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Abstract

We present a simulation workflow for efficient investigations of the interplay

between 3D lithium-ion electrode microstructures and electrochemical perfor-

mance, with emphasis on lithium plating. Our approach addresses several

challenges. First, the 3D microstructures of porous electrodes are generated

by a parametric stochastic model, in order to significantly reduce the neces-

sity of tomographic imaging. Secondly, we integrate a consistent microscopic,

3D spatially-resolved physical model for the electrochemical behavior of the

lithium-ion cells taking lithium plating and stripping into account. This highly

non-linear mathematical model is solved numerically on the complex 3D mi-

crostructures to compute the transient cell behavior. Due to the complexity

of the model and the considerable size of realistic microstructures even a sin-
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gle charging cycle of the battery requires several hours computing time. This

renders large scale parameter studies extremely time consuming. Hence, we

develop a mathematical model order reduction scheme. We demonstrate how

these aspects are integrated into one unified workflow, which is a step towards

computer aided engineering for the development of more efficient lithium-ion

cells.
Keywords: Stochastic 3D microstructure modeling, Lithium plating, Lithium

stripping, Electrochemical simulation, Model order reduction

1. Introduction

The ubiquity and importance of rechargeable lithium-ion batteries lead to

the increasing demand for physics-based simulation methods that are able to

analyze and predict battery behavior. These methods can not only contribute in

improving cell design and operation, but they can also greatly support battery5

research in its understanding of basic mechanisms, like lithium plating that

determine battery life and safety, which is yet not well understood.

The electrochemical simulation of lithium-ion cells goes back to the work of

Newman and his co-workers [1, 2, 3]. Their simulation methodology is based

on the porous electrode theory developed by Newman [4]. This model approach10

neglects the details of electrode microstructures and describes them as a ho-

mogeneous medium where electrolyte and the solid material coexist at every

point. The most commonly used model of Newman only considers the through-

direction of the battery. It takes into account the diffusion of lithium ions into

the active material by assuming a spherical, microscopic particle of average size15

in each discretization point in which a one-dimensional diffusion equation is

solved. Hence this model is sometimes called a pseudo-2d (P2D) model [5].

There exist many applications for Newman-type models like the study of cell

behavior as well as degradation [5, 6, 7, 8]. But the main drawback of these

models is that the complex electrode microstructures are only approximately20

accounted for by a few aggregated parameters: the thickness of the electrode L,
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the porosity ε, the mean particle radius r and the specific interface area between

electrolyte and active material a [1]. Furthermore, effective transport parame-

ters need to be determined to account for the influence of the microstructure on

the average species transport. While these models are able to describe the aver-25

age battery behavior surprisingly well [8, 9, 10, 11], they cannot be expected to

capture local microscopic effects. In particular, many degradation effects like,

for instance, lithium plating depend on the local environment. Hence homog-

enized models cannot fully capture the interplay between microstructure and

degradation phenomena with sufficient predictive power. Therefore, more fun-30

damental, spatially resolved models should be applied that are able to take the

electrode microstructure explicitly into account [12, 13]. Without simplifications

like volume averaging for the P2D-models these allow the computation of quan-

tities on the scale of the electrode microstructure and are hence better suited

for plating predictions. To give an example, in [14] a microstructure-based sim-35

ulation study for a LCO-graphite battery was performed concentrating on the

discharge behavior for a 2D cut of one given realization of the electrodes. Al-

though the numerical solution of these micro-models is computationally much

more demanding they have been successfully applied to study cell performance

[15, 16, 17], coupling to thermal effects [11, 18, 19], and to account for phase-40

separation dynamics within certain electrode materials [20]. A framework for

these spatially resolved simulations has been implemented in the software BEST

[21].

Lithium plating is one of the major degradation factors and security risks

in lithium-ion batteries. Lithium plating describes the deposition of metallic45

lithium on the negative electrode [22]. This causes a loss of usable lithium

(which reduces the cell’s capacity) and might lead to the growth of lithium

dendrites which can eventually create a short-circuit between the electrodes

which can favor catastrophic thermal runaways. While model extensions to

account for lithium plating are typically based on the porous electrode theory50

[8, 23, 24, 25, 26] only very little work has been published where lithium plating

models take the electrode microstructure into account [27, 28]. In a recent
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publication [29] a micro-scale model has been developed that is able to take the

inhomogeneous electrode structure into account. The research presented in the

current paper is based on this degradation model.55

Spatially resolved electrochemical simulations as described above allow in-

vestigations of electrochemical behavior for realistic 3D microstructures. Thus,

as input for these simulations, realistic 3D image data of battery electrodes

is needed, which is already available even in-operando [30]. However, tomo-

graphic measurements of battery electrodes in 3D involve high costs and efforts.60

A methodology that has proven to be very promising in this context is stochastic

microstructure modeling. Based on (only one or a few) tomographic measure-

ments, a 3D parametric stochastic microstructure model can be constructed

and calibrated using tools from stochastic geometry [31]. The model has been

implemented in our software library GEOSTOCH [32]. It is able to describe65

the complex geometric microstructure in a statistical sense with only a few pa-

rameters such that each realization of the model represents the morphological

characteristics of the tomographic image data (e.g., the distributions of particle

size and shape, pore size distribution, etc.). Once fitted to tomographic image

data, with hardly any effort an arbitrary number of realistic 3D microstructures70

can be generated on the computer. Moreover, systematic variation of model

parameters allows the realization of virtual, but still realistic microstructures.

Such an approach has been considered, for example, in the context of organic

solar cells [33]. Using regression in the parameter space, microstructures that

represent various manufacturing conditions could be generated on the computer75

and analyzed regarding their functionality. This results in an enormous reduc-

tion of complexity, as (most of) the structures do not have to be manufactured

in the laboratory, but only tomographic image data of a few ones is needed.

Similar examples of stochastic microstructure modeling can be found in litera-

ture [34, 35, 36]. In this work, a stochastic microstructure model for anodes in80

lithium-ion batteries [37] is used.

