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Abstract A methodology is proposed that is suitable for efficient simulation of continuous-time
Markov chains that are nearly-completely decomposable. For such Markov chains the effort to ade-
quately explore the state space via Crude Monte Carlo (CMC) simulation can be extremely large.
The purpose of this paper is to provide a fast alternative to the standard CMC algorithm, which
we call Aggregate Monte Carlo (AMC). The idea of the AMC algorithm is to reduce the jumping
back and forth of the Markov chain in small subregions of the state space. We accomplish this by
aggregating such problem regions into single states. We discuss two methods to identify collections
of states where the Markov chain may become ‘trapped’: the stochastic watershed segmentation
from image analysis, and a graph-theoretic decomposition method. As a motivating application, we
consider the problem of estimating the charge carrier mobility of disordered organic semiconductors,
which contain low-energy regions in which the charge carrier can quickly become stuck. It is shown
that the AMC estimator for the charge carrier mobility reduces computational costs by several orders
of magnitude compared to the CMC estimator.

Keywords Markov chain · nearly-completely decomposable · Monte Carlo · segmentation ·
watershed · graph-theoretic decomposition · electron transport · mobility · organic semiconductor

1 Introduction

Dynamic processes in complex physical systems often take place on multiple time scales, rendering a
direct full evolution of the system, e.g., by solving a set of explicit deterministic equations, impossible.
However, in infrequent-event systems of this type, i.e., systems with well-defined states and only
occasional transitions between them, the dynamics can be treated in terms of the state-to-state
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transitions, described by a matrix of transition rates. An example of such a process is charge transport
in disordered organic semiconductors. The dynamics of charges can be modeled by means of a
continuous-time Markov chain (CTMC) on a graph, where the graph represents the transporting
medium and the state of the process represents the positions of the charge carriers. The transition
(or hopping) rates of the CTMC between adjacent vertices of the graph can be determined using
charge transfer theories from the electronic and quantum mechanical properties of the semiconductor
(see, for example, Rühle et al (2011)). One of the main characteristics to be measured is the charge

carrier mobility µ = v/|E|, which (in the limit of a single mobile charge) depends on the drift velocity,
v, of the charge carrier as it passes through the random medium in an external electric field E. The
drift velocity v is the average velocity of the charge carrier in the direction of the electric field. This
quantity can be estimated via Monte Carlo simulation of the CTMC — called kinetic Monte Carlo or
dynamic Monte Carlo in the physics literature (see, e.g., Pasveer et al (2005); Jansen (2012)) Since
the charge carrier mobility influences the performance of a material in technological applications,
e.g., the efficiency of organic solar cells, simulation models for charge transport are a key ingredient
of intensive efforts in in-silico design of high-efficiency organic semiconductors, see Baumeier et al
(2012).

The simulation approach introduced by Schönherr et al (1981) and Bässler (1993), which we call
crude Monte Carlo (CMC), has become a well-established method (see, e.g., Tessler et al (2009);
van der Holst et al (2011)). A major problem, however, is that for a large variety of materials the
energy landscape associated with the random medium contains regions in which the charge carrier
quickly becomes stuck. A consequence of this is that the estimation of drift velocity via CMC is
not only very time-consuming (often to the extent of being practically infeasible) but also leads to
unreliable estimators that can have a bias of several orders of magnitude. In addition, processes in
organic electronics take place on multiple time and spatial scales. Therefore, it is essential to have
computationally fast methods that analyze large system sizes over a long physical time without losing
too much information about finer scale behavior.

The purpose of this paper is to provide a fast alternative to the standard CMC algorithm. In
Brereton et al (2012), we introduced a new approach to the estimation of charge carrier mobility
in a simple 1-dimensional setting. In the present paper, we focus on a 3-dimensional system based
on microscopic simulations as presented in Rühle et al (2011). We introduce a novel approach to
the problem of deep energy traps, that improves the efficiency of the estimator by coarsening the
state space. We use two different algorithms — a stochastic watershed algorithm and a graph-based
segmentation algorithm, respectively — to identify problem regions. We then construct a coarsened
state-space model, under which the problem regions can be traversed in a single step of the simulation.
In the literature, this type of problem has been discussed in the context of, e.g., nearly-completely
decomposable Markov processes (Simon and Ando (1961); Courtois (1977); Conway and Georganas
(1982)) and multiple time-scale Markov processes (Tse et al (1995); Evans (1996)). It is shown that
the AMC algorithm, presented in this paper, reduces computational costs for estimating charge
carrier mobility by several orders of magnitude. A similar strategy of coarsening the state space is
used in Somoza and Ortuño (2005) to study the relaxation of Coulomb glasses at low temperature.
However, the latter approach only considers pairs of problem states, and does not segment the state
space prior to the simulation.

