) emanating from some given root component in a spatial network structure. For

instance, in the context of fixed-access telecommunication networks, this root component could be an access point to

which subscribers in the network are connected along their shortest Euclidean path.

To make this more precise, we first explain the notion of a random geometric graph that is used in this paper. We

write G for the family of all locally finite sets of line segments in R2. Endowing G with the smallest σ-algebra G that

contains all open sets of the Fell topology on G, see [14, p. 563], we can consider random variables defined on some

probability space (Ω,F ,P) with values in G, which will be called random geometric graphs in the following.

As mentioned above, when considering applications to telecommunication networks, it is conceptually useful to

consider a random geometric graph from the perspective of a typical access point, which can be thought of as a point

that is chosen at random from the edge set of the graph. This idea can be made more precise by using Palm calculus

see, e.g. [5, p. 127] and [14, p. 73]. Indeed, let G be a stationary random geometric graph whose length intensity

γ = Eν1(G ∩ [0, 1]2) is assumed to be positive and finite, where ν1(·) denotes the one-dimensional Hausdorff measure

in R2. The Palm version G∗ of G is a random geometric graph whose distribution is determined by

Eh(G∗) =
1
γ
E
∫

G∩[0,1]2
h(G − x)ν1(dx),

where h : G→ [0,∞) is any G-measurable function.

We investigate a scenario where low-level components can be thought of as being distributed arbitrarily densely

on the road network. Considering the Palm version G∗ of G, the shortest-path tree is defined as the union of all shortest
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Euclidean paths emanating from the origin o ∈ R2, see [7, 11]. To be more precise, for x, y ∈ G∗ let ρ(x, y) denote a

shortest path in the graph G∗ connecting x and y. Possible issues of non-uniqueness of shortest paths can be overcome

by first endowing the nodes with i.i.d. uniform weights and then selecting the shortest path that additionally minimizes

the sum of weights. Then, define the shortest-path tree spt(G∗) of G∗ rooted at o as a directed graph whose vertex set

is given by the union of {o}, the vertex set of G∗ and the set of distance peaks. Here, a point z on an edge [x, y] of G∗

is called distance peak if `(o, x) + ν1([x, z]) = `(o, y) + ν1([y, z]), where `(·, ·) = ν1(ρ(·, ·)) denotes the length of the

shortest Euclidean path along the edges of G∗. Furthermore, spt(G∗) contains three types of edges. First, if [xo, yo]

denotes the edge of G∗ containing o, then in spt(G∗) an edge is drawn from o to xo and from o to yo. Second, if [x, y]

is an edge of G∗ such that x ∈ ρ(o, y), then in spt(G∗) we add an edge from x to y. Third, if z is a distance peak located

on an edge [x, y] of G∗, then in spt(G∗) an edge is drawn from x to z and from y to z. In particular, spt(G∗) forms a

tree with root o and with probability 1, this tree can be represented as the union of two subtrees spt(G∗) = T1 ∪ T2,

both rooted at o. An illustration of this decomposition is shown in Figure 1, where, in order to make the tree structure

clearly visible, edges incident to a distance peak are drawn thinner. The subtrees T1 and T2 are drawn in black and

dark gray, respectively. The interface between the subtrees T1 and T2, i.e., distance peaks adjacent both to an edge of

T1 and T2, is drawn in light gray. The remaining distance peaks are drawn in dark gray.

(a) Cutout of the Palm version of a Poisson-Delaunay graph (b) Cutout of two subtrees of the shortest-path tree (black

and dark gray) and their interface (points in light gray)

Figure 1: Construction of the shortest-path tree on the Palm version of a Poisson-Delaunay graph

For the purpose of modeling the underlying infrastructure in fixed-access telecommunication networks, differ-

ent choices for G are thinkable. Nevertheless, the classical planar random tessellations, namely Poisson-Delaunay

tessellation, Poisson-Voronoi tessellation and isotropic Poisson line tessellation are the most thoroughly investigated

models, see [5, 14]. In order to simplify the presentation, we will therefore always assume that G is either one of these

classical tessellations or is given by a Poisson relative neighborhood graph, see [1].
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When considering telecommunication networks at a large scale, typically there is not only a single access point

located at the origin, but the access points (called higher-level components in the following) are spread over the entire

edge set of G∗. More precisely, these additional higher-level components form a Cox process Xλ on G∗ whose random

intensity measure is given by λν1(· ∩G∗) for some linear intensity λ > 0. Considering the Voronoi tessellation on the

higher-level components, the plane is divided into serving zones, and we write Ξo,λ for the serving zone of the origin,

i.e., the zero-cell of the Voronoi tessellation on Xλ ∪ {o}. In the present paper, we consider the asymptotic behavior of

certain characteristics of the restrictions T1 ∩ Ξo,λ and T2 ∩ Ξo,λ of the subtrees T1 and T2 to the serving zone Ξo,λ as

λ→ 0, i.e., as the size of the serving zone Ξo,λ tends to infinity.