While the aforementioned microscopic battery model can be solved by rel-

atively standard iterative numerical methods, the solution process is compu-
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tationally very demanding. In order to get meaningful results a sufficiently

large electrode cutout needs to be resolved in the simulation. This results in85

huge time-dependent discrete systems which require considerable computing re-

sources, already for single simulation runs. Computational studies to identify

critical parameters, to estimate the dependence of degradation on operating con-

ditions or to support optimal design and control of batteries, however, require

many forward simulation runs with varying material or state parameters and are90

thus virtually impossible. Hence, model reduction approaches for the resulting

parameterized systems are indispensable for such simulation tasks. Concern-

ing model reduction for lithium-ion battery models, we refer to the pioneering

work [38] in the context of proper orthogonal decomposition (POD), and to the

more recent contributions [39, 40, 41, 42, 43, 44, 45] in the context of reduced95

basis methods. In the work presented here, we rely on an implementation of

recent model reduction methods (such as the reduced basis method, POD, and

the empirical interpolation method) implemented in our model order reduction

library pyMOR [46, 47].

The ability to efficiently and realistically predict the degradation behavior100

(here: lithium plating) of lithium-ion batteries under arbitrary load conditions

relies on the following prerequisites:

1. A physics-based predictive microscopic battery model that includes the

plating mechanism.

2. A method to create a number of virtual, yet realistic microstructures as105

basis to understand the correlation between structural properties and bat-

tery performance and degradation behavior.

3. A numerical method that is able to efficiently perform a considerable num-

ber of three-dimensional, microstructure-resolving simulations for a vari-

ety of operating conditions.110

4. A software interface that is able to integrate these aspects into a common

workflow.
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Within the project MULTIBAT [48] the authors developed and technically

implemented a workflow that covers all the aforementioned aspects, namely

stochastic geometry generation, model extension to account for plating, nu-115

merical implementation and development of model order reduction techniques.

There are numerous papers in the literature (including several ones written

by the authors of the present paper) on different components of the presented

workflow. However, we are not aware of any publication on an algorithm inte-

grating all these components into one single, holistic workflow, which enables120

comprehensive solutions of really complex problems related to Li-ion batteries.

Thus, development, implementation, and testing of a holistic algorithm / work-

flow which integrates all components of the above-mentioned chain is one of the

main contributions of the present paper. A feasibility study for a really complex

problem, such as plating, is presented in order to illustrate the capabilities of the125

workflow that has been developed. The investigation of the interplay between

3D microstructure and electrochemical processes during the plating processes,

which up to our knowledge has not been done so far in the literature, is another

main contribution of the present paper.

The authors’ developments on the individual components of the workflow130

have been reported earlier, details can be found in the references listed in the

present paper, hence, these components are presented here relatively shortly.

The emphasis in the present paper is given to the developed interfaces, to the

integration of all the components into one single workflow, to the peculiarities

related to the selected feasibility study, and to the parametric study of the135

plating process in stochastic geometry generation. Special attention is paid to

computational efficiency, adapting the model reduction approach to the heavily

nonlinear system of partial differential equations. The presented study reveals,

that the complex information produced by the interplay between microstruc-

ture, lithium-ion transport and intercalation kinetics is hidden in a vastly re-140

duced subspace of the full 3D information contained in the time-dependent

scalar fields for lithium-ion concentration and electrochemical potential. The

essential dynamics leading to plating in a complex microstructure can be repre-
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Figure 1: Schematic overview of the MULTIBAT workflow.

sented by a sophisticated reduced model without losing spatial precision. The

advantage of the model presented in this paper is the ability to perform fully 3D145

microstructure-resolved simulations of plating with nearly the same numerical

efficiency as simulation with a P2D model i.e. a 1D volume averaged battery

model, in which all structural details are lost. We report on the MULTIBAT

workflow and briefly describe the details of all the individual aspects in Sec-

tion 2. In Section 3 we demonstrate the application of the developed methods150

by showing and discussing results of a simulation study and conclude with a

summary in Section 4.

2. The MULTIBAT workflow

In this section we discuss the individual components of the MULTIBAT

workflow (see Fig. 1) and their realization in more detail. Based on experi-155

mental data, random electrode geometries with the same or modified structural

characteristics are generated (Sec. 2.1), and a mathematical model of the rel-

evant electrochemical effects is formulated (Sec. 2.2 and 2.3). The resulting

continuum model is then discretized (Sec. 2.4) and reduced (Sec. 2.5), leading

to a quickly computable microscale model of the cell dynamics on realistic elec-160

trode geometries. The software implementation and integration into a unified

modeling and simulation workflow is discussed in Sec. 2.6.

It should be noted that, while we present a specific realization of the MULTI-

BAT workflow targeted at lithium plating, the same workflow can be applied

to other questions in electrochemistry and similar problem domains. Each in-165
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dividual component can be further developed and optimized for other specific

applications, independently of the other workflow components.

2.1. Generation of random structures

The study of local effects in the complex microstructures of battery anodes

by spatially resolved models is computationally very expensive, particularly re-170

garding random access memory. Therefore, only quite small sample sizes can

be considered. As we are interested in local phenomena, there is a need for

high-resolution of the images, which on the other hand means that the images

typically only represent small cutouts of the material. This is why, in order to

get reliable results, the computer experiments have to be carried out repeatedly175

using different samples. Furthermore, the imaging techniques are complex in

preparation and involve long imaging times as well as high costs. This is why a

suitable approach is to use randomly generated images of microstructures using

parametric stochastic 3D models. This approach has already been used success-

fully in related applications for energy materials in fuel cells [49] and solar cells180

[33]. A parametric stochastic model which describes the spatial structure is de-

veloped for the material and its parameters are fitted to image data. Using the

calibrated model, an arbitrary number of structures that are similar to the im-

age data in a statistical sense can be generated with hardly any effort. ‘Similar

in a statistical sense’ means that the realizations of the model do not resemble185

the image data exactly, but with respect to aggregated quantities and spatial

properties. For example, simple characteristics like volume fraction and specific

surface area can be matched, but also more complex spatial characteristics like

the distribution of pore sizes or local tortuosity. Thus, realizations of a para-

metric stochastic microstructure model are an ideal input for spatially resolved190

electrochemical simulations. A further advantage is that their parameters can

be changed to create virtual structures that have not been produced in the lab-

oratory yet, and the electrochemical performance of those virtual structures can

be analyzed on the computer, a procedure called virtual materials testing.

Here, we make use of a parametric stochastic 3D microstructure model for195
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anode structures from lithium-ion battery cells [37]. Besides the validation based

on structural characteristics [37] a validation using spatially resolved electro-

chemical simulations has been performed [50]. The variability of the modeling

approach used here is demonstrated since the same model with some adaptions

can be used to generate microstructures for energy cells [37] and power cells200

[51].

We now briefly recall some details of the stochastic 3D model that is used to

generate the virtual anode microstructures used in the MULTIBAT workflow.

As mentioned above the model has already been published [37] and all param-

eters as well as further details can be found there. Generally, the construction205

of the model consists of four steps that are also depicted in Fig. 2.

