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ABSTRACT

Segmentation of µm-resolution image data of irregularly shaped objects poses challenges to existing
segmentation algorithms. This is especially true, when imperfections like noise, uneven lightning or traces
of sample preparation are present in the image data. In this paper, considering electron micrographs of
femoral quadriceps nerve sections of mice, a segmentation method to extract single axons surrounded by
myelin sheaths is developed which is able to cope with various imperfections and artefacts. This approach
successfully combines established methods like local thresholding and marker-based watershed transform to
achieve a reliable segmentation of the given data. Indeed, the resulting segmentation map can be used to
quantitatively determine geometrical characteristics of the axons and myelin sheaths. This is exemplified
by modelling the joint probability distribution of axon area and myelin sphericity using a parametric copula
approach, and by analysing the evolution of the model parameters for image data obtained from mice of
different ages.

Keywords: automated segmentation, copula, electron microscopy, parametric modelling, quadriceps nerve,
statistical image analysis.

INTRODUCTION

Automated segmentation of images of granular
structures often poses challenges specific to
the structures in question. Measuring structures
necessarily introduces imperfections and artefacts like
noise or potentially poor contrast, and a discretised
image often suffers from inadequate resolution. While
many of these issues can be overcome by improving
imaging techniques, the improvements are often a
trade-off between resolution and measured area or
time steps, and signal-to-noise ratio. Dealing with
the available techniques and image data thus requires
involved algorithms to perform image segmentation
and extract the desired information. This is often due
to the fact that resolution and noise do not allow for
detecting gaps between single objects and thus lead to
larger connected regions consisting of many objects.
While these regions can often be identified by (local)
thresholding or clustering techniques like k-means
clustering, a segmentation into single objects requires
further efforts. Many available techniques for single-
object segmentation make implicit assumptions about
the structures of interest. For example, the widely-
used watershed algorithm (Beucher and Lantuéjoul,
1979; Roerdink and Meijster, 2000) theoretically
requires convex objects to perform well without further
improvements. As a result, the watershed approach
often suffers from over-segmentation. The marker-
based watershed addresses this issue by explicitly
choosing the approximate objects’ centroids. Other

algorithms like model-based segmentation even more
explicitly assume specific shapes, e.g., spherical
objects. Moreover, many algorithms assume objects
without holes or cracks. These limitations can be
overcome by, e.g., filling holes and cracks prior to
segmentation and later re-introducing them into the
segmented objects. However, this approach still relies
on quite regularly shaped objects with only small
holes and cracks. These assumptions are not valid
for image data of ring-like objects with non-spherical
shape on which we focus in the present paper. For
instance, electron micrographs of femoral quadriceps
nerve sections of mice show a bundle of axons,
each surrounded by a myelin sheath. In recent years,
novel approaches to image segmentation based on
convolutional neural networks have been developed.
For the present type of data, e.g., AxonDeepSeg (Zaimi
et al., 2018) is a recent open-source tool for image
segmentation. However, this tool performs only
a phase-based segmentation and no single-object
segmentation. Moreover, the accuracy varies hugely
depending on the size of objects. These limitations
make the development of a reliable tool for object-
wise segmentation necessary.

In the present paper, we propose a segmentation
method suitable for image data of ring-like objects
with non-spherical shape. The shapes are similar to
the (dilated) boundary of clover leafs or stars. We
apply our technique to electron micrographs of femoral
quadriceps nerve sections of mice, where the nerve is
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composed of a bundle of axons, each surrounded by
a myelin sheath. The sheaths form ring-like objects
and often touch neighbouring sheaths such that a
naive segmentation is not feasible. Moreover, the
image data exhibits some imperfections resulting in
locally lost information, see Figure 1. We therefore
develop a multi-step segmentation method consisting
of a sequence of preprocessing steps leading to a
binary image where the myelin sheaths are separated
from background and axons, followed by a subsequent
segmentation of this binary image into single myelin
sheaths. The segmentation algorithm is capable of
dealing with the intricate shapes of myelin sheaths
and their hollow interior. For this, we automatically
process the binary image into a carefully designed
set of markers and a gradient map for the watershed
algorithm. The choice of markers ensures that no
over-segmentation occurs whereas the gradient map is
chosen such that the watershed lines split neighbouring
myelin sheaths at the proper locations.
(b)

(c)

(a)

(e)

(d)

Figure 1. Original greyscale image showing a 6
months old nerve (a). Different imperfections which
are removed by the multi-step segmentation method
developed in this paper, like the perineurium (b), other
visible nerves (c), dark wrinkles (d), and further traces
of sample preparation (e).

The used electron micrographs show nerve
sections from 6, 12 and 24 months old mice. During
ageing, natural effects change the structure of axons
and myelin sheaths which results in changes of their
sizes and shapes. The segmentation of the data into
single axons surrounded by myelin sheaths enables us
to geometrically characterise each pair of axon and
myelin sheath and statistically analyse their properties
and the effects of ageing. We exemplify this by
modelling the joint probability distribution of axon
area and myelin sphericity using a parametric copula
approach, and by analysing the evolution of the model
parameters for image data obtained from mice of
different ages.

The rest of this paper is organised as follows.

First, we explain the methods which have been
used for acquisition and preprocessing of image
data, including binarisation and subsequent single-
object segmentation. Then, the results of statistical
analysis and parametric modelling of uni- and bivariate
probability distributions of axon area and myelin
sphericity for 6, 12 and 24 months old mice
is explained. Furthermore, a method of parameter
interpolation is proposed to predict the distribution
of geometrical nerve descriptors for mice ages where
no experimental image data is available. Finally, we
discuss the obtained results.

MATERIALS AND METHODS

In this section, we explain the methods which
have been used for sample preparation and image
preprocessing. Dividing the images of nerves into
single axons and their surrounding myelin sheaths
requires an object-based segmentation. In preparation
for the actual segmentation of the images, a partly
sample-specific preprocessing is performed which
adjusts for local deviations in illumination and
removes some further imperfections.

SAMPLE PREPARATION AND IMAGING
Sample preparation was performed as reported

in Yuan et al. (2018). For electron microscopy,
sacrificed mice were transcardially perfused with 4%
PFA and 2% glutaraldehyde in 0.1 M cacodylate
buffer. Dissected femoral nerves were subsequently
postfixed in the same solution overnight at 4◦C,
followed by osmification (2% OsO4), dehydration,
and embedding in Spurr’s medium. Ultrathin cross
sections (80 nm) of femoral nerves were mounted
onto copper grids and counterstained with lead citrate.
Electron micrographs were taken with a Slow Scan
charge-coupled device, short CCD, (ProScan) camera
mounted to a Leo 906 E transmission electron
microscope (Zeiss) and corresponding software iTEM
(soft imaging system). Multiple image alignments
(MIA) were acquired at a primary magnification of
400x for covering cross-sections of whole femoral
quadriceps nerve sections.

IMAGE PREPROCESSING
Due to the fact that images are taken by means

of electron microscopy, some illumination effects are
present in the greyscale images. For example, there are
dark artefacts like wrinkles of the nerves which arise
during mounting the samples onto the copper grids,
partly visible other nerves and the perineurium, as well
as other traces of sample preparation. These undesired
objects can be seen in the small cutouts of Figure 1 (b),
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(c), (d) and (e). They are making a simple computer-
based detection of single axons and myelin sheaths
difficult.

For this reason, we are first preprocessing
the images with morphological and