The paper is organized as follows. In Section 2 we briefly explain how electron transport in
disordered organic semiconductors can be modelled by a CTMC on a geometric graph of charge
hopping sites. Then, in Section 3 the CMC estimator of the average charge carrier mobility is
described. In Section 4, the idea of the aggregate Monte Carlo (AMC) algorithm is introduced,
which is based on coarsening the state space of the CTMC. Two different methods of aggregation
are discussed: the stochastic watershed segmentation from image analysis, and a graph-theoretic
decomposition method, see Section 5. Numerical results are presented in Section 6 which show the
enormous advantage of the AMC estimators in comparison to the standard CMC estimator of the
average charge carrier mobility. Conclusions are given in Section 7.
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2 Model

In this paper, we consider the problem of estimating the charge mobility of a weighted spatial graph
of 4096 tris(8-hydroxyquinolinato)aluminium (Alq3) molecules; see Figure 1. Alq3 is a green light
emitter employed in early realizations of organic light emitting diodes. By a weighted spatial graph,
we mean a graph G = (V,C,Q) where V = {V1, . . . , Vn} describes the set of vertices in a bounded
observation window W ⊂ R

3 with positive volume |W |, C = {(Vi1 , Vj1), . . . , (Vim , Vjm)} the edges,
and Q = {qi1j1 , . . . , qimjm} the edge weights. For more information on graphs, we refer to Diestel
(2005). We assume that the graph is completely connected and that cyclic boundary conditions are
applied. More precisely, let W = [0, bx]× [0, by]× [0, bz] for some bx, by, bz > 0, then the coordinate-
wise distance vector dij between two vertices Vi = (xi, yi, zi) and Vj = (xj , yj , zj) is given by

d⊺

ij = (dx, dy, dz) , (1)

where

dx =





xj − xi if |xj − xi| <
bx
2

bx + (xj − xi) if |xj − xi| >
bx
2 and xi > xj

−bx + (xj − xi) if |xj − xi| >
bx
2 and xi < xj

and dy, dz follow analogously.

Fig. 1 Left: Alq3 molecule. Center: morphology of 4096 Alq3 molecules. Right: corresponding graph (cut-out).

The graph on the right in Figure 1 is obtained by a microscopic approach, see Rühle et al (2011),
where a large-scale morphology of Alq3 molecules is simulated by atomistic molecular dynamics
including cyclic boundary conditions (Figure 1 (center)). The barycenters of the molecules form the
vertices of the graph and two vertices are connected via an edge if the distance between two molecules
is lower than a threshold, here 0.8 nm. In addition, charge transfer rates are determined using first
principles calculations. These charge transfer rates determine the dynamics of the charge carriers.
More precisely, charge dynamics (i.e., the random movement of the charge carrier along the edges of
the graph) can be described by a CTMC: if a charge carrier is at vertex Vi, it hops to neighboring
(i.e., connected) vertex Vj with rate

qij =
2π

~

J2
ij√

4πλijkBT
exp

[
−
(∆Eij − λij)

2

4λijkBT

]
, i 6= j , (2)

where ~ is the reduced Planck constant, λij the (constant) reorganization energy, kB the Boltzmann
constant, T the temperature, Jij the transfer integral and ∆Eij the difference in energy between the
two vertices. Throughout the manuscript, the values for the energies are given in eV. Furthermore,
we define

qi =
∑

j 6=i

qij .
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Thus, the random sojourn time τi in state i is τi ∼ Exp(qi). Given the spatial positions of the vertices
Vi, Vj and the electric field E, the energy difference is given by ∆Eij = qE⊺dij + (ηi − ηj), where
q is the charge of an electron and dij is the coordinate-wise distance vector between the vertices
Vi and Vj . Note that the electric field E can be presented by its magnitude |E| and its direction
vector e⊺ = (e1, e2, e3), i.e., E = |E|e. The main driving force for the dynamics of charge carriers
hopping through the network of molecules, are their site energies ηi, i.e., the energy that is associated
with the corresponding vertex Vi. In amorphous Alq3, these energies follow a Gaussian distribution,
and they are spatially, positively correlated. In organic electronic systems, one characteristic that
influences efficiency is the speed at which charges traverse the network of molecules for a given
electric field. More precisely, the characteristic commonly considered is the charge carrier mobility

defined as µ = v/|E|, where v is the drift velocity of the charge carrier. Thus, an accurate estimate
of v is highly important.

2.1 General context

We consider a CTMC {Mt, t ≥ 0}, whose state space is the set of vertices of the spatial graph, which
will be represented by the set of integers A = {1, . . . , n}, where the transition rates are given by the
edge weights and the edges indicate transitions with non-zero transition rate. Since the state space
is finite and irreducible by the complete connectivity of the graph, {Mt, t ≥ 0} is ergodic.

We are interested in the limit behavior of such a system. More precisely, let π = (π1, . . . , πn)
be the limiting distribution, i.e., πi = limt→∞ P (Mt = i). Let M∞ be a random variable with
distribution π and f : A → R

d an arbitrary function, then we are interested in the expectation
Ef(M∞). Due to ergodicity, we know that Ef(M∞) = limT→∞

1
T

∫ t

0
f(Mt)dt with probability 1.

Thus, Ef(M∞) can be estimated by simulating the CTMC {Mt, t ≥ 0} for a limited, but large time

horizon T and then take 1
T

∫ T

0
f(Mt)dt =

1
T

∑NT

i=1 f(M̃i)τM̃i
as an estimate, where

{
M̃1, M̃2, . . .

}
is

the embedded Markov chain whose transition matrix will be denoted by J = (pij), NT is the random
number of transitions up to time T and τi the random sojourn time in state i.