For i ∈ {1, 2} and λ ∈ (0, 1) let Z(i)
λ = supx∈Ti∩Ξo,λ

`(o, x) denote the length of the longest branch of the subtree Ti

inside Ξo,λ. These two longest branches can be seen as the backbone of spt(G∗). An illustration is shown in Figure 2.

Figure 2: Subdivision of shortest-path tree in Ξo,λ into two subtrees (dark and light gray); the longest branches are dashed

In order to describe the asymptotic behavior of the distribution of the random vector (Z(1)
λ ,Z(2)

λ ) as λ → 0, we

first state some properties of the subtrees T1 and T2. Let I ⊂ [0, 2π] be an arbitrary interval and CI = {y ∈ R2 :

∠(e1, [o, y]) ∈ I} be the planar sector of points whose angle with the x-axis is contained in I. Using a methodology

developed by Howard and Newman [9], it is shown in [8] that there exist random intervals I1, I2 ⊂ [0, 2π] that have

disjoint interiors and satisfy the following properties. We have I1 ∪ I2 = [0, 2π] and for all δ > 0 there exists an

a.s. finite random number R0 > 0 such that G∗ ∩ CIi	[−δ,δ] \ [−R0,R0]2 ⊂ Ti and Ti \ [−R0,R0]2 ⊂ CIi⊕[−δ,δ] for all

i ∈ {1, 2}, where we put Ii ⊕ [−δ, δ] = {a + b : a ∈ Ii, b ∈ [−δ, δ]} and Ii 	 [−δ, δ] = {a ∈ Ii : {a} ⊕ [−δ, δ] ⊂ Ii}.

Here, subintervals of [0, 2π] are identified with subsets of the unit circle in R2 at the corresponding angles. If one of

the subtrees, say T1, is bounded, then the decomposition of [0, 2π] is trivial in the sense that I1 = ∅ and I2 = [0, 2π],

where we formally put C∅ = {o}. In [3], a related result is discussed for the radial spanning tree, where the number of

sectors varies between 1 and 5.

Next, we introduce the limiting random vector (Z(1),Z(2)) of the vector of appropriately rescaled main-branch

lengths (Z(1)
λ ,Z(2)

λ ). For i ∈ {1, 2} consider the random variables Z(i) = µmaxx∈CIi∩Ξo |x|, where µ ≥ 1 is the so-called

time constant (see, e.g. [4, 8], and also [2, 13] for related models) and Ξo denotes a typical Poisson-Voronoi cell that is

independent of (I1, I2) and whose underlying Poisson point process has intensity γ. In other words, Ξo is the zero-cell
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of the Voronoi tessellation associated with the union of this Poisson point process and the origin. An illustration of

this setup is shown in Figure 3. Loosely speaking, asymptotically, the main branches are close to the dashed lines in

Figure 3.

CI1 ∩ Ξo

CI2 ∩ Ξo

Z(1)/µZ(2)/µ

Figure 3: Sectors CI1 ∩ Ξo (gray) and CI2 ∩ Ξo (white)

The random vector (Z(1)
λ ,Z(2)

λ ) exhibits the following asymptotic behavior.

Theorem 1. As λ→ 0, the random vector
(√

λZ(1)
λ ,
√
λZ(2)

λ

)
converges to

(
Z(1),Z(2)

)
in distribution.

Theorem 1 is proven in Section 4. The explicit description of the random vector (Z(1),Z(2)) stated above allows us

to devise an asymptotically accurate simulation algorithm for the vector (Z(1)
λ ,Z(2)

λ ) of main-branch lengths, which for

small values of λ is far less time-consuming than simulating (Z(1)
λ ,Z(2)

λ ) directly [11]. Indeed, the size of the serving

zones decreases in λ, so that for small values of λ the random geometric graph G∗ needs to be constructed in a large

environment of the origin in order to determine (Z(1)
λ ,Z(2)

λ ) by the direct simulation algorithm proposed in [11].

Apart from the length of the two main branches, also the total edge lengths Y (i)
λ = ν1(Ti ∩ Ξo,λ) with i ∈ {1, 2} in

each of the two subtrees rooted at the origin are important structural characteristics of the underlying network. In fact,

our methods allow us to consider not only the convergence of an appropriately scaled version of the bivariate random

vector (Y (1)
λ ,Y (2)

λ ), but also of the bivariate vector of random measures (H(1)
λ ,H(2)

λ ), where for any i ∈ {1, 2} and Borel

set B ⊂ R2, we put H(i)
λ (B) = ν1(B∩

√
λ(Ti ∩ Ξo,λ)). Similar to the main-branch lengths considered in Theorem 1, we

can provide an explicit description of the limiting distribution of (
√
λH(1)

λ ,
√
λH(2)

λ ) as λ → 0. For i ∈ {1, 2} consider

the random measure H(i)(·) = γν2(· ∩CIi ∩ Ξo), where ν2 denotes the Lebesgue measure in R2.

