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Abstract. Microscopy techniques like X-ray computed tomography (CT)
or scanning electron microscopy (SEM) can provide detailed image data
of the nano- and microstructure of functional materials at various scales.
This allows for the investigation of structure-property relationships, i.e.,
how the nano-/microstructure influences material properties like electro-
chemical behavior. However, the structural characterization by means of
measured image data often entails nontrivial processing tasks. In this
paper, a workflow is shown for the holistic structural characterization of
active material (AM) particles in Li-ion battery electrodes by means of
stochastic modeling. For this purpose, image data is acquired at differ-
ent length scales and with various measurement techniques, namely, CT,
SEM, and focused ion beam (FIB) combined with electron backscatter
diffraction (EBSD). To enable quantitative structural characterization
through spatial stochastic modeling, machine learning methods for seg-
mentation purposes are initially deployed. Then, a stochastic-geometry
model for AM particles is calibrated to image data, overcoming the lim-
itations of the different measurements (e.g., resolution vs. field of view).
The model is fitted using CT data for the outer shell of AM particles and
FIB-EBSD data for the polycrystalline grain architecture within. Then,
the model is used to perform structural scenario analyzes, i.e., to gen-
erate numerous digital twins with statistically similar shape and grain
architecture as observed in measured image data. These digital twins are
input for numerical (dis)charging simulations to investigate their degra-
dation behavior, e.g., AM particle cracking due to repeated cycling.
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1 Introduction

To enable widespread electrification of passenger vehicles, lithium-ion batter-
ies must achieve high energy densities, rapid charging capabilities and extended
lifespans. The morphology of battery electrodes, especially the 3D nanostruc-
ture of individual electrode particles, significantly impacts performance, yet this
influence is not fully understood [1]. For example, the most common positive
electrode (cathode) material in these batteries, namely LiNiMnCoO2 (NMC)
particles, have irregular non-spherical shapes and, in addition, exhibit complex
internal structures that both affect their functionality. More precisely, cathodes
of these batteries are made up of polycrystalline NMC particles, where each crys-
tal (also referred to as grain) facilitates lithium transport along two-dimensional
planes. The morphology of the grains themselves as well as their random crystal
lattice orientation introduce a level of complexity in lithium paths, leading to
mechanical stresses during charging and discharging processes, which can result
in particle cracking and faster degradation of the battery’s capacity [1–4].

Recent advancements in imaging technologies such as X-ray computed to-
mography (CT) and the combination of focused ion beam (FIB) with electron
backscatter diffraction (EBSD) have significantly enhanced our ability to study
these microstructures in three dimensions. In particular, nano- and micro-CT,
have proven effective in imaging and quantifying the morphological properties of
particles non-destructively, although it falls short in capturing the orientation of
individual grains within the particles [5]. FIB-EBSD has filled this capability gap
by allowing for precise quantification of both the morphology and orientation of
intra-particle grains in 3D, by repeated acquisition of 2D EBSD data followed
by removal of the imaged surface by the FIB [6].

For various types of nano/microstructures of different materials, 3D image
data has been the basis for deriving spatial stochastic 3D models, i.e., mod-
els from which random morphologies can be generated which are statistically
similar to imaged nano/microstructures [7]. In particular, when leveraging para-
metric models, the calibration to image data implies a search for well-fitting
parameters. After model fitting, the parameters, which influence the morphol-
ogy of simulated nano/microstructures can be varied systematically, such that
a broad database of differently structured morphologies can be generated [8]. In
addition, spatial stochastic models can be calibrated to image data of materi-
als’ nano/microstructures at various length scales. In this manner the individual
models, which have been calibrated to data of different length scales, can be
combined to a multiscale model. For example, in [9] a 3D model has been de-
rived for the outer shell of particles as well as a further model for their inner
nanoporous structure. The combination allowed for the generation of particles
with statistically similar shapes and inner pore systems.