(a) (b) (c)

(d) (e)

Figure 2: Schematic depiction of the stochastic model. (a) A random tessellation is pro-

duced, which roughly determines the particle shapes, sizes and locations. (b) A random

graph describes how the particles are connected to each other. (c) The connected particles

are generated using random fields on the sphere. (d) and (e) The connected particles are

retained and morphological smoothing is carried out. Reprinted from [37] with permission

from Elsevier.

First, the locations, sizes and shapes of the particles are determined. Tech-
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nically speaking, a Laguerre tessellation is generated (see Fig. 2(a)) based on a

random sequential adsorption process. This tessellation decomposes the region

of interest into convex polytopes. Later on, a particle is placed inside each of210

these polytopes. Thus, the Laguerre tessellation roughly indicates the spatial

arrangement of particles. For details regarding tessellations, a broad spectrum

of literature is available [31, 52, 53, 54].

In the next step, a connectivity graph is generated that describes which

particles are supposed to be connected, i.e., for each polytope P , we determine215

a set of neighboring polytopes {Pi, i = 1, ..., N}, N ∈ N. The particles that are

placed inside {Pi, i = 1, ..., N} have to touch the particle in P . Full connectivity

of all particles is ensured by the usage of a minimum spanning tree [55]. Further

connections are added to the minimum spanning tree depending on the size

of the facet between two polytopes, as the probability of two particles being220

connected is larger for larger facet areas. Such a graph is depicted in Fig. 2(b).

Now, a particle can be realized in each polytope, fulfilling the boundary

conditions, i.e., touching the particles indicated by the connectivity graph. In

more detail, the particles are modeled using Gaussian random fields on the

sphere. Thus, the shape of the particles can be characterized by a mean radius225

µ and the angular power spectrum A : [0,∞) → [0,∞), see [56]. The angular

power spectrum is approximated by the function A(l) = al+b
l2+cl+d with coefficients

a = 0.4241, b = 0.356, c = −3.858 and d = 3.903. In more detail, we do not

use the mean radius µ directly but we generate the particles in a way that

their volume is proportional to the volume of corresponding Laguerre cells. The230

particles are sampled with the boundary conditions indicated by the connectivity

graph using a special sampling algorithm that creates only realizations of the

given Gaussian random field that fulfill those conditions.

The schematic depiction in Fig. 2(c) shows the particles with the tessellation

and the connectivity graph. One can clearly see that the particles touch each235

other where indicated by the graph and on the other hand also fill their re-

spective Laguerre polytopes. Fig. 2(d) shows the system of connected particles

without the tessellation and the connectivity graph as these are auxiliary tools
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that are no longer needed after the creation of particles.

Finally, a morphological smoothing [57] is performed on the system of con-240

nected particles to mimic the effect of binder. In the given sample the volume

fraction of the binder as well as the contrast in the tomographic images were

too low to identify and model the binder as separate phase. From the known

production process (slurry coating) we assume that this approach produces a

similar effect as depicted in Fig. 2(e).245

In Fig. 3(a) and 3(b), a cutout from the tomographic image data can be

compared to a simulated anode structure. A very good visual accordance can

be observed.

The model described so far is an excellent tool to generate virtual anode mi-

crostructures of energy cells, which are characterized by a high volume fraction250

of the solid phase. However, note that it can not directly be used to model the

morphology of anodes in power cells, because due to the lower volume fraction of

the solid phase, the boundary conditions for particles cannot be fulfilled reason-

ably. Therefore, an extension of the model has been proposed [51]. To account

for the lower volume fraction, a Laguerre tessellation with marked polytopes is255

used. The polytopes are marked either as ‘filled’, i.e., a particle is placed in the

polytope, or as ‘empty’, which means that no particle is placed here. Thereby,

a reasonable allocation of the different polytopes as well as full connectivity of

the resulting structure is ensured. Furthermore, the model is able to include

anisotropy effects of the solid phase, i.e., particles can be elongated in horizontal260

direction rather than in vertical direction. This results in a remarkable flexi-

bility such that the model can be used to create a broad spectrum of virtual

anode microstructures with a variety of morphological properties, see Fig. 3(c)

for some examples.

In this study, we focus on electrochemical simulations of anode microstruc-265

tures in energy cells. Thus, all microstructures which are discussed in the present

paper, are created using the energy cell model [37]. Electrochemical simulations

on virtual structures generated by the power cell model are subject of further

research.
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(a) (b)

(c)

Figure 3: (a) 3D rendering of a cutout of a tomographic image of the energy cell anode. (b)

3D rendering of a simulated energy cell anode structure. (c) Realizations of the power cell

model with various morphological properties; center: realization of the calibrated power cell

model; top left: virtual structure with higher volume fraction of the particle phase; top right:

virtual structure with more pronounced anisotropy effects; bottom left: virtual structure with

no anisotropy effects; bottom right: virtual structure with decreasing volume fraction of the

particle phase from bottom to top. Reprinted from [37](a+b) and [51](c) with permission

from Elsevier.

2.2. Microscopic cell modeling270

In this section we recollect the equations that describe the transport of

lithium ions in a three-dimensional microstructure generated by the method as

described in the previous section. The physical model has been derived based on

species, charge and energy conservation to yield a set of equations that describe

the spatial and temporal distribution of lithium ions, electrical potentials and275
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temperature [13, 58]. However, in order to fit to the isothermal plating model

we neglect the effects of heat production here and consider an isothermal system

where temperature enters as a constant model parameter.

For the purpose of this study we restrict ourselves to half-cell simulations,

i.e. we consider a porous graphite electrode modeled by the discussed stochastic280

method against a lithium foil as counter-electrode. The simulation domains are

connected with the external operation conditions through dedicated current

collector phases on each electrode. The remaining space of the computational

domain is filled with ion conductive electrolyte.

Within the graphite particles we have the following equations for lithium285

concentration cGr and electrical potential ΦGr

∂tcGr = −∇ ·NGr = −∇ · [−DGr∇cGr] , (2.1)

0 = −∇ · jGr = −∇ · [−σGr∇ΦGr] , (2.2)

where DGr is the lithium diffusion coefficient and σGr is the electrical conduc-

tivity of the material. The ion flux and electric current density are denoted by

NGr and jGr, respectively. Also in the domains of the lithium foil and the cur-

rent collectors electronic conduction is considered and hence (2.2) is also solved290

in these domains (with the respective conductivities of course). Since there is

no intercalation and diffusion of ions neither in the lithium counter-electrode

nor in the current collectors, (2.1) is only relevant for the graphite domain.