Theorem 2. As λ→ 0, the random vector
(√

λH(1)
λ ,
√
λH(2)

λ

)
converges to

(
H(1),H(2)

)
in distribution.

Theorem 2 is proven in Section 5. Furthermore, we show in Section 5 that Theorem 2 can be used to determine the

asymptotic behavior of the random vector (Y (1)
λ ,Y (2)

λ ) of the total subtree-lengths. For i ∈ {1, 2} consider the random

variables Y (i) = γν2(CIi ∩ Ξo).

Corollary 3. As λ→ 0, the random vector
(
λY (1)

λ , λY (2)
λ

)
converges to

(
Y (1),Y (2)

)
in distribution.

5



As for the branch lengths considered in Theorem 1, our results stated in Theorem 2 and Corollary 3 can be used

to derive an efficient approximate simulation algorithm for small values of λ, see [12].

3. Some preliminary results

Before providing rigorous proofs of the main results stated in Section 2, we begin by discussing some heuristics.

To fix ideas, we consider the case of (Z(1)
λ ,Z(2)

λ ) noting that similar heuristics can be provided for (H(1)
λ ,H(2)

λ ). Assume

that the indexing of the subtrees is chosen such that T1 is a.s. unbounded. If the subtree T2 is bounded, then using

the results of [7], it is not difficult to see that the random vector of scaled main-branch lengths (
√
λZ(1)

λ ,
√
λZ(2)

λ )

converges in distribution to (µR, 0) as λ → 0, where µ is the time constant in the respective first-passage model

and R denotes the smallest radius such that the disk BR(o) with radius R centered at the origin contains the typical

Poisson-Voronoi cell Ξo. On the other hand, if T2 is unbounded, then it is shown in [8] that the interface between T1

and T2 asymptotically approaches ∂CI1 . Furthermore, we also see that the scaled Voronoi cell
√
λΞo,λ converges (in

distribution) to a typical Poisson-Voronoi cell and that, in a sense, asymptotically this cell becomes independent of the

underlying graph G∗, see Lemma 6 below. Finally, by the shape theorem derived in [7, Corollary 1.2], shortest-path

lengths behave asymptotically as a constant multiple of the Euclidean distance.

Recall that we assume that G is a Poisson-Delaunay tessellation, Poisson-Voronoi tessellation, Poisson line tes-

sellation or a Poisson relative neighborhood graph. First, we need the following stretched-exponential large-deviation

estimate from [10, Lemma A.3] for the total length ν1(G∗ ∩Qs(x)), where Qs(x) = [−s/2, s/2]2 + x denotes the square

of side length s ≥ 0 centered at x ∈ R2.

Lemma 4. For every ε > 0,

lim inf
s→∞

log
(
− log

(
supx∈R2 P(|ν1

(
G∗ ∩ Qs(x)) − γs2| ≥ εs2

)))
log s

> 0.

A further key step in the derivation of the asymptotic behavior of
(√

λZ(1)
λ ,
√
λZ(2)

λ

)
is the asymptotic independence

of G∗ and the zero-cell in the Voronoi tessellation based on Xλ∪{o}. To begin with, we note that there is a good chance

that the Cox-Voronoi cell at the origin contains a given small square and is contained in a given large square. Recall

that Xλ denotes a Cox process on G∗ with linear intensity λ > 0 and Ξo,λ is the zero-cell of the Voronoi tessellation

based on Xλ ∪ {o}. We restate two auxiliary results from [10], see Lemmas A.4 and A.5 in [10].

Lemma 5. It holds that limr→∞ lim supλ→0 P
(
Qλ−1/2/r(o) ⊂ Ξo,λ ⊂ Qrλ−1/2 (o)

)
= 1.

Remark. In the proof of Theorem 2, see Section 5 below, we use the fact that Lemma 5 remains true if Ξo,λ is

replaced by the typical Voronoi cell associated with a Poisson point process with intensity γλ > 0.