Such spatial stochastic models can be the basis for investigating the in-
fluence of morphology on effective macroscopic material properties (structure-
property relationships) by means of computer-based experiments, an approach
also referred to as virtual materials testing [8]. More precisely, the simulated
nano/microstructures can be used as geometry input for numerical simulations
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of effective macroscopic properties (e.g., effective diffusivity). Then, these ef-
fective properties can be correlated with structural descriptors (e.g., volume
fractions, specific surface areas, etc.). In particular, the broad database of differ-
ently structured morphologies generated by stochastic 3D models allows for the
derivation of quantitative structure-property relationships by means of regres-
sion analysis with interpretable regression functions or neural networks—which
is an important step for material design purposes.

Often, the acquisition of 3D image data is expensive in both time and re-
sources. Many laboratories are equipped with imaging techniques that allow for
the acquisition of more accessible 2D image data. However, the statistical analy-
sis of 3D morphologies observed in 2D image data (e.g., planar sections) is often
a non-trivial inverse problem [10]. For some types of morphologies, there are the-
oretical results based on conventional stereological methods that allow for the
structural characterization of 3D morphologies from 2D image data. However, for
many applications in natural and engineering sciences, conventional methods of
stereology cannot be deployed as their requirements are often too restrictive (e.g.,
some stereological methods rely on the assumption of convex particle shapes).
Recently, purely data-driven methods based on generative adversarial networks
(GAN) have emerged which allow for the generation of 3D morphologies the
planar sections of which are statistically similar to those observed in 2D image
data [11]. As these methods are non-parametric, it is difficult to systematically
simulate differently structured 3D morphologies. Consequently, GAN-based ap-
proaches for modeling 3D morphologies from 2D image data might not be viable
for the purpose of virtual materials testing, as described above.

In the present paper, we unify computational methods described in [12, 13],
for the calibration of a multi-scale model from which virtual NMC particles
in Li-ion battery electrodes can be generated together with their inner grain
architecture, see Figure 1. As the morphology of their outer shell as well as
their inner grain architecture influence the properties of corresponding battery
materials, the stochastic 3D model which serves as the basis for virtual materials
testing considers both length scales.

2 Materials, image acquisition and processing

The materials for which we derive multi-scale models in the present paper
are cathode particles in Li-ion batteries. More precisely, common Li-ion bat-
tery cathodes are comprised of so-called NMC particles. In this paper, we con-
sider two types of NMC particles, namely, LiNi0.5Mn0.3Co0.2O2 (NMC532) and
LiNi0.8Co0.1Mn0.1O2 (NMC811) particles.

For both type of NMC particles, 3D image data has been acquired by means of
X-ray nano-CT. These images exhibit the outer shell of numerous particles which
have been segmented into individual particles using the watershed transform, see
Figure 1 (bottom left). For more details on the CT image data, its acquisition
and pre-processing, the reader is referred to [12, 13].
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Fig. 1. Workflow of fitting stochastic multi-scale models for polycrystalline particles in
Li-ion battery cathodes. Top row: A stochastic 3D model is calibrated to FIB-EBSD
image data, from which statistically similar grain architectures of NMC particles can
be generated. Bottom row: Using 3D nano-CT data a stochastic 3D model is calibrated
from which statistically similar outer shells of NMC particles can be generated. Right:
By combining both 3D models, a multi-scale model is obtained. Adapted from Figure
1 in [12], licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0.

Both NMC532 as well as NMC811 particles have a polycrystalline inner struc-
ture, i.e., they are comprised of numerous crystals which are also referred to as
grains. However, the inner grain architecture cannot be observed in nano-CT
data—instead, EBSD imaging can be leveraged. For this purpose, FIB can be
used to partially mill away material from a particle. The exposed planar section
can then be imaged using EBSD—resulting in 2D image data of the grain ar-
chitecture. By repeated FIB milling followed by EBSD imaging a stack of 2D
images, i.e., 3D image data, of the grain architecture can be acquired. However,
the acquisition of 3D EBSD data is expensive in both time and resources, such
that it can be favorable to perform modeling using only 2D EBSD data. In the
present paper, we consider both scenarios. More precisely, 3D EBSD data of the
grain architecture of NMC532 particles and 2D EBSD data of the grain archi-
tecture of NMC811 particles are available for the purpose of modeling. Both the
2D and 3D EBSD data has then been segmented into individual grains, see [12,
13] for further details on the acquisition of the image data and its processing.