Within the electrolyte domain, lithium concentration cEl and electrochemical

potential ϕEl are coupled through295

∂tcEl = −∇ ·NEl = −∇ ·
[
−DEl∇cEl + t+

F
jEl

]
, (2.3)

0 = −∇ · jEl = −∇ ·
[
−κEl∇ϕEl − κEl

t+ − 1
F

∂µ

∂cEl
∇cEl

]
, (2.4)

where t+ is the transference number of lithium in the electrolyte, κEl is the ionic

conductivity of lithium inside the electrolyte and F is the Faraday constant. The

derivative of the electrolyte chemical potential is given as

13



∂µ

∂cEl
= R · T

cEl
·
(

1 + ∂ log f+
∂ log cEl

)
, (2.5)

with T denoting the temperature, R the gas constant and f+ the activity coef-

ficient.300

On the interfaces between the electrodes and electrolyte two types of reac-

tions need to be considered: That is an intercalation reaction on the graphite

side and a lithium deposition reaction on the counter-electrode side. The differ-

ent phases (graphite, electrolyte and counter-electrode) are coupled via interface

conditions305

jEl · nSo−El = iinterface ,

jSo · nSo−El = iinterface ,

NEl · nSo−El = iinterface
F

,

NSo · nSo−El = iinterface
F

,

(2.6)

with “So” (solid) being either graphite or metallic lithium. By convention the

interface normal nSo−El points from solid into the electrolyte. These conditions

express the continuity of the current and mass fluxes between the phases. The

current flow through these interfaces depends on the corresponding reactions.

The intercalation reaction is described by a Butler-Volmer-like expression [58]310

iinterface = iGr−El

= 2 · i00
Gr−El ·

√
cGr · cEl · sinh

(
F

2 ·R · T · ηGr−El

)
, (2.7)

where the overpotential is given by ηGr−El = Φgr − UGr
0 − ϕEl. The electrode’s

open-circuit potential UGr
0 is a concentration dependent material property. The

rate constant i00
Gr−El depends on the lithium salt and the electrolyte composi-

tion. The transfer coefficients αc + αa = 1 of the intercalation reaction were

assumed to be symmetrical (αa,c = 0.5). The form of (2.7) differs from the usual315
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Table 1: Overview of interface conditions between the different material domains for the ion

fluxes N and current densities j. “cont.” mathematically means no interface but a continuous

flux according to the transport equation. Between the graphite electrode and the lithium foil

as counter electrode there is obviously no interface.

graphite electrolyte lithium foil current collector plated lithium

graphite cont. (2.6),(2.7) no interface N = 0, j = cont. N = 0, j = cont.
electrolyte (2.6),(2.7) cont. (2.6),(2.8) N = −1, j = 0 (2.6),(2.14)

lithium foil no interface (2.6),(2.8) cont. N = 0, j = cont. no interface
current col. N = 0, j = cont. N = 0, j = 0 N = 0, j = cont. cont. N = 0, j = cont.

plated lithium N = 0, j = cont. (2.6),(2.14) no interface N = 0, j = cont. cont.

Butler-Volmer expression by omitting the common (cmax
Gr − cGr)αa term, since a

rigorous thermodynamically consistent derivation does not in general yield this

prefactor [58]. The Butler-Volmer model and the used exchange current include

a relation between the potentials and the current flux. The exponential shape

of the exchange current introduces highly pronounced non-linearities into the320

numerical system. The reaction at the counter-electrode is described by a sim-

ple exchange current, which minimizes the effect of the counter-electrode on the

simulation results

iinterface = iCE−El = 2 · i00
CE−El · sinh

(
F

2 ·R · T · ηCE−El

)
, (2.8)

where the rate constant is given by i00
CE−El. On the lithium electrode the over-

potential is simply given by ηCE−El = ΦCE − ϕEl. The remaining interface325

conditions are shown in Tab. 1.

These equations describe an ideal battery, i.e. no degradation processes are

considered. This extension is outlined in the next section.

2.3. Electrochemical degradation modeling

The focus in this work is the degradation process lithium plating, where the330

lithium ions form an unwanted metallic phase on the surface of the intercala-

tion material of the negative electrode. The electrochemical modeling of this

process is briefly described in the following section, details can be found in the
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corresponding publication [29]. Two states of the lithium ions are of relevance:

the lithium ions dissolved in the electrolyte Li+El and the metallic/plated lithium335

phases Li0Pl. The transition between these two is expressed by the reaction

Li+Electrolyte + e−Electrode 
 Li0Plated . (2.9)

The overpotential of the plating and stripping reaction is defined by the differ-

ence between the electrochemical potential µ̃ of the two lithium phases involved[59]

F · ηPl/St = µ̃Pl
Li+ − µ̃El

Li+ . (2.10)

With the definition of the reference state µPl
Li0 = µPl

Li+ + µPl
e− and the electro-

chemical potentials of lithium ions inside the electrolyte and a solid phase (see340

[29]), the overpotential (2.10) can be rewritten to

ηPl/St = ΦPl − ϕEl
Li+ , (2.11)

where ϕp
i denotes the electrochemical potential of species i in phase p with

respect to the reference state µPl
Li0 . Plating of lithium is occurring if the overpo-

tential reaches negative values (ηPl/St < 0). The metallic lithium phase on the

surface of the anode is not in a stable configuration, even if no external current345

is applied to the system. As soon as lithium is plated on the surface of the

active material, the lithium metal can react with its surroundings in different

ways. The reaction between the plated lithium and the electrolyte results in the

growth of a solid-electrolyte interphase (SEI), which leads to an irreversible loss

of lithium [22]. Apart from phenomenological models no theory exists which350

combines lithium intercalation, lithium plating and SEI growth. Hence, this

irreversible pathway is not included in the present paper. The plated lithium

can also intercalate charge-neutrally into the supporting graphite. This reaction

represents a reversible lithium stripping pathway. We are not aware of any lit-

erature regarding the identification and parameterization of the charge-neutral355
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reintercalation. Hence the direct reintercalation from the plated lithium into

graphite was neglected in this work.