We write dHaus(·, ·) for the Hausdorff distance between non-empty compact subsets of R2. Loosely speaking, the

following coupling result formalizes a certain asymptotic independence of G∗ and the Cox-Voronoi cell Ξo,λ.
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Lemma 6. For λ ∈ (0, 1] there exists a common probability space (Ω,F ,P) on which G∗, Xλ, and a homogeneous

Poisson point process X with intensity γ are given such that the following two properties hold. If Ξo denotes the

zero-cell of the Voronoi tessellation on X ∪ {o}, then for every ε > 0,

lim
λ→0

P
(
dHaus

(√
λΞo,λ,Ξo

)
≥ ε
)

= 0. (1)

Moreover, the probability space (Ω,F ,P) can be chosen so that X is independent of G∗.

We conclude this subsection by noting a useful elementary result concerning the erosion operation on convex sets.

Lemma 7. Let r > 0 and K ⊂ R2 an arbitrary convex set. Then, (K ⊕ Br(o)) 	 Br(o) = K.

Proof. Let x ∈ R2 \ K be arbitrary. Since K is convex, there exists y ∈ Br(o) such that d(x + y,K) > r. Hence,

x + y < K ⊕ Br(o), so that x <
(
K ⊕ Br(o)

)
	 Br(o). The inclusion K ⊂ (K ⊕ Br(o)) 	 Br(o) is immediate.

4. Proof of Theorem 1

In this section, we show how the results of Section 3 can be used in order to prove Theorem 1. We first recall some

preliminary results from previous work. Lemma 8 below is a consequence of [7, Theorem 2, Proposition 1], whereas

Lemma 9 restates [7, Lemma 28]. For r > 0 let BG∗
r (o) = {x ∈ R2 : `(o, q(x)) ≤ r} denote the ball of radius r and

center o in the pseudometric induced by `, where q(x) is the closest element on G∗ seen from the point x. If the set of

closest elements contains more than one point, q(x) is chosen as the lexicographical minimum in this set.

Lemma 8. Let ε > 0. Then, P
(
B(1−ε)t(o) ⊂ BG∗

µt (o) ⊂ B(1+ε)t(o) for all sufficiently large t > 0
)

= 1.

Lemma 9. Let α′ ∈ (0, 1) be arbitrary. Then, lims→∞ P
(

supx∈Qs(o) |x − q(x)| > sα
′)

= 0.

Using the results of Section 3, we now show that the family of random vectors
(√

λZ(1)
λ ,
√
λZ(2)

λ

)
converges in

distribution to (Z(1),Z(2)) as λ → 0. To simplify notation, we write Iδ,+i = Ii ⊕ [−δ, δ] and Iδ,−i = Ii 	 [−δ, δ] from now

on.

Proof of Theorem 1. Let δ, ε > 0 be arbitrary. Then, by Lemma 9, for all x1, x2 > 0 and all sufficiently small λ > 0,

P
(√

λZ(1)
λ ≤ x1,

√
λZ(2)

λ ≤ x2
)

= P
Ä ⋂

i∈{1,2}

{
max

P(i)∈Ξo,λ∩Ti

`(o, P(i)) ≤ xi/
√
λ
}ä

≤ P
Ä ⋂

i∈{1,2}

{
max

P(i)∈Ξo,λ∩

(
C

Iδ,−
i
	Bδ/

√
λ(o)
) `(o, q(P(i))) ≤ xi/

√
λ
}ä

+ ε

= P
Ä ⋂

i∈{1,2}

{
Ξo,λ ∩

(
CIδ,−i

	 Bδ/√λ(o)
)
⊂ BG∗

xi/
√
λ
(o)
}ä

+ ε.

Furthermore, Lemmas 6, 7 and 8 yield

P
Ä ⋂

i∈{1,2}

{
Ξo,λ ∩

(
CIδ,−i

	 Bδ/√λ(o)
)
⊂ BG∗

xi/
√
λ
(o)
}ä
≤ P
Ä ⋂

i∈{1,2}

{
Ξo,λ ∩

(
CIδ,−i

	 Bδ/√λ(o)
)
⊂ B(xi+δ)/(µ

√
λ)(o)

}ä
+ ε

≤ P
Ä ⋂

i∈{1,2}

{(
Ξo 	 Bδ(o)

)
∩
(
CIδ,−i

	 Bδ(o)
)
⊂ B(xi+δ)/µ(o)

}ä
+ 2ε
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for all sufficiently small λ > 0. Letting δ→ 0 and ε→ 0 yields

lim sup
λ→0

P
Ä ⋂

i∈{1,2}

{√
λZ(i)

λ ≤ xi
}ä
≤ P
Ä ⋂

i∈{1,2}

{
int Ξo ∩ int CIi ⊂ Bxi/µ(o)

}ä
= P
Ä ⋂

i∈{1,2}

{Z(i) ≤ xi}
ä
,

where int Ξo denotes the topological interior of Ξo. The reverse inequality is similar, but we provide some details for

the convenience of the reader. Again, let δ, ε > 0 be arbitrary. Then, for all x1, x2 > 0 and all sufficiently small λ > 0,