3 Stochastic 3D model for outer particle shells

In this section, we describe a method for calibrating a stochastic 3D model for
the outer shell of so-called star-shaped particles. Therefore, let P1, . . . , Pn ⊂ Rd
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denote n > 0 particles observed in segmented nano-CT image data. For the
purpose of modeling, we first determine an efficient representation for these
particles. More precisely, for each i ∈ {1, . . . , n} we derive a radius function
ri : S

2 → [0,∞) given by ri(u) = sup{α ≥ 0: αu ∈ Pi}, for each (direction)
vector u ∈ S2, where S2 ⊂ R3 denotes the set of all direction vectors, i.e., the
surface of the unit sphere in R3. Consequently, the observed particles are now
represented by the radius functions r1, . . . , rn which we will model by means of
random fields on S2.

3.1 Random fields on the unit sphere

Formally, a random field on the unit sphere S2 ⊂ R3 is a collection X =
{X(u) : u ∈ S2} of real-valued random variables. If the values of X(u) for each
u ∈ S2 are positive with probability 1, the random field X can be considered
to be a random radius function. Thus, when modeling the outer shell of parti-
cles, the goal is to determine a suitable model X such that the radius functions
r1, . . . , rn derived from measured image data are likely to be realizations of X.
In order to make modeling more feasible it is common practice to introduce
some model assumptions. When modeling the shape of particles a reasonable
assumption is isotropy of X meaning that the distribution of X does not change
if we rotate the Euclidean coordinate system around the origin o ∈ R3. The
assumption of isotropy, together with the assumption of square integrability of
X(u) for each u ∈ S2, implies a representation of X that makes modeling more
accessible, i.e., the series expansion

X(u) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(u) (1)

holds for each u ∈ S2, where Yℓm : S2 → C are so-called spherical harmonic
functions with values in the complex plane C and aℓm are uncorrelated complex-
valued random variables [14]. More precisely, the random variables aℓm are given
by aℓm =

∫
S2 X(u)Yℓm(u)H(du), where H is the surface measure on S2. The co-

efficients aℓm appearing in the series expansion given in Eq. (1) are uncorrelated
(with uncorrelated real and imaginary parts) such that Eaℓm = 0 for each ℓ > 0.

Common statistics of isotropic random fields on S2 are the mean value µ =
EX(u) ∈ R (which does not depend on u ∈ S2) and the covariance function
C : S2 × S2 → R given by

C(u, v) = E [(X(u)− u)(X(v)− v)] =

∞∑
ℓ=0

Aℓ
2ℓ+ 1

4π
Pℓ(⟨u, v⟩), (2)

where the coefficients Aℓ ≥ 0 are referred to as angular power spectrum and
Pℓ are the Legendre polynomials [15]. Note that the member Aℓ ≥ 0 of the
angular power spectrum is the variance of the coefficient aℓm for any ℓ ≥ 0 and
m ∈ {−ℓ, . . . , ℓ}.
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3.2 Model calibration using the maximum likelihood method

Gaussian random fields (GRFs) on S2 are rather well studied objects, where a
random field X = {X(u) : u ∈ S2} is called Gaussian if (X(u1), . . . , X(um)) is a
(multivariate) normal distributed random vector for anym > 0 and u1, . . . , um ∈
S2. Note that isotropic GRFs on S2 are uniquely characterized by their mean
value µ = EX(u) and angular power spectrum A0, A1, . . .. Due to computational
limitations, we set Aℓ = 0 for each ℓ > L and some integer L > 0. Consequently,
with this modeling assumption, GRFs are fully characterized by the parameter
vector θ = (µ,A0, . . . , AL) ∈ Θ, where Θ ⊂ R × [0,∞)L+1 is some parameter
space. The value of θ can be fitted to the radius functions r1, . . . , rn derived
from image data, using the maximum likelihood method. Thus, the maximum
likelihood estimator θ̂ of θ is computed by maximizing the log-likelihood function,
i.e.,

θ̂ = argmax
θ∈Θ

n∑
i=1

log (f(ri(u1), . . . , ri(um) | θ)) , (3)

where f(· | θ) denotes the probability density of (X(u1), . . . , X(um)) given that
the underlying GRF X has the parameter vector θ. Then, a GRF X with param-
eter vector θ̂ can be used to generate outer shells which are statistically similar
to the outer shells observed in measured image data, see Figure 1 (bottom,right).