The stripping and plating reaction of the lithium is described by a Butler-

Volmer-like equation

iPl−El =i00
Pl−El ·

√
cEl

·
(
fpre (nLi) · exp

(
FηPl−El
2 ·R · T

)
− exp

(
−FηPl−El

2 ·R · T

))
. (2.12)

The Bulter-Volmer-like expression is derived for non-vanishing phases. But,360

the plated lithium phase can completely desolve during stripping. Hence, the

vanishing of the plated lithium phase is considered in the exchange current by

the numerical regularization function fpre (nLi), which depends on the amount

of plated lithium nLi

fpre (nLi) = (nLi)4

(nconst
Li )4 + (nLi)4 . (2.13)

Based on numerical considerations [29], we set the constant nconst
Li to a value365

corresponding to a thickness of plated lithium of 0.48 nm. For partially covered

surfaces more detailed models are necessary to capture the stripping of par-

tially covered surfaces including the surface-driven dissolution of small lithium

droplets.

At the interface between the plated lithium and the electrolyte the current370

through the interface is equal to the stripping current

iinterface = iPl−El . (2.14)

All the interface conditions which are relevant for electrochemical simulations

in this paper are listed in Tab. 1.

In this paper the stripping process of plated lithium is simulated by including

the plated lithium into the 3D microstructure as an additional volume phase. In375

17



Fig. 4(a) an example of a 3D microstructure with plated lithium is shown. The

porous electrode (red/right) is generated by the stochastic generation algorithm

as described in Sec. 2.1. Additionally, regions with plated lithium are positioned

randomly at the separator-electrode interface. The microstructure shown in Fig.

(a) (b)

Figure 4: (a) Example of a 3D microstructure generated based on the stochastic simulation

algorithm as described in Sec. 2.1. The plated lithium is shown as green spots on the separator-

graphite interface. (b) Schematic depiction of the simulated initial lithium plating in 2D. The

blue dots indicate the starting positions of the grains. The red lines indicate the simulated

lithium plating.

4(a) is used for the model order reduction experiment described in Sec. 3.2.380

One important deviation from the microstructure model [37, 51] was to in-

troduce a third phase in the anode structure, plated lithium. We use a fairly

simple model to create a slightly plated structure as initial condition. These

initial conditions are, like the microstructure model, simulated stochastically.

This means that for every run the microstructure model extended by the plated385

lithium phase generates a new structure but with similar statistical properties.

The method used to create the plated lithium phase is a germ-grain model.

This means that in a first step germs are simulated and in the second step

grains are placed around the germs [31]. The parameters of this model are the

intensity λ of the Poisson process that is used to generate the germs and the390

grain radius rs. Due to the lack of experimental data the values where chosen
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to λ = 0.01/µm2 and rs = 2.2 µm. The general idea of the model is to place

plating germs randomly on the surface of the particles in the electrode and then

initialize plating around the germs on all the points on the structure’s surface

within the radius given by rs. In more detail the following is done, see Fig.395

4(b):

• Select points {pi, i ∈ N} at the separator-anode interface via a Poisson

point process with intensity λ.

• For each point pi, i ∈ N do the following:

– Find the first point p∗i where the straight line from pi towards the400

anode current collector interface meets the anode structure. Let Θ

be the particle on the boundary of which p∗i is placed.

– Consider a sphere B(p∗i , rs) around p∗i with radius rs. Let Li = {x ∈

R3 : x ∈ B(p∗i , rs) and x ∈ ∂Θ}, where ∂Θ is the boundary of Θ.

• Let L =
⋃
i∈N

Li be the plated lithium phase.405

The plated lithium phase L is then discretized as a one voxel thick phase on the

surface of the particles. The material parameters and reaction constants of the

ion transport and plating model are adapted from a previous publication [29].

2.4. Discretization and high-dimensional simulation

For the spatial discretization of the presented plating model, a cell-centered410

finite volume scheme on a uniform voxel grid is considered. Hence the dis-

cretization is naturally conservative. Furthermore, with the simple grid struc-

ture meshing of the complex microstructure is straight-forward. The Butler-

Volmer interface conditions (2.6) are prescribed as the numerical flux across the

respective domain interfaces, leading to a global space differential operator on415

the entire computational domain. Choosing implicit Euler time stepping for

time discretization, we obtain a series of discrete nonlinear equation systems of

the form
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 1
∆t(n+1) (c(n+1)

µ − c(n)
µ )

0

+Aµ

c(n+1)
µ

ϕ
(n+1)
µ

 = 0,

(c(n+1)
µ , ϕ(n+1)

µ ) ∈ Vh ⊕ Vh. (2.15)

Here, Vh denotes the discrete finite volume space of locally constant grid func-

tions, c(n)
µ , ϕ

(n)
µ ∈ Vh denote the concentration and potential fields at time step420

n for some p-tuple of model parameters µ contained in a parameter domain

of interest P ⊂ Rp, and Aµ : Vh ⊕ Vh → Vh ⊕ Vh is the finite volume space

differential operator. The system is closed by c
(0)
µ = c0 for some fixed initial

lithium distribution c0 ∈ Vh. The time step size ∆t(n) is chosen adaptively for

each time step to accommodate the different time scales during and after the425

stripping of the plated lithium. The nonlinear equation systems are solved in

BEST using Newton’s method and an algebraic multigrid solver for the solution

of the linear correction equations. Details on the discretization are provided in

a previous publication [60].

2.5. Model order reduction and reduced simulation430

The computation of a single solution trajectory c
(n)
µ , ϕ

(n)
µ requires many

hours, even for relatively small geometries (cf. Sec. 3.2). In order to make param-

eter studies computationally feasible, reduced basis model reduction techniques[61,

62, 63] are applied which have been implemented in our model order reduction

library pyMOR [46, 47]. This allows us to obtain a quickly solvable reduced435

order model approximating the full order model (2.15).

To construct the reduced order model, solutions of (2.15) are computed for

few appropriately selected parameters µ1, . . . , µS . Various advanced algorithms

exist for the selection of these snapshot parameters, often based on a greedy

search procedure (cf. [61, 62, 63]). In our basic test case with a one-dimensional440

parameter domain P (Sec. 3.2), a simple equidistant parameter sampling will

be sufficient, however.
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From this data, reduced approximation spaces Ṽc, Ṽϕ for the concentration

and potential fields are constructed via proper orthogonal decomposition (POD,

principal component analysis) [64] of the snapshot data sets Sc = {c(n)
µs , c

(n,i)
µs },445

Sϕ = {ϕ(n)
µs , ϕ

(n,ik)
µs }. Here, c(n,i)µs , ϕ(n,i)

µs denote the intermediate Newton stages

during the solution of (2.16), which are included for improved numerical sta-

bility. By construction, we in particular have Ṽc ⊆ spanSc and Ṽϕ ⊆ spanSϕ.