P
(√

λZ(1)
λ ≤ x1,

√
λZ(2)

λ ≤ x2
)

= P
( ⋂

i∈{1,2}

{
max

P(i)∈Ξo,λ∩Ti

`(o, P(i)) ≤ xi/
√
λ
})

≥ P
( ⋂

i∈{1,2}

{
max

P(i)∈Ξo,λ∩(C
Iδ,+
i
⊕Bδ/

√
λ(o))

`(o, q(P(i))) ≤ xi/
√
λ
})
− ε

= P
( ⋂

i∈{1,2}

{
Ξo,λ ∩

(
CIδ,+i

⊕ Bδ/√λ(o)
)
⊂ BG∗

xi/
√
λ
(o)
})
− ε.

Furthermore, Lemmas 6 and 8 yield

P
( ⋂

i∈{1,2}

{
Ξo,λ ∩

(
CIδ,+i

⊕ Bδ/√λ(o)
)
⊂ BG∗

xi/
√
λ
(o)
})
≥ P
( ⋂

i∈{1,2}

{
Ξo,λ ∩

(
CIδ,+i

⊕ Bδ/√λ(o)
)
⊂ B(xi−δ)/(µ

√
λ)(o)

})
− ε

≥ P
( ⋂

i∈{1,2}

{(
Ξo ⊕ Bδ(o)

)
∩
(
CIδ,+i

⊕ Bδ(o)
)
⊂ B(xi−δ)/µ(o)

})
− 2ε

for all sufficiently small λ > 0. Letting δ→ 0 and ε→ 0 therefore implies

lim inf
λ→0

P
Ä ⋂

i∈{1,2}

{√
λZ(i)

λ ≤ xi
}ä
≥ P
Ä ⋂

i∈{1,2}

{Ξo ∩CIi ⊂ int Bxi/µ(o)}
ä
.

5. Proof of Theorem 2

Next, we prove Theorem 2 and Corollary 3. In order to achieve this goal, we need two additional auxiliary results.

First, we show that asymptotically the total edge length of G∗ in large convex sampling windows does not change

substantially, when enlarging this window slightly. In the following,K denotes the family of all convex subsets of R2.

Lemma 10. For every b ≥ 1 and ε > 0, there exists δ > 0 satisfying

lim
s→∞

sup
K∈K

K⊂Qb(o)

P
(
ν1
(
G∗ ∩ (sK ⊕ Bδs(o))

)
− ν1(G∗ ∩ sK) ≥ εs2) = 0.

Proof. Let K ⊂ Qb(o) be fixed. Let δ ∈ (0, 1/16) and K′ = {z ∈ Z2 : Qδ(δz) ⊂ (K ⊕ B3δ(o)) \ K , ∅} denote the set of

δ-lattice squares contained in (K ⊕ B3δ(o)) \ K. In particular, putting n′ = #K′, convexity of K implies

n′ ≤ δ−2(ν2(K ⊕ B3δ(o)) − ν2(K)) ≤ 24b/δ.

Note that for every z′ ∈ Z2 with Qδ(δz′) ∩ ((K ⊕ Bδ(o)) \ K) , ∅ there exists z ∈ K′ with |z − z′|∞ ≤ 1. Thus,

P
(
ν1
(
G∗ ∩ (sK ⊕ Bδs(o))

)
− ν1(G∗ ∩ sK) ≥ εs2) ≤∑

z∈K′
P
(
ν1(G∗ ∩ Q3δs(δsz)) ≥ εs2/n′

)
.

Hence, choosing δ > 0 sufficiently small and applying Lemma 4 completes the proof.
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The second auxiliary result concerns concentration properties of integrals with respect to ν1(· ∩G∗).

Lemma 11. Let f : R2 → [0,∞) be a continuous function with compact support. Then, for every b ≥ 1 and ε > 0,

lim
s→∞

sup
K∈K

K⊂Qb(o)

P
Ä∣∣s−1

∫
G∗∩

√
sK

f (s−1/2x)ν1(dx) − γ
∫

K
f (x)dx

∣∣ ≥ εä = 0.