Note that we draw samples from a truncated GRF, i.e., we disregard model
realizations that have negative values and, consequently, are unrealistic radii
functions. Furthermore, note that the maximum likelihood approach explained
above can be deployed also for non-Gaussian fields. In particular, in [12], a
mixture of Gaussian random fields has been fitted in this manner to image data.
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Fig. 2. Kernel density estimates of volume-equivalent diameter and sphericity of
outer shells observed in image data (red) and generated by the stochastic outer
shell model (blue). Adapted from Figure 7 in [12], licensed under CC BY 4.0
https://creativecommons.org/licenses/by/4.0.
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3.3 Model validation

We now check the goodness of fit, when fitting a mixture of GRFs to outer
shells of NM532 particles observed in nano-CT data. More precisely, after cal-
ibrating the model as explained in Section 3.2, we repeatedly draw samples of
outer shells from the model for which we compute several morphological descrip-
tors, namely, their volume-equivalent diameter and sphericity. In Figure 2 the
probability density of volume-equivalent diameter (left, blue line) and sphericity
(right, blue line) of model realizations are visualized. The red lines in Figure 2
depict the corresponding probability densities for outer shells observed in image
data—indicating a quite good fit. Similarly, a stochastic outer shell model has
been fitted and validated for NMC811 particles, see [13].

4 Stochastic 3D model for inner grain architectures

4.1 Parametric representation of grain architectures by tessellations

Before explaining the stochastic modeling approach for the grain architecture
of polycrystalline materials, we first introduce an efficient representation of
such 3D morphologies, where so-called tessellations are used for deriving low-
parametric partitionings of a given sampling window W ⊂ R3 into individual
cells. By interpreting the cells of a tessellation as grains, a low-parametric rep-
resentation of grain architectures is achieved, which is more advantageous for
modeling purposes than using raw image data. More precisely, we consider so-
called generalized balanced power diagrams (GBPDs) [16] whose cells, denoted
by Gi, i ∈ {1, . . . , n} for some integer n > 0, are given by

Gi =
{
x ∈ R3 :

√
(x− si)⊤mi(x− si)− ri ≤

√
(x− sj)⊤mj(x− sj)− rj

}
,

(4)

where the positive definite matrices mi ∈ R3×3, the additive weights ri ∈ R and
the so-called seed points si ∈ R3 for i ∈ {1, . . . , n} are the parameters of the
tessellation. In general, the cells of a GBPD are non-convex sets. However, by
imposing additional constraints on the matrices mi, one gets so-called Laguerre
tessellations as a special case, the cells of which are convex polyhedra. Depending
on the data situation such constraints can be reasonable, since they can simplify
subsequent modeling steps [17].

4.2 Random tessellations and their simulation

The parameters (s1,m1, r1), . . . , (sn,mn, rn) of the GBPD extracted from mea-
sured image data are used in order to fit a random tessellation, i.e., a stochastic
grain architecture model to data. In particular, the sequence s1, . . . , sn ∈ R3 of
seed points is modelled by a so-called random point process Φ = {S1, . . . , Sn},
where S1 . . . , Sn are three-dimensional random vectors with values in the sam-
pling window W ⊂ R3 Moreover, the labels (m1, r1), . . . , (mn, rn) of the seed
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points s1, . . . , sn, which control the size and shape of the cells G1, . . . , Gn, are
modeled by a sequence of random vectors (M1, R1), . . . , (Mn, Rn) with values in
R3×3 ×R. Often, the random vectors (M1, R1), . . . , (Mn, Rn) are assumed to be
independent and identically distributed as well as independent of the random
point process Φ = {S1, . . . , Sn} which models the seed points of cells. However,
in some cases, it is reasonable to waive this type of model assumptions and to
allow interdependencies between the random variables (M1, R1), . . . , (Mn, Rn)
and Φ = {S1, . . . , Sn}.