2.2 Example

Given that the CTMC {Mt, t ≥ 0} has the properties of a nearly-completely decomposable Markov
chain, the time T or the number of steps that have to be simulated is extremely large, as the
state space is otherwise not adequately explored. As an example, consider a CTMC, where n = 6

and the embedded Markov chain
{
M̃1, M̃2, . . .

}
has the following transition matrix J of transition

probabilities:

J =




0 0.5 0 0 0 0.5
10−7 0 1− 10−7 0 0 0
0 1− 10−7 0 10−7 0 0
0 0 0.5 0 0.5 0
0 0 0 10−7 0 1− 10−7

10−7 0 0 0 1− 10−7 0




.

The above described system has two pairs of states that build loops with high probability: states
2, 3 and 5, 6. If the simulation of the CTMC {Mt, t ≥ 0} is terminated too early, the result of the

estimate 1
T

∑NT

i=1 f(M̃i)τM̃i
will be highly dependendent on where the simulation started.

The idea is therefore to coarsen the state space, in this case, to merge states 2, 3 and 5, 6 into
two super-states, {2, 3} and {5, 6}. The CTMC is then simulated on the state space of super-states.
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2.3 Drift velocity

In the present paper, we apply this idea of coarse graining to the CTMC describing charge transport
in disordered organic semiconductors, as explained at the beginning of Section 2. In particular, we
show how the idea of coarse graining can be used for the improvement of Monte Carlo estimators of
the drift velocity v of the CTMC {Mt, t ≥ 0}, defined by

v =
∑

i∈A

πi


∑

j∈A

qije
⊺dij


 = Ef(M∞), (3)

with f(i) =
∑

j∈A qije
⊺dij , where qij a is the transition rate from state i to state j given in (2).

3 Crude Monte Carlo

3.1 Description of the CMC algorithm

The CMC estimator of the average drift velocity v is v̂ = dT /T , where dT is the distance traveled by
the charge carrier by time T . This quantity is computed in a straightforward manner by simulating
the path of the charge carrier through the random medium, tracking the distance travelled in the
direction of the electric field E.

Algorithm 3.1 (Crude Monte Carlo estimation of drift velocity)

For a fixed T > 0,

1. Set d = 0, ℓ = 0 and t = 0, where d is the distance of the charge carrier travelled in the direction
of the electric field E, ℓ denotes the number of transitions and t denotes the total physical time
of the movement of the charge carrier.

2. Draw M̃0 uniformly from {1, . . . , n}.

3. Given M̃ℓ = i, choose the next state M̃ℓ+1 according the probabilities given by the i-th row
vector of J .

4. Draw τℓ ∼ Exp(qi).
5. Set t = t+ τℓ.
6. Set ℓ = ℓ+ 1.

7. If t > T , break. Otherwise, set d = d +
(
e⊺d

M̃ℓ,M̃ℓ+1

)
, where dij is defined in (1), and repeat

from Step 3.
8. Return v̂ = d/t.

In this paper we are concerned with minimizing the computational effort required to arrive
at an accurate estimate of the drift velocity v defined in (3). From this perspective, we consider
computational time, rather than physical time, as measured by the variable t.

We identify the computational time required by the algorithm with the number of iterationsN the
algorithm requires in order to return an accurate estimate (this is measured by ℓ in Algorithm 3.1).
Thus, in analyzing the algorithms in this paper, as opposed to using them in practice, we will
terminate the algorithm when ℓ > N , rather than when t > T .

3.2 Performance of CMC

Figure 2 shows the average value of the estimator (over many independent copies) as a function of
the computational effort. From this, it is immediately apparent that the CMC algorithm performs
poorly. Roughly 107 steps of the algorithm are required to return an accurate estimate of charge
mobility, µ, (the normalized drift velocity).
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Fig. 2 Averaged CMC estimates µ̂ of µ vs. the number of steps, N , of the algorithm

The reason that the algorithm performs so badly is that the charge is randomly injected on a
site and its initial energy is (on average) higher than the average transport energy (average energy
of a charge being in equilibrium according to the diffusion process). Hence at the initial stage a
non-equilibrium hopping of a charge takes place during which the mobility of such a ‘hot’ carrier
(i.e., with too high energy) is initially higher than the equilibrium mobility. Since the energy surface
contains many regions of relatively low energy, the charge carrier becomes trapped in these regions
and makes a very large number of small jumps in a small amount of time. This, on the one hand,
slows down getting into equilibrium (overestimating the mobility) but can also lead to pathological
situations when the charge hops between, e.g. two very deep energetic traps, which gives smaller
than expected average mobilities.

Fig. 3 Cut-out of the graph with six states. The state numbers are indicated by bold integers. The corresponding
energies are given below the state numbers (e.g., state 1 has energy −1.39). Hopping probabilities pij are shown
by arrows. The electric field E is set to zero. For clarity only the main transitions to and from states 1 and 2
are displayed. Note that since not all possible transitions from and to states 1 and 2 are displayed, the transition
probabilities do not sum up to 1.