While dimVh is in the order of 106, we typically have dim Ṽc,dim Ṽϕ < 100,

which makes significant computational speedups possible.450

After the reduced approximation space Ṽ = Ṽc⊕ Ṽϕ has been computed, the

reduced order model is obtained via Galerkin projection of (2.15) onto Ṽ . I.e.,

we solve

PṼ


 1

∆t(n+1) (c̃(n+1)
µ − c̃(n)

µ )

0

+Aµ

 c̃(n+1)
µ

ϕ̃
(n+1)
µ

 = 0,

(c̃(n+1)
µ , ϕ̃(n+1)

µ ) ∈ Ṽ , (2.16)

c̃
(0)
µ = PṼc

(c0), where PṼ / PṼc
denotes the L2-orthogonal projection onto Ṽ /

Ṽc.455

However, even though (2.16) contains only dim Ṽ degrees of freedom, its

solution requires the evaluation of the high-dimensional system operator Aµ.

This strongly limits the achievable speedup in computation time when solving

(2.16) instead of (2.15).

To overcome this issue, Aµ is replaced by a quickly evaluable low-order ap-460

proximation using the empirical interpolation technique [65, 66]: for an arbitrary

(nonlinear) operator O : X → Y , the EI-Greedy algorithm is used to compute

a low-order interpolation space Ỹ ⊆ Y from evaluations of T on given solution

trajectories, after which the interpolated operator IM [O] is determined by re-

quiring it to agree with O at appropriate M = dim Ỹ interpolation degrees of465

freedom π1, . . . , πM : Y → R. I.e., for all x ∈ X we have

IM [O](x) ∈ Ỹ and πm(IM [O](x)) = πm(O(x)), 1 ≤ m ≤M. (2.17)
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Due to the locality of finite volume operators, the point evaluations πm(O(x))

can be computed quickly and independently from the dimension of Vh.

Since the potential part of Aµ vanishes identically for solutions of (2.15),

a direct application of empirical interpolation to O = Aµ results in an unus-470

able approximation, however. Instead, we further decompose Aµ and only use

empirical interpolation for appropriate sub-operators.

In the following, we are interested in the behavior of the model in dependence

on the applied current density. In this case, with µ being the applied current

density, Aµ decomposes as475

Aµ = A(aff)
µ +A(bv) +A(1/c), (2.18)

where A(bv), A(1/c) are the parameter-independent nonlinear parts of Aµ corre-

sponding to the Butler-Volmer interface terms and the summand in (2.4) con-

taining ∂µ/∂cEl. Assuming constant t+, the remainder A(aff)
µ is affine linear

and decomposes as

A(aff)
µ = A(const) + µ ·A(bnd) +A(lin), (2.19)

where A(const) is constant and A(bdn), A(lin) are linear, non-parametric opera-480

tors.

Now we apply the EI-Greedy algorithm on the training datasets S∗ =

{A(∗)(c(n)
µs , ϕ

(n)
µs ), A(∗)(c(n,i)µs , ϕ

(n,i)
µs )}, ∗ ∈ {bv, 1/c}, to obtain empirically inter-

polated operators IM(∗) [A(∗)] ≈ A(∗), which give us the approximation

Aµ ≈ Ãµ = A(aff)
µ + IM(bv) [A(bv)] + IM(1/c) [A(1/c)]. (2.20)

Substituting (2.20) into (2.16) we arrive at the fully reduced model485

PṼ


 1

∆t(n+1) (c̃(n+1)
µ − c̃(n)

µ )

0

+ Ãµ

 c̃(n+1)
µ

ϕ̃
(n+1)
µ

 = 0,

(c̃(n+1)
µ , ϕ̃(n+1)

µ ) ∈ Ṽ , (2.21)
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with c̃
(0)
µ = PṼc

. After pre-computation of the matrix representations of the

linear (constant) operators PṼ ◦ A(const), PṼ ◦ A(bnd), PṼ ◦ A(lin) : Ṽ → Ṽ , as

well as the projections from the interpolation spaces for A(bv), A(1/c) onto Ṽ ,

the solution of (2.21) can be obtained quickly for arbitrary new parameters µ

with an effort that only depends on dim Ṽ , M (bv) and M (1/c).490

In the following experiments (see Sec. 3.2) we are interested in the cell po-

tential as well as the average lithium concentration in the electrode as functions

of time and the applied delithiation current density µ. These quantities are

linear functionals scp, sac : Vh ⊕ Vh → R, assigning to a state of the cell the

respective quantity of interest. Due to their linearity, the vector representation495

for the evaluation of scp, sac on Ṽ can again be pre-computed, such that for

any given solution of (2.21), scp(c̃(n)
µ , ϕ̃

(n)
µ ), sac(c̃(n)

µ , ϕ̃
(n)
µ ) are quickly obtained

with an effort only depending on dim Ṽ .

The model order reduction introduces an additional approximation error

between full order and reduced order model that needs to be accounted for in the500

simulation workflow. As we are not aware of any rigorous error estimates which

would provide sufficiently tight error bounds for the model under consideration,

we here consider the following heuristic a posteriori error estimator [67]: In

addition to Ṽ we construct a second, larger validation space V̂ = V̂c ⊕ V̂ϕ ⊃

Ṽc⊕ Ṽϕ = Ṽ and extended interpolation bases of dimensions M̂ (bv) > M (bv) and505

M̂ (1/c) > M (1/c), yielding a larger reduced model with solutions (ĉ(n)
µ , ϕ̂

(n)
µ ) ∈ V̂ .

Under the heuristical assumption that

‖ĉ(n)
µ − c(n)

µ ‖ ≤ Θ · ‖c̃(n)
µ − c(n)

µ ‖, ‖ϕ̂(n)
µ − ϕ(n)

µ ‖ ≤ Θ · ‖ϕ̃(n)
µ − ϕ(n)

µ ‖ (2.22)

for all timesteps n, µ ∈ P with a fixed Θ ∈ [0, 1), from the triangle inequality

we immediately obtain the error estimates

‖c̃(n)
µ − c(n)

µ ‖ ≤
1

1−Θ · ‖c̃
(n)
µ − ĉ(n)

µ ‖, ‖ϕ̃(n)
µ − ϕ(n)

µ ‖ ≤
1

1−Θ · ‖ϕ̃
(n)
µ − ϕ̂(n)

µ ‖.

(2.23)
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The right-hand sides of (2.23) can be quickly computed at the expense of an510

additional solution of a second (slightly larger) reduced order model. Note that

(2.22) is precisely the saturation assumption in the context of hierarchical a

posteriori estimates for finite element schemes (see e.g. [68]).