Realizations of the stochastic grain architecture model described above can
be generated in the following way. First, a sample is drawn from the point pro-
cess Φ = {S1, . . . , Sn} to generate a point pattern {s1, . . . , sn} of seed points.
Then, a sample (m1, r1), . . . , (mn, rn) is drawn from the (conditional) distribu-
tion of the sequence of random labels (M1, R1), . . . , (Mn, Rn), given a realization
{s1, . . . , sn} of the point process Φ of seed points. In this way, the parameters
(s1,m1, r1), . . . , (sn,mn, rn) of a GBPD are generated which result in the cells
G1, . . . , Gn according to the rule given in Eq. (4).

The calibration of the random point process Φ and the random vectors
(M1, R1), . . . , (Mn, Rn) by means of measured 3D and 2D image data is ex-
plained in Sections 4.3 and 4.4, respectively.

4.3 Model calibration by means of 3D image data

If 3D image data is available, the stochastic grain architecture model described
above can be calibrated as follows. First, seed points si and labels (mi, ri) of
a (deterministic) GBPD are fitted to measured 3D image data such that the
discrepancy between the grains observed in measured image data and their rep-
resentation as cells of a tessellation are minimized [17]. Then, in a second step,
the seed points and their labels are modeled stochastically, i.e., the distribution
of a random point process Φ = {S1, . . . , Sn} (e.g., a Poisson point process or
a Matérn cluster processes) is fitted to the seed points, and the (joint) distri-
bution of the random vectors (M1, R1), . . . , (Mn, Rn) is fitted to the labels. As
already stated in Section 4.2, the random vectors (M1, R1), . . . , (Mn, Rn) can
depend on local features of the point process Φ = {S1, . . . , Sn}, e.g., the random
label (Mi, Ri) of Si can depend on the distance to the nearest neighboring seed
point. Then, to capture such dependencies, so-called copulas are used in order to
model multivariate probability distributions of random vectors with correlated
non-Gaussian components, see [12] for further details.

4.4 Stereological model calibration based on 2D image data

If only 2D image data is available, the method described in Section 4.3 cannot
be deployed for calibrating stochastic grain architecture models in 3D. Instead,
the following stereological approach can be used which combines methods of
machine learning and spatial stochastic modeling. Therefore, let Φ be a random
point process in 3D, whose distribution is characterized by the parameter θ1 ∈
Θ1 ⊂ Rd1 for some d1 ≥ 1, and let (M1, R1), . . . , (Mn, Rn) be random vectors,
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whose (joint) distribution is characterized by the parameter θ2 ∈ Θ2 ⊂ Rd2 for
some d2 ≥ 1, where the values of θ2 can depend on the realizations of Φ.

The goal is to predict the values of θ1 and θ2 by means of measured 2D
image data. For that purpose, for some initial values of θ1 and θ2, realizations
are drawn from the corresponding stochastic grain architecture model, where
virtual planar sections of these realizations are computed and statistically com-
pared with the 2D image data. Then, in the next step, the values of θ1 and θ2
are successively adapted in order to maximize the statistical similarity between
grain morphologies observed in measured and simulated 2D image data. To eval-
uate this similarity, morphological descriptors are computed for both datasets
and statistically compared to each other, where an efficient optimization of the
model parameters is achieved by implementing a differentiable statistical com-
parison rule in the optimization routine. Furthermore, an (almost everywhere
differentiable) convolutional neural network is used to determine the descriptors
for the statistical comparison of simulated 2D grain architectures with those
of measured image dat. This results in a generative adversarial network-based
training procedure, see [13] for further details.

4.5 Model validation

To give an example, we discuss the quality of the fitted (deterministic and
stochastic) grain architecture models for NMC532 particles, where a random
Laguerre tessellation has been calibrated by means of 3D EBSD data using the
method described in Section 4.3. Figure 3 (red, blue) shows that the cells of
the deterministic Laguerre tessellation fitted to measured image data, as stated
in Section 4.1, accurately reflects the grain architecture observed in image data
(in terms of volume-equivalent diameter and sphericity), making it a reason-
able model restriction over more general GBPDs. Moreover, Figure 3 shows that
the distributions of volume-equivalent diameter and sphericity of simulated cells
(green) drawn from a random Laguerre tessellation and grains in image data
also match quite well.