More precisely, we consider a pair of sites which have a very low energy; see Figure 3. Here state
1 has the third lowest energy of the 4096 sites and state 2 the seventh lowest energy. These two states
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are in a valley according to the energy landscape, i.e., the surrounding sites have a significantly larger
energy, which results in extremely low probabilities of escaping the pair {1, 2}. If the charge carrier
is e.g., in state 4, it will hop with probability 0.98 into state 2, where it is ‘trapped’ in {1, 2} for
a long time. If the CMC algorithm terminates before the charge carrier has left this trap, this will
clearly bias the estimate of the drift velocity v and, therefore, the charge carrier mobility µ = v/|E|.
Let us analyze more clearly why the energy landscape is the main driving force for the dynamics of
the charges. Consider the exponential term in (2) of the hopping rate qij , i.e.,

exp

[
−
(∆Eij − λij)

2

4λijkBT

]
= exp

[
−43 (∆Eij − 0.23)2

]
, (4)

given λij = 0.23 and kBT = 0.025. Consider the transition from state 4 to state 2. The energy
difference (assuming no electric field) is ∆E42 = +0.33 which yields a value of the exponential term
considered in (4) of 0.66. The transition from state 2 to state 4 gives an exponential term of 1.9×10−6.
Thus, the hopping rates are highly dependent on the energy landscape. Let us now assume that the
energy of site 4 is decreased from −0.98 to −1.39, which is the same energy as state 1. Then the
transition probability from site 2 to site 4 increases to 0.23, whereas the transition probability from
site 4 to site 2 decreases to 0.84.

4 Aggregate Monte Carlo

The idea of the aggregate Monte Carlo (AMC) algorithm is to coarsen the state space in such a way
that we avoid spending too much simulation effort jumping back and forth in the low-energy regions.
We accomplish this by aggregating problem regions into single states. We replace the state space of
our original process with a smaller state space, labeled 1̃, . . . , ñ, where each state in the new state
space consists of at least one — but often more — states of the original state space A = {1, . . . , n}.
These new ‘super-states’ are chosen such that each problem region in the original state space is
contained within a single state of the coarsened state space Ã = {1̃, . . . , ñ}.

Although the continuous-time process describing the position of the charge carrier on the new
state space is no longer a CTMC, it is still possible to describe the jumps of the charge carrier
by a discrete-time Markov chain (DTMC). This is done by tracking the point at which the charge
carrier enters each super-state. The associated process corresponds to a DTMC with a state space
consisting of all of the states on the boundaries of the super-states (i.e., states with non-zero transition
probabilities out of super-states).

Because the new continuous-time process is not Markovian, the times taken to cross super-states
are no longer exponentially distributed random variables but rather have phase-type distributions.
Generating phase-type random variables is computationally very expensive, so we replace the times
of the sojourns in the super-states with their expected values. Thus, rather than simulating a CTMC
on the original state space, we simulate a DTMC on a coarsened state space, with the time taken
by the chain growing by a deterministic value at each step. This process can also be viewed as a
semi-Markov process, with deterministic, state-dependent sojourn times.

In brief, the aggregation process consists of the following steps:

1. Find a segmentation of the state space A = {1, . . . , n} into states 1̃, . . . , ñ such that problem
regions are contained in super-states.

2. Consider a DTMC on the state space which consists of states on the boundaries of super-states.
Calculate the transition probabilities for this process.

3. Calculate the expected sojourn times in each super-state, conditional on the points of entrance
into, and exit from, the super-state.

4. Simulate the DTMC. Track the time taken by adding the appropriate expected sojourn time at
each step. Track the distance by adding the distance travelled in the direction E by the charge
carrier between the two states.
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Fig. 4 The states within the dotted circle constitute a super-state. The lines indicate non-zero one-step transition
probabilities between states. The red states are outer states, the blue states are inner states and the green states
are adjacent states.

4.1 Calculating transition probabilities and expected sojourn times

Given a segmentation of the state space, we need to determine the transition probabilities of the
charge carrier on the coarsened state space and the expected times taken to carry out these jumps.

For each super-state, i ∈ {1̃, . . . , ñ}, there are Ai > 0 states outside the super-state with non-
zero one-step transition probabilities into the super-state. We will call these the ‘adjoining’ states,

labelled a
(i)
1 , . . . , a

(i)
Ai

. Within the super-state there areOi > 0 states with non-zero one-step transition
probabilities into one or more of the adjoining states. We will call these the ‘outer’ states, labelled

o
(i)
1 , . . . , o

(i)
Oi

, see Figure 4. When the charge carrier enters a super-state, it can only do so into one
of the outer states. When it leaves the super-state it can only do so into one of the adjoining states.
These adjoining states are outer states of other super-states. Thus, from a practical point of view,
we consider a jump chain on a state space which consists only of outer states of the super-states.

This state space is o
(1̃)
1 , · · · , o

(1̃)
O1̃

. . . , o
(i)
1 , · · · , o

(i)
Oi

, . . . , o
(ñ)
1 , · · · , o

(ñ)
Oñ

. For convenience, we will relabel

these states as 1̄, . . . , n̄. We denote the transition matrix of the jump chain by J̄ .

Fig. 5 Left: The initial jump chain, with the segmentation indicated by the dotted circles. Right: The new jump
chain, after the state space has been coarsened. In the new chain, J̄kj > 0 does not imply J̄jk > 0. The arrows
indicate the directions of non-zero transition probabilities.