2.6. Algorithmical integration and software interfaces

MULTIBAT aims to allow computationally fast studies of local effects in the515

complex microstructure of battery anodes within one software workflow. This is

achieved by breaking the multi-disciplinary goal into task units and interfacing

these units with BEST to varying degrees of depth.

The presented workflow resulting from these interfaces is schematically de-

picted in Fig. 5. It allows speeding up the numerical solution of the microscopic520

cell degradation modeling from Sec. 2.2 and 2.3 with discretization from Sec. 2.4

by BEST, using the randomly generated structures from Sec. 2.1 through the

POD/EI based model order reduction approach from Sec. 2.5. The workflow

has been used to create the results and speedups depicted in Sec. 3.

We introduce three distinct interfaces. The first is file-based and allows usage525

of randomly generated structures of Sec. 2.1 in BEST through a conversion tool.

The conversion tool provides standard BEST geometry input which is matched

with physical modeling input parameters and numerical solution parameters

suitable for the models of Sec. 2.2 with the extensions from Sec. 2.3.

The second interface allows to extend the BEST numerical solution code530

to advanced interface flux modeling between the plated anode-lithium and the

electrolyte from Sec. 2.3. The model extensions are compiled into the BEST

library.

The third and most extensive interface is library-based and gives pyMOR

runtime access to the solution process, vectors, discretization matrices, Jaco-535

bians, linear algebra solver and parameters of BEST through the BEST library

to carry out POD/EI based MOR. The separation is strict: All MOR-related

operations and the Newton methods are carried out in pyMOR and all evalua-

tions of nonlinear operators and Jacobians are carried out by the BEST library
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structures (Sec. 2.1)
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MOR specific pyMOR output

pyMOR
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BEST library (Sec. 2.4)
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code interface

Numerical solution

Figure 5: Implementation of the MULTIBAT workflow.

ordered by pyMOR.540

3. Workflow demonstration on lithium stripping case study

3.1. Microstructure generation and electrochemical verification

The stochastic microstructure model used in this work was parameterized

on real tomographic image data [37]. As mentioned in Sec. 2.1, the validity

of the structural parameterization was investigated through spatially resolved545

electrochemical simulations [50]. The validated stochastic microstructure model

is used in this work. In the following a short summary of the electrochemical

validation is given. 20 simulated realizations of the stochastic microstructure

model and 20 microstructure cutouts from the tomographic image data are

used as electrode structure samples for electrochemical simulations. These mi-550

crostructures are delithiated with a constant current. The simulation results

were compared using various electrochemical quantities, such as local current

density and lithium concentration. A very good agreement between the real and
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virtual microstructures was found, see Fig. 6(a). The advantage of spatially re-

solved electrochemical simulations is the access to localized inhomogeneities.555

The spatial distribution of the electrolyte concentration for two cutouts of real

and virtual microstructures is shown as an example in Fig. 6(a).
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Figure 6: (a) Spatial distribution of electrolyte concentration of a real (left) and virtual (right)

microstructure. The same color scale is used (shown below the cutouts). Both structures

exhibit larger particles visible as void spaces. Also both cutouts show electrolyte pores, which

are less connected to the main pore space: (virtual) Orange part close to the blue and (real)

dark red at the upper corner. (b) Mean lithium concentration in the electrolyte as a function

of the distance to the separator averaged over the different microstructures. The color shaded

areas indicate the 5% and 95%-quantiles. A good accordance can be observed. Reprinted

from [50] with permission from Elsevier.

Both cutouts exhibit similar features: less-than-average connected pores and

large particles. Apart from the visual similarity between the real and virtual

cutouts, averaged quantities were used for a more quantitative comparison. The560

average lithium concentration in the electrolyte in through direction (from one

current collector towards the other) is shown in Fig. 6(b).

The general shapes of the concentration functions are nearly identical. The

superposition of transport within the electrolyte and deintercalation of lithium

from the solid phase results in a nonlinear gradient. Without any sources of565

lithium a linear concentration gradient forms in the separator. More details

regarding the electrochemical validation can be found in the corresponding pub-

26



lication [50].

3.2. Model order reduction

As a first numerical test for the entire developed modeling and simulation570

workflow (see Sec. 2), we simulated the full model (including plated lithium) on

a randomly generated half-cell geometry of size 44µm×44µm×65.6µm, which is

meshed with a grid of 100×100×149 voxels (see Fig. 4(a)). This size is required

to cover a representative volume containing several particles in each direction,

and, at the same time, to achieve a sufficient resolution to resolve a relevant part575

of the electrode’s morphology. Starting with plated lithium and a high lithium

concentration in the electrode we performed a delithiation simulation and hence

expect to see lithium stripping. We simulated 60 seconds with constant current

densities in the interval P = [2.5, 250]A/m2, which corresponds to currents from

4.84 nA to 484 nA or to C-rates from C/10 to 10C.580

A single simulation of the full order model (2.15) requires around 16 hours

(cf. Tab. 2). To generate the snapshot data for the computation of the reduced

order model (2.21), the full order model (2.15) was solved for the three delithia-

tion current densities minP, maxP and (minP+maxP)/2. The reduced spaces

Ṽc, Ṽϕ, V̂c, V̂ϕ, as well as the interpolation spaces for IM(bv) [A(bv)], IM(1/c) [A(1/c)]585

were computed using the POD and EI-Greedy algorithms. To ensure that a

numerically stable reduced order model is obtained, a small relative error toler-

ance of 10−7 was chosen, using in each case 97% of the resulting basis vectors for

the construction of the reduced order model and all basis vectors for construction

of the validation model used for the error estimator (2.23). The resulting spaces590

are of the following dimensions: dim Ṽc = 178, dim V̂c = 183, dim Ṽϕ = 67,

dim V̂ϕ = 69, M (bv) = 924, M̂ (bv) = 952, M (1/c) = 997 and M̂ (1/c) = 1027.

To validate the resulting reduced order model (2.21), we compared the so-

lutions of (2.21) to the full order model (2.15) for 10 random parameter values

µi ∈ P , i = 1, . . . , 10 in addition to the three snapshot parameters used for train-595

ing. While achieving a relative model reduction error of at most 4.81·10−4 resp.