5 Stochastic 3D multi-scale model

The outer shell and inner grain architecture of the NMC particles considered in
this paper are assumed to be independent, especially for larger particles. Thus,
to generate a particle with an inner grain architecture, both a simulated grain
architecture and a simulated outer shell are independently drawn from the cor-
responding models stated in Sections 3 and 4, respectively, and then combined.
More precisely, grains whose centers of masses do not lie within the outer shell
are removed. Figure 1 (right) illustrates the result obtained by this procedure,
showing samples drawn from the outer shell model, the grain architecture model,
and their combination into a simulated NMC particle.

The stochastic multi-scale model explained above has been used to gener-
ate several differently structured virtual NMC particles for the purpose of vir-
tual materials testing. For example, in [1], the virtual NMC particles served
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as geometry input for simulating lithium diffusion during battery charging and
discharging and the resulting chemo-mechanical stress/strains. In this manner,
the influence of particle nano/microstructure on structural degradation and on
chemo-mechanically induced capacity loss can be investigated.

6 Conclusion

We presented a computational framework for data-driven stochastic modeling
the outer shell of µm-sized particles together with their inner polycrystalline
grain architecture in 3D—resulting in a multi-scale model which characterizes
the 3D morphology of such particles at different length scales. Polycrystalline
particles of this type occur, for example, in cathodes of Li-ion batteries. Our
modeling approach complements the advantages of different imaging techniques
like nano-CT and EBSD rather well. On the one hand, nano-CT does not provide
information on the grain architecture, yet provides image data of numerous NMC
particles in 3D. On the other hand, grains are observable in EBSD data, yet the
acquisition of 3D data as well as the imaging of numerous NMC particles can
be difficult. Thus, the presented modeling approach overcomes the limitations
of both imaging techniques as it allows for the generation of arbitrarily many
virtual NMC particles with inner grain architecture, which are nicely mimicking
the 3D morphology of real NMC particles and, therefore, can serve as a basis for
virtual materials testing.

For modeling the 3D morphology of these particles, two types of spatial
stochastic models were presented. The first one is a random field model for the
outer shell of particles, i.e., the size and shape of particles. The second model are
random tessellations which can, after calibration, generate statistically similar
grain architectures as observed in measured image data. For the purpose of model
calibration, we describe two approaches, which rely either on 3D or 2D image
data of the grain architecture. Note that the presented computational methods
are relatively independent of both material and length scale, such that they
can be transferred to other applications than battery electrodes relatively easily.
Moreover, the ability to calibrate a 3D model on the basis of 2D image data, i.e.,
to achieve a statistical 3D reconstruction, can significantly reduce measurement
costs both in time and resources.

The focus of our future work will be to transfer the methodology, presented
in this paper for statistically reconstructing 3D morphologies from 2D data, to
further types of advanced structural materials. Moreover, the multi-scale models
for NMC particles will be extended with respect to a further important aspect—
namely, cracking which occurs on various length scales within such particles
due to chemo-mechanical stress/strains. This structural degradation of battery
materials has been investigated by means of 2D image data, which, however,
does not directly allow for the quantitative analysis of transport path lengths
in 3D [3, 18]. We will introduce a stochastic 3D crack model which is based on
the multi-scale models described in the present paper—i.e., by simulating cracks
along interfaces of neighboring grains (grain boundaries), see also [19]. Moreover,
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the stochastic 3D crack model will be calibrated by means of 2D image data.
Consequently, transport path lengths and further geometrical descriptors that
are relevant for battery performance, but unobservable in 2D image data, can
be computed from 3D morphologies generated by the model.
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Fig. 3. Kernel density estimates of volume-equivalent diameter and sphericity of grains
observed in measured image data (red), cells of fitted Laguerre tessellation (blue),
and simulated cells (green) drawn from random Laguerre tessellation. Vertical lines
indicate mean values. Adapted from Figure 9 in [12], licensed under CC BY 4.0
https://creativecommons.org/licenses/by/4.0.
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