We track the charge carrier’s progress over these outer states. When a charge carrier jumps
from an outer state, it passes through the super-state and emerges at one of the adjoining states,
see Figure 5. Thus, we need to calculate the probability that a particle in state j passes through
its super-state and exits to a given adjoining state, k. To calculate this probability, we consider a
CTMC with state space that consists of all of the states within the super-state i (of which state j is

an outer state), with the adjoining states, a
(i)
1 , . . . , a

(i)
Ai

acting as absorbing barriers. The generator
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Qi and transition matrix Ji of this CTMC can be written in the following forms

Qi =

(
0 0
S0i

Si

)
and Ji =

(
I 0
Ri Ti

)
,

respectively. The matrix Pi =
(
p
(i)
jk

)
of absorption probabilities from transient state j into absorbing

state k is given by Pi = (I − Ti)
−1 Ri. To find the expected times until absorption, we note that the

matrix of the densities of the absorption times, (fjk(t)), from transient state j into absorbing state

k is given by etSiS0i
, where etSi is a matrix exponential. If we set fτ

jk(t) = fjk(t)/p
(i)
jk , we obtain

the densities of the conditional absorption times. The matrix of expected absorption times, (Etjk), is

given by
(
S2
i

)−1
S0i

. Thus, the expected conditional absorption times are given by τjk = Etjk/p
(i)
jk .

4.2 Description of the AMC algorithm

The AMC estimator v̂ of the average drift velocity v defined in (3) is computed in the following way.

Algorithm 4.1 (Aggregate Monte Carlo estimation of drift velocity)

For a fixed T > 0,

1. Set d = 0, ℓ = 0 and t = 0.
2. Draw M̃0 uniformly from {1̄, . . . , n̄}.

3. Given M̃ℓ = i, choose the next state M̃ℓ+1 according the probabilities given by the i-th row
vector of J̄ .

4. Set t = t+ τ
M̃ℓ,M̃ℓ+1

.

5. Set ℓ = ℓ+ 1.
6. If t > T , break. Otherwise, set d = d + (e⊺d

M̃ℓ,M̃ℓ+1
), where dij is defined in (1), and repeat

from step 3.
7. Return v̂ = d/t.

5 Aggregation algorithms

The idea of aggregation is to reduce the computational time spent jumping back and forth in low-
energy regions. This is accomplished by aggregating collections of problem states into single states.
There are a number of different ways to identify collections of states in which the charge carrier
may become ‘trapped’. One way to identify these problem states is by identifying the corresponding
low-energy regions of the energy surface. The stochastic watershed algorithm is one method of
identifying such low-energy regions. An alternative approach is to look at the (embedded) jump
process associated with the CTMC and try to identify collections of states which have high transition
probabilities between one another compared to those they have with the remainder of the state space.
The second approach, based on methods developed in the theory of almost decomposable Markov
chains, is such a strategy.

In addition to requiring that the aggregation scheme chooses super-states such that every problem
region is contained in a super-state, we also require that the segmentation is not too coarse. By this,
we mean that the coarsened state space still contains a large number of states and that the number
of states in each super-state is not too large. There are several reasons why a fine segmentation is
desirable.

1. We often wish to calculate certain path dependent properties at the same time that we calculate
charge carrier mobility. A fine segmentation retains a lot of information about the paths taken
by the charge carrier.
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2. There are less numerical issues in finding the absorption probabilities and expected sojourn times
for small super-states.

3. The simulation is less computationally expensive if each super-state has only a small number of
adjoining states.

Note that the fineness of the segmentation is largely determined by the parameters in the aggregation
algorithms.

5.1 The stochastic watershed approach

The main driving force for the dynamics of the charge carrier is the difference in site energies, see (2).
In particular, the charge carrier tends to become trapped in regions with low energy. This is also due
to the spatial correlation of the site energies, which can be seen in Figure 6 (right), see also Rühle
et al (2011). The charge carrier gets trapped in local energy minima since charge hopping rates to
sites with higher energy are very small. Thus, the key idea for this segmentation is to identify these
low-energy regions and collapse all sites in these regions into a super-state, see Section 4. In order
to identify low energy regions, the sites are transformed on a 3D lattice and their energy values are
scaled to gray values ranging from 0 to 255, where 0 (black) indicates the lowest energy observed in
the system and 255 (white) the highest energy. The gray values for the remaining voxels (the hopping
sites of the system only cover a fraction of the voxel grid) are gained using a Gaussian kernel with
cyclic boundary conditions, see Figure 6. The details are explained in Section 5.1.1 below. Having
constructed a 3D energy landscape on a voxel grid, the problem of identifying low-energy regions
corresponds to the problem of image segmentation in image analysis.

Fig. 6 Left: 2D slice of hopping sites transformed on 3D voxel grid, where gray values indicate energy (0 indicates
the lowest energy of the system and 255 the highest possible energy). Center: Corresponding 2D slice of 3D image
gained by Gaussian interpolation. Right: 3D visualization of energy landscape.

One of the most applied algorithms for image segmentation is the watershed algorithm. Its key
idea was introduced by Beucher and Lantuéjoul (1979). The version of this algorithm commonly used
nowadays was developed by Beucher and Meyer (1993). Its basic idea is to consider the image as a
topographic relief. This topographic relief is then flooded with water starting at the local minima.
If water from different sources (local minima) merge at a certain point, a watershed marker is set.
The set of watershed markers segment the image into disjoint regions, so-called basins; see Figure 7
for a schematic example in 1D. The use of watershed segmentation to identify the super-states has
been successfully applied to a similar problem in 1D, see Brereton et al (2012).
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Fig. 7 Watershed transformation.