Proof. The family of s−1/4-squares contained in K and the family of s−1/4-squares intersecting the topological bound-

ary ∂K of K play important roles. Hence, we put Kz = K ∩ Qs−1/4 (s−1/4z), z ∈ Z2, S int = {z ∈ Z2 : Qs−1/4 (s−1/4z) ⊂ K}

and S ∂ = {z ∈ Z2 : Qs−1/4 (s−1/4z) ∩ ∂K , ∅}. We also write nint = #S int and n∂ = #S ∂. First, note that

P
Ä∣∣s−1

∫
G∗∩

√
sK

f (s−1/2x)ν1(dx) − γ
∫

K
f (x)dx

∣∣ ≥ εä
≤ P
Ä ∑

z∈S int∪S ∂

s−1
∫

G∗∩
√

sKz

| f (s−1/2x) − f (s−1/4z)|ν1(dx) ≥ ε/4
ä

(2)

+ P
Ä ∑

z∈S int∪S ∂

∣∣s−1/2
∫

s−1/2G∗∩Kz

f (s−1/4z)ν1(dx) − γ
∫

Kz

f (s−1/4z)dx
∣∣ ≥ ε/4ä (3)

+ P
Ä ∑

z∈S int∪S ∂

γ

∫
Kz

| f (s−1/4z) − f (x)|dx ≥ ε/4
ä
. (4)

We analyze the three summands separately and begin with (2). Put ε′ = ε/(16bγ). Then, continuity of f implies

that | f (s−1/4z) − f (x)| ≤ ε′ for all z ∈ Z2 and x ∈ Qs−1/4 (s−1/4z), provided that s > 0 is sufficiently large. Moreover,

nint + n∂ = #
(
S int ∪ S ∂

)
≤ 2b2 √s. Hence,

P
Ä ∑

z∈S int∪S ∂

s−1/2
∫

s−1/2G∗∩Kz

| f (x) − f (s−1/4z)|ν1(dx) ≥ ε/4
ä
≤

∑
z∈S int∪S ∂

P(2b2ε′s−1/2ν1(G∗ ∩ Qs1/4 (s1/4z)) ≥ ε/4),

and by Lemma 4, the latter sum exhibits stretched exponential decay in s. Next, we consider (4) and obtain that∑
z∈S int∪S ∂

γ

∫
Kz

| f (s−1/4z) − f (x)|dx ≤
∑

z∈S int∪S ∂

γε′s−1/2 < ε/4.

Finally, we deal with (3) and put c = supx∈R2 f (x). Observe that∣∣s−1/2
∫

s−1/2G∗∩Kz

f (s−1/4z)ν1(dx) − γ
∫

Kz

f (s−1/4z)dx
∣∣ ≤ c|s−1/2ν1(s−1/2G∗ ∩ Kz) − γν2(Kz)|.

Furthermore, putting ε′′ = ε/(4c) yields

P
Ä ∑

z∈S int∪S ∂

∣∣s−1/2
∫

s−1/2G∗∩Kz

f (s−1/4z)ν1(dx) − γ
∫

Kz

f
(

s−1/4z
)
dx
∣∣ ≥ ε/4ä

≤ P
Ä∑

z∈S int

|s−1ν1(G∗ ∩ Qs1/4 (s1/4z)) − γ| ≥ ε′′/2
ä

+ P
Ä∑

z∈S ∂

|s−1/2ν1(s−1/2G∗ ∩ Kz) − γν2(Kz)| ≥ ε′′/2
ä

≤
∑
z∈S int

P(|s−1ν1(G∗ ∩ Qs1/4 (s1/4z)) − γ| ≥ ε′′/(2nint)) +
∑
z∈S ∂

P
(
|s−1/2ν1(s−1/2G∗ ∩ Kz) − γν2(Kz)| ≥ ε′′/(2n∂)

)
.

As mentioned above nint ≤ 2b2 √s, so that Lemma 4 shows stretched exponential decay of the first sum. The second

sum can be bounded from above by

n∂1γs−1/2≥ε′′/(4n∂) +
∑
z∈S ∂

P
(

s−1/2ν1(s−1/2G∗ ∩ Qs−1/4 (s−1/4z)) ≥ ε′′/(4n∂)
)
.

9



In order to analyze this expression, we first note that for every z ∈ Z2 with Qs−1/4 (s−1/4z) ∩ ∂K , ∅ there exists z′ ∈ Z2

such that s−1/4z′ < K and |z − z′|∞ ≤ 1. Hence, by convexity of K,

n∂ ≤ 9s1/2(ν2(K ⊕ B3s−1/4 (o)) − ν2(K)) ≤ 9s1/2(ν2(Qb+6s−1/4 (o)) − ν2(Qb(o))),

which is at most 9s1/2 · 24bs−1/4, so that n∂s−1/2 ≤ 216bs−1/4. In particular, for all sufficiently large s > 0, we have

ε′′/(4n∂) > 2γs−1/2, so that 1γs−1/2≥ε′′/(4n∂) = 0. Finally, we conclude from Lemma 4 that the expression∑
z∈S ∂

P(s−1/2ν1(s−1/2G∗ ∩ Qs−1/4 (s−1/4z)) ≥ ε′′/(4n∂)) =
∑
z∈S ∂

P(ν1(G∗ ∩ Qs1/4 (s1/4z)) ≥ ε′′s/(4n∂))

tends to 0 as s→ ∞, which completes the proof of Lemma 11.