4.50 · 10−3 for the concentration and potential variables (Fig. 7), the reduced
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order model can be simulated in less than 8 minutes, yielding a speedup factor

of 120. Since the generation of the reduced model from the high-dimensional

snapshot data is faster than a single solution of the full order model, an overall600

saving of computation time is already achieved for one additional model sim-

ulation (Tab. 2). For Θ = 0 the error estimator (2.23) overestimates the real

model reduction error in these 13 parameters by a factor of at most 1.08 (3.46)

for the concentration (potential) and underestimates the error by a factor of

at most 2.89 (1.45). The estimator was evaluated for 100 additional current605

densities in P, yielding a maximum estimated relative error of 3.61 · 10−4 resp.

5.55 · 10−3 for concentration and potential.

In Fig. 8(a) and 8(b), the cell potential and average lithium concentration in

the electrode have been plotted over the transferred charge for the 10 random

test parameters. A short interpretation of these results is given in the subse-610

quent section. Overall, no visual distinction between the data generated by the

reduced and full order models can be made.

3.3. The lithium stripping process

In Fig. 8(a) the cell voltage is shown for 10 of the applied currents. The

cell voltages for all applied currents exhibit a similar shape. A voltage plateau615

at the start of delithiation is followed by a rise, which is in turn succeeded

by a region following the shape of the open-circuit potential UGraphite
0 . The

initial voltage plateau results from the stripping reaction (see Eq. (2.9)). The

increase in cell voltage begins as soon as the majority of the plated lithium is

consumed. The apparent plateau afterwards is the cell voltage of the supporting620

graphite at about 75% state of charge. This equilibrium potential is shifted

with an overpotential, which depends on the applied current. A transferred

charge of 2 nA h corresponds to a variation in the state of charge of 4% since

the used microstructure has a maximum capacity of 49 nAh. Large applied

stripping currents lead to a fast decrease of lithium concentration at the surface625

of graphite. The solid diffusion can not equilibrate the lithium concentration in

the electrode in the same rate for large currents as for small currents. Therefore,
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Table 2: Extrapolated timings for the model reduction experiment. Time for single full model

simulation: 15h 38m 35s (median), time for single reduced simulation: 7m 48s (median), time

for generation of reduced model from snapshot data: 13h 43m 12s. ‘without MOR’ is the

required time if all simulations are performed with the full order model (2.15), ‘with MOR’ is

the required time if the reduced order model (2.21) is used for all simulations after the first 3

snapshot computations (including reduced order model construction). All computations have

been performed on a single core of an Intel Xeon E5-2698 v3 CPU.

simulations without MOR with MOR speedup

1 15h 38m – –

2 1d 7h 17m – –

3 1d 22h 55m – –

4 2d 14h 34m 2d 12h 46m 1.0

5 3d 6h 12m 2d 12h 54m 1.3

10 6d 12h 25m 2d 13h 33m 2.5

50 32d 14h 9m 2d 18h 45m 11.7

100 65d 4h 18m 3d 1h 15m 21.4

limit (= full model vs. reduced order model) 120.3
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Figure 7: State space model reduction errors (markers) and estimated model reduction

errors (solid lines) for different applied discharge current densities for the model reduc-

tion experiment. Plotted is the relative L∞-in-time L2-in-space error in the concentra-

tion (c) and potential (ϕ) variables over a test set of 10 randomly chosen current densities

µi ∈ P = [2.5, 250] A/m2 , i = 1, . . . , 10 in addition to the three current densities used for

training of the reduced model. The model reduction error was estimated for additional 100

equidistantly sampled current densities in P, Θ = 0.

the state of charge at the surface will vary more than the overall change in

state of charge. The open-circuit potential will then increase faster for larger

currents. Thus resulting in a more sloped cell voltage for the larger currents.630

The length of the stripping plateau in the cell voltage depends on the applied

current. For smaller currents, the change from constant potential to graphite

dominated region is at lower transferred charge. The intercalation of lithium

during the stripping of the plated lithium leads to an increase of the lithium

concentration in the solid phase, as can be seen in Fig. 8(b). For low applied635

currents a net intercalation during the lithium stripping is visible. As soon as

the majority of the plated lithium is dissolved a net delithiation exists. More

information about the distribution of the delithiation current on the stripping

and intercalation reaction are provided in a recent publication [29].

The cell voltages and average lithium concentrations obtained from the640

model reduction experiments are identical to the ones obtained from the full
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Figure 8: (a) Cell voltage over transferred charge for the model reduction experiment for 10

randomly selected current densities µi (cf. Fig. 7). Solid lines: full model simulation, markers:

reduced model simulation (every fifth time step marked). (b) Mean lithium concentration

inside the solid phase plotted over transferred charge for the model reduction experiment for

10 randomly selected currents densities µi (cf. Fig. 7). Solid lines: full model simulation,

markers: reduced model simulation (every fifth time step marked).
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order model. This indicates that the reduced model sufficiently represents the

electrochemical relevant regions in the simulation domain.

4. Conclusion & outlook

We conclude that it is absolutely possible to do a lot of in-depth research on645

lithium-ion cells virtually. In this work we have shown one approach to solve

many of the existing problems using simulation techniques for the investigation

in lithium-ion battery cells.

First, the limitation of 1D or pseudo 2D models which consider only aver-

aged structural quantities and thus neglect all local effects can be overcome by650

switching to spatially resolved 3D models. Hence we presented a physics-based

model that describes the cell’s behavior on a microscopic scale and includes

effects of lithium plating and stripping. Based on the software tool BEST the

mathematical model was implemented and solved in a three-dimensional geom-

etry.655

Another current limitation is that the acquisition of tomographic 3D im-

ages as basis for simulations is costly and restricts the ability to simulate new

structures that have not been produced experimentally. This limitation is over-

come by the usage of a 3D stochastic microstructure model which has been

implemented in the software library GEOSTOCH. Once the model is fitted to660

a material by the usage of tomographic 3D images it is possible to generate

arbitrary many virtual cutouts with arbitrary sizes. By reasonable changes on

the model parameters it is even possible to generate structures that have not

been processed experimentally in order to investigate their properties and to

test their performance.665

Finally, a great problem of simulation-based parameter studies in particular

including the plating/stripping behavior is the extensive simulation runtime.

This problem is solved using model order reduction methods implemented in

the software library pyMOR, which speed up the simulation of similar cycles

significantly. Tab. 2 shows a speedup of factor 120 for the simulation of the670

32



reduced model in comparison to a full order model simulation.

Overall we have shown that the combinations of all the methods described

above work well in a demo scenario and can improve the accuracy of the geom-

etry models, increase the computational speed considerably, and extended the

predictive power of the electrochemical battery models.675
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