The idea of the watershed approach corresponds nicely to the goal of identifying low-energy
regions: Starting from local minima (i.e., low-energy voxels), the watershed segmentation separates
regions of low energy.

5.1.1 Transformation of site energies to gray scale image

We transform all hopping sites on a voxel grid having 1373 voxels, which is a reasonably high
resolution, see Figure 6 (left).

The energy of the hopping sites is suitably rescaled linearly to gray values ranging from 0 to
255. Transforming our prototype system of 4096 molecules on a 1373 voxel grid corresponds to a
volume fraction of 1.6%. The gray values of the remaining voxels (98.4%) are determined by Gaussian

interpolation: Let Ṽ =
{
Ṽ1, . . . , Ṽn

}
be the set of vertices of the graph scaled on the voxel grid with

energies η1, . . . , ηn (given in Euclidean values, i.e., not yet scaled to gray values). Then the energy
η(x,y,z) of a voxel (x, y, z) /∈ Ṽ is given by the weighted sum

η(x,y,z) = G−1
n∑

i=1

ηi ϕ(|(x, y, z)− Ṽi|; 0, σ
2) ,

where ϕ(·; 0, σ2) is a Gaussian density with mean 0 and variance σ2, and G is a normalizing constant,
i.e. G =

∑n
i=1 ϕ(|(x, y, z) − Ṽi|; 0, σ

2). The variance σ2 is estimated by likelihood cross validation,
see e.g. Silverman (1986). The energies of all voxels are then scaled linearly to gray scale values
ranging from 0 to 255, see Figure 6 (center and right). Note that for all operations cyclic boundary
conditions are applied.

5.1.2 Stochastic watershed segmentation

A limitation of the standard watershed transformation is that it often yields oversegmentation, i.e.,
the segmentation into basins (here: super-states of the jump process to be constructed) is too fine.
We therefore use the stochastic watershed transformation proposed by Angulo and Jeulin (2007),
see also Faessel and Jeulin (2010). The idea is to use the points of a homogeneous Poisson process
with some intensity λ, discretized on the voxel grid, as starting points of flooding instead of the
local minima. The outcome is a random set of watershed markers separating the (random) basins.
The procedure is repeated m times (here: m = 250) and the relative frequencies of markers on the
discrete lattice are computed, see Figure 8 (left).

In 1D or 2D, it would be sufficient to apply a binarization in order to obtain a segmentation given
the result of the stochastic watershed. In 3D, however, watershed lines obtained by binarization, may
not yield closed basins. Therefore, we use the following approach: First, a lowpass filter is applied
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to the result of the stochastic watershed, i.e., each watershed line whose intensity is lower than
a certain threshold ξ, is set to 0. On this modified result of the stochastic watershed, a standard
watershed segmentation is applied. Figure 8 (center, right) shows that the obtained segmentation
result is reasonable. In particular, the watershed segmentation described in this section does indeed
separate regions of low energy, see Figure 8 (right).

Fig. 8 Left: 2D slice of watershed intensities. Center: A 2D slice of final watershed segmentation superimposed on
the corresponding 2D slice of energy landscape. Right: 3D visualization of stochastic watershed segmentation with
corresponding energy landscape.

The choice of the intensity, λ, and the threshold, ξ, influence the result of the segmentation.
Generally, λ is chosen reasonably high (here λ = 10−3). Given a realization of the watershed inten-
sities, the value for ξ is chosen manually to adjust the number and size of the basins, where a higher
threshold ξ leads to a smaller number of basins that are larger.

The quality of the segmentation based on the stochastic watershed can be analyzed in the follow-
ing way. To evaluate the goodness-of-fit, we consider all edges (Vi, Vj) such that the transition prob-
abilities pij and pji from Vi to Vj and vice versa are larger than a threshold ν, i.e., min{pij , pji} > ν.
As we want to use the basins (i.e., super-states) in order to reduce computational time by avoiding
loops, ideally all of these edges should be in the same basin, i.e. the starting- and endpoint Vi, Vj

should be contained in the same super-state. We therefore compute the relative frequencies of these
edges contained in the same basin, see Table 1.

Table 1 Percentage of edges contained in a common super-state
for different values of threshold ν

ν = 0.9 ν = 0.95 ν = 0.99

69.4 76.1 92.3

5.1.3 Optimization of segmentation

To improve the efficiency gains from the segmentation, we perform a postprocessing where we merge
basins (super-states) according to the following criterion: If two connected hopping sites Vi and Vj

have a high probability of building a loop, i.e., min{pij , pji} > ν, and the sites are in different,
neighboring basins, we merge these two basins to a new super-state. The numbers and sizes of
clusters for the stochastic watershed segmentation and its postprocessing (with ν = 0.9) are given

in Table 2, where t̄ = E

(
τ
M̃1,M̃2

+ . . .+ τ
M̃N ,M̃N+1

)
denotes the average physical time achieved in

N = 105 steps. As can be seen, in both cases, the average cluster sizes are reasonable small. This
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means not too much information is lost by the segmentation. Further numerical results are given in
Section 6 below.