In order to show that the bivariate vector of scaled random measures
(√

λH(1)
λ ,
√
λH(2)

λ

)
converges in distribution

to (H(1),H(2)), it suffices to verify convergence in distribution of integrals with respect to continuous functions with

compact support, see [6, Proposition 11.1.VIII]. For i ∈ {1, 2} and f : R2 → [0,∞) a continuous function with

compact support, we put Y ( f ,i)
λ =

∫
R2 f (x)H(i)

λ (dx). Then, it suffices to show that for every such f the random vector(√
λY ( f ,1)

λ ,
√
λY ( f ,2)

λ

)
converges in distribution to

(
Y ( f ,1),Y ( f ,2)

)
, where Y ( f ,i) =

∫
Ξo∩CIi

f (x)ν2(dx).

Proof of Theorem 2. Let δ, ε > 0 be arbitrary. Then, for every x1, x2 > 0 and every sufficiently small λ > 0,

P
(√

λY ( f ,1)(λ) ≤ x1,
√
λY ( f ,2)(λ) ≤ x2

)
≤ P
Ä ⋂

i∈{1,2}

¶
λ

∫
Ti∩Ξo,λ\Qλ−1/4 (o)

f
(√

λx
)
ν1(dx) ≤ xi

©ä
≤ P
Ä ⋂

i∈{1,2}

¶
λ

∫
G∗∩Ξo,λ∩C

Iδ,−
i
\Qλ−1/4 (o)

f
(√

λx
)
ν1(dx) ≤ xi

©ä
+ ε.

Note that this probability can be bounded from above by

P
Ä ⋂

i∈{1,2}

¶
λ

∫
G∗∩Ξo,λ∩C

Iδ,−
i

f
(√

λx
)
ν1(dx) ≤ xi + δ

©ä
+ P
Ä
λ

∫
G∗∩Qλ−1/4 (o)

f
(√

λx
)
ν1(dx) ≥ δ

ä
.

Putting c = supx∈R2 f (x), Lemma 4 implies that the second probability is at most P
(
λcν1(G∗ ∩ Qλ−1/4 (o)) ≥ δ

)
≤ ε

provided that λ > 0 is sufficiently small. Next, we consider the expression

P
Ä ⋂

i∈{1,2}

¶
λ

∫
G∗∩Ξo,λ∩C

Iδ,−
i

f
(√

λx
)
ν1(dx) ≤ xi + δ

©ä
,

and note that it can be bounded from above by

P
Ä ⋂

i∈{1,2}

¶
λ

∫
G∗∩λ−1/2Ξo∩C

Iδ,−
i

f
(√

λx
)
ν1(dx) ≤ xi + 2δ

©ä
+ P
Ä
λ

∫
G∗∩(Ξo,λ⊕Bδ1λ−1/2 (o)\Ξo,λ)

f
(√

λx
)
ν1(dx) ≥ δ

ä
+ P
(
Ξo 1

√
λΞo,λ ⊕ Bδ1 (o)

)
,

where δ1 > 0 is arbitrary. Lemma 6 implies that the third summand is smaller than ε for sufficiently small λ > 0. To

bound the second summand, we conclude from Lemmas 5 and 10 that for all sufficiently small δ1 = δ1(δ) > 0,

P
Ä
λ

∫
G∗∩(Ξo,λ⊕Bδ1λ−1/2 (o)\Ξo,λ)

f
(√

λx
)
ν1(dx) ≥ δ

ä
≤ P
(
λcν1

((
G∗ ∩ (Ξo,λ ⊕ Bδ1λ−1/2 (o)) \ Ξo,λ

))
≥ δ
)
≤ ε.
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Finally, we use Lemma 11 and the remark after Lemma 5 to obtain a bound for the first summand:

P
Ä ⋂

i∈{1,2}

¶
λ

∫
G∗∩λ−1/2Ξo∩C

Iδ,−
i

f
(√

λx
)
ν1(dx) ≤ xi + 2δ

©ä
≤ P
Ä ⋂

i∈{1,2}

¶
γ

∫
Ξo∩C

Iδ,−
i

f (x)dx ≤ xi + 3δ
©ä

+ ε.

Thus,

P
(√

λY ( f ,1)
λ ≤ x1,

√
λY ( f ,2)

λ ≤ x2
)
≤ P
Ä ⋂

i∈{1,2}

¶
γ

∫
Ξo∩C

Iδ,−
i

f (x)dx ≤ xi + 3δ
©ä

+ 5ε,

provided that λ > 0 is sufficiently small. Passing to the limits ε→ 0 and δ→ 0 yields

lim sup
λ→0

P
(√

λY ( f ,1)
λ ≤ x1,

√
λY ( f ,2)

λ ≤ x2
)
≤ P
Ä ⋂

i∈{1,2}

¶
γ

∫
Ξo∩int CIi

f (x)dx ≤ xi

©ä
.