Table 2 Analysis of super-states for stochastic watershed segmentation (WS) and postpro-
cessed segmentation (PS)

# of avg. size # of clusters avg. size max. size t̄
clusters with size > 1 if > 1

WS 1003 4.08 145 28.25 153 3.2× 10−3

PS 970 4.22 129 31.75 205 3.4× 10−3

5.2 A graph-theoretic decomposition

The DTMC {M̃1, M̃2, . . .} with transition matrix J introduced in Section 2.1 is said to be nearly-
completely decomposable if it can be written in the form J = J∗ + εC for sufficiently small ε > 0,
where J∗ is a block diagonal matrix. A good summary of the theory of nearly-completely decom-
posable Markov chains is given in Conway and Georganas (1982). The blocks in J∗ correspond to
subsets of states which have much higher levels of coupling to each other than they do to other
states. Because the probabilities of moving within the subsets defined by the diagonal blocks in
the J∗ matrix are much higher than the probabilities of moving between subsets, these subsets are
natural candidates for super-states in the coarsened state space model. Thus, another method of
identifying super-states is to permute the J matrix so that it is in the form J = J∗ + εC.

5.2.1 Description of the decomposition algorithm

We use an algorithm given in Choi and Szyld (1996) in order to implement this method. It exploits
the fact that the transition matrices of DTMCs can be represented as graphs. The set of vertices,
V , represents the states, and the set of weighted edges, E, represents the transition probabilities.
The algorithm works by taking a vertex of minimum degree in the collection of unclassified states.
It uses this vertex as the basis of a super-state P . The algorithm considers every vertex adjacent to
P . If the graph formed by the adjacent vertex, p, and P satisfies certain criteria, then p is added to
P . This process continues until no more vertices can be added to P . At that stage, the vertices in P
are classified as a super-state, and the algorithm begins again, considering the remaining unclassified
vertices.

The criteria that the graph of {p} ∪ P — by which we mean the subgraph of the original graph
defined by the vertex set {p} ∪ P — must satisfy are:

1. Either a completeness criterion or a fullness criterion.

– The completeness criterion requires that
φ{p}∪P

φP
> α, where φG is the ratio of the number of

edges in the graph G to the number of edges G would have if it were complete.
– The fullness criterion requires that p is adjacent to at least a proportion β of vertices in P .

2. A threshold criterion. This requires that at least one transition probability from p into a state in
P is bigger than γ and that at least one transition probability from P to p is bigger than γ.

Thus, the algorithm given in Choi and Szyld (1996) can be summarized as follows.
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Algorithm 5.1 (Graph-theoretic decomposition of the jump chain)

1. Given a collection of vertices C.
2. Set P = Q = ∅.
3. Choose from C a vertex c of minimum degree, mark it and add it to P .
4. Move to Q all vertices adjacent to c.
5. Choose a vertex p in Q.
6. If the fullness or connectivity criterion is satisfied and the threshold criterion is satisfied, then

move p to P and add to Q all vertices in C adjacent to p. Otherwise, move p to C.
7. If Q 6= ∅, repeat from Step 5.
8. Set aside the vertices in P as a super-state.
9. If C 6= ∅, repeat from Step 2.

5.2.2 Choice of parameters

There are three parameters, α, β and γ, that control the segmentation. The parameters α and β both
ensure that a state is only included in a super-state if it is connected to a sufficient proportion of the
other states in the super-state. In practice, the charge carrier is often trapped in a region consisting
of a number of interconnected states. However, it is possible that the charge carrier may be trapped
in a high probability cycle (i.e. it may pass through the same sequence of states for a very large
number of iterations) in which each state does not have many non-zero transition probabilities to
other states in the cycle. For this reason, we do not set α or β too high. We set α and β equal to the
same value, as choosing different values for both parameters does not have a significant impact on the
segmentation. While α and β control the degree of connectivity required in super-states, γ ensures
that the connections are sufficiently strong. That is, a state is only considered to be sufficiently
well connected to other states in the super-state if it has at least one transition probability into the
super-state that is greater than γ. Likewise, the super-state needs to be well connected to the state
to be added, in the sense of having at least one transition probability greater than γ. This value is
not set too high, in order to ensure that states ringing problem regions are included in segments.

Table 3 shows the effect of the different parameters on the fineness of the segmentation. To assess
the efficiency of the simulation, we use the average physical time, t̄, achieved in N = 105 steps as a
proxy for efficiency. A higher physical time means that the charge carrier has explored more of the
state space.

As can be seen from Table 3, there is a trade-off between the fineness of the segmentation and the
efficiency of the resulting mobility estimator. In everything that follows we use the values α = β = 0.2
and γ = 0.02, as these give both a fine segmentation and a reasonably efficient estimator.