As in the proof of Theorem 1 it remains to complement the above arguments with a suitable lower bound. For the

convenience of the reader, we present some details. Again, let δ, ε > 0 be arbitrary. Then, for every x1, x2 ≥ 0 and

every sufficiently small λ > 0,

P
(√

λY ( f ,1)
λ ≤ x1,

√
λY ( f ,2)

λ ≤ x2
)
≥ P
Ä ⋂

i∈{1,2}

¶
λ

∫
G∗∩C

Iδ,+
i
\Qλ−1/4 (o)

f
(√

λx
)
ν1(dx) ≤ xi − δ

©ä
− P
Ä
λ

∫
G∗∩Qλ−1/4 (o)

f
(√

λx
)
ν1(dx) ≥ δ

ä
−

2∑
i=1

P
(
Ti \ Qλ−1/4 (o) 1 CIδ,+i

)
,

and we have already seen that the probabilities in the last line tend to 0 as λ→ 0. Next, Lemmas 5, 6 and 10 yield

P
Ä ⋂

i∈{1,2}

¶
λ

∫
G∗∩Ξo,λ∩C

I+,δ
i
\Qλ−1/4 (o)

f
(√

λx
)
ν1(dx) ≤ xi − δ

©ä
≥ P
Ä ⋂

i∈{1,2}

¶
λ

∫
G∗∩λ−1/2Ξo∩C

Iδ,+
i

f
(√

λx
)
ν1(dx) ≤ xi − 2δ

©ä
− ε.

Finally, Lemma 11 and the remark after Lemma 5 imply that

P
Ä ⋂

i∈{1,2}

¶
λ

∫
G∗∩λ−1/2Ξo∩C

Iδ,+
i

f
(√

λx
)
ν1(dx) ≤ xi − 2δ

©ä
≥ P
Ä ⋂

i∈{1,2}

¶
γ

∫
Ξo∩C

Iδ,+
i

f (x)dx ≤ xi − 3δ
©ä
− ε,

provided that λ > 0 is sufficiently small, and we can now conclude as in the first case.

In general, weak convergence of random measures only yields convergence of integrals for continuous functions

with compact support. However, an additional argument shows that in the present setting, we also obtain distributional

convergence when integrating the function which is constant and equal to one on the entire Euclidean plane R2.

Proof of Corollary 3. In order to establish the convergence in distribution of the scaled random vector
(
λY (1)

λ , λY (2)
λ

)
as λ → 0, we investigate the convergence of the characteristic function. Let ε > 0 be arbitrary and let r > 0 be a

large real number whose precise value is fixed below. Furthermore, let f : R2 → [0, 1] be a continuous function with

compact support and such that f (x) = 1 for all x ∈ Qr(o). Then, we consider the following decomposition, where

t = i(t1, t2), where t1, t2 > 0 and i is a complex number satisfying i2 = −1.∣∣∣Eexp
(
t
(
λY (1)

λ , λY (2)
λ

)>)
− exp

(
t
(
Y (1),Y (2))>)∣∣∣ ≤ ∣∣∣Eexp

(
t
(√

λY ( f ,1)
λ ,

√
λY ( f ,2)

λ

)>)
− exp

(
t
(
Y ( f ,1),Y ( f ,2))>)∣∣∣

+

∣∣∣Eexp
(
t
(√

λY ( f ,1)
λ ,

√
λY ( f ,2)

λ

)>)
− exp

(
t
(
λY (1)

λ , λY (2)
λ

)>)∣∣∣
+

∣∣∣Eexp
(
t
(
Y ( f ,1),Y ( f ,2))>) − exp

(
t
(
Y (1),Y (2))>)∣∣∣ .
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As λ → 0, the first expression converges to 0 by Theorem 2. The second and third expressions are bounded from

above by 2P
(√

λΞo,λ 1 Qr(o)
)

and 2P
(
Ξo 1 Qr(o)

)
, respectively. Finally, an application of Lemma 5 shows that the

latter two are bounded from above by ε, provided that r > 0 is sufficiently large.
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[11] D. Neuhäuser, C. Hirsch, C. Gloaguen, V. Schmidt, A parametric copula approach for modelling shortest-path trees in telecommunication

networks, in: A. Dudin, K. Turck (Eds.), Analytical and Stochastic Modeling Techniques and Applications, volume 7984 of Lecture Notes in

Computer Science, Springer, Berlin, 2013, pp. 324–336.
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