6 Numerical results

The aim of the AMC approach is to maximize the amount of the state space that is explored in
a given number of jumps by the charge carrier. This allows the stochastic process followed by the
charge carrier to converge more quickly to stationarity, and gives correspondingly more accurate
estimates of quantities such as drift velocity and charge carrier mobility, respectively. We measure
the efficiency of the estimators in two different ways: the average estimate of µ̂ (estimated by repeated
samples) and the average physical time t̄ achieved in a given number of simulation steps.
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Table 3 Analysis of super-states for the graph-theoretic segmentation

# of avg. size # of clusters avg. size max. size t̄
clusters with size > 1 if > 1

γ = 0.01

α = β
0.1 1121 3.66 469 7.35 65 4.8× 10−3

0.2 1217 3.37 532 6.41 31 3.6× 10−3

0.3 1334 3.07 611 5.52 21 3.3× 10−3

γ = 0.02

α = β
0.1 1564 2.62 622 5.07 55 4.8× 10−3

0.2 1630 2.51 658 4.75 30 4.4× 10−3

0.3 1725 2.38 707 4.36 20 4.2× 10−3

γ = 0.05

α = β
0.1 2283 1.79 821 3.21 24 5.8× 10−4

0.2 2284 1.79 822 3.20 24 5.8× 10−4

0.3 2294 1.79 828 3.18 17 5.9× 10−4

10
3

10
4

10
5

10
6

10
7

10
810

−8

10
−7

10
−6

10
−5

10
−4

10
−3

N

µ̂

 

 

CMC
Graph Theoretic AMC
Stochastic Watershed AMC

Fig. 9 Estimates of drift velocity for the CMC estimator and the AMC estimators based on the stochastic-watershed
and graph-theoretic segmentations.

To estimate these quantities we calculate a large number of replicates of each estimator. The
obtained average values of µ̂ are presented in Figure 9, see also Table 4, which show the enormous
advantage of the AMC estimators in comparison to the standard CMC estimator. For a small number
of steps, N , the WS-AMC estimator gives slightly larger values of µ̂ than the GT-AMC estimator.
However, beginning from N = 104, both AMC estimators produce similar average values of µ̂ and
reach the stability level of µ̂ = 2.6× 10−8 at N = 105. In contrast, for N < 107, the standard CMC
estimator gives much larger values of µ̂ than the AMC estimators, reaching the stability level of
µ̂ = 2.6× 10−8 only at N = 107.
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Fig. 10 Average physical times t̄ of the simulation for the CMC estimator and the AMC estimators based on the
stochastic-watershed and graph-theoretic segmentations.

A similar situation can be observed regarding the average physical time t̄. For all considered step
numbers (up to N = 107), the values of t̄ produced by the AMC estimators are much larger than
those of the standard CMC estimator, see Figure 10 and Table 5.

Table 4 Means of estimates of µ̂ (in nm/s) for the CMC estimator, stochastic-watershed
(WS) AMC estimator and graph-theoretic (GT) AMC estimator, starting in state 1.

N CMC WS-AMC GT-AMC

103 3.24× 10−4 7.11× 10−5 9.18× 10−7

104 1.57× 10−5 1.10× 10−7 7.32× 10−8

105 2.00× 10−6 2.83× 10−8 2.66× 10−8

106 4.78× 10−7 2.62× 10−8 2.65× 10−8

107 2.97× 10−8 2.59× 10−8 2.58× 10−8

108 2.75× 10−8 2.58× 10−8 2.59× 10−8

Table 5 Average physical times, t̄, for the CMC estimator, WS-AMC estimator and
GT-AMC estimator, starting in state 1.

N CMC WS-AMC GT-AMC

103 4.39× 10−10 6.87× 10−5 1.49× 10−4

104 6.58× 10−7 4.12× 10−4 5.11× 10−4

105 1.70× 10−5 3.40× 10−3 4.40× 10−3

106 1.50× 10−4 3.37× 10−2 4.00× 10−2

107 8.44× 10−4 3.33× 10−1 4.60× 10−1
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7 Conclusions

A methodology has been proposed that is suitable for efficient simulation of continuous-time Markov
chains on weighted geometric graphs that are connected but nearly-completely decomposable. In this
case, the number of steps that have to be simulated using the Crude Monte Carlo (CMC) algorithm
is extremely large as the Markov chain can become stuck in small subregions of the state space and,
therefore, the state space is not adequately explored. As an efficient alternative, Aggregate Monte
Carlo (AMC) algorithms have been proposed, the idea of which is to coarsen the state space in
such a way that spending too much simulation effort jumping back and forth in small subregions
of the state space is avoided by aggregating such problem regions into single states. Two different
methods to identify collections of states in which the Markov chain may become ‘trapped’ have
been considered: the stochastic watershed segmentation from image analysis, and a graph-theoretic
decomposition method. As an example application, the estimation the charge carrier mobility in
disordered organic semiconductors has been investigated. Such semiconductors contain low-energy
regions in which charge carriers can quickly become stuck. It turned out that the AMC estimators
converge more quickly to stationarity, and give correspondingly more accurate estimates of quantities
such as charge carrier mobility than the standard CMC estimator.

Acknowledgements

This work was supported by the DAAD (German Academic Exchange Service) / Go8 Australia-
Germany Joint Research Cooperation Scheme. Furthermore, this work was partially supported by
the DFG (German Research Foundation) under the priority programme ‘Elementary Processes of
Organic Photovoltaics’ (SPP 1355). Dirk Kroese acknowledges the support of the Australian Research
Council under grant number DP0985177. We are grateful to Kostas Daoulas for a critical reading of
the manuscript.

References

1. Angulo J, Jeulin D (2007) Stochastic watershed segmentation. In: Proceedings of the 8th Interna-
tional Symposium on Mathematical Morphology, pp 265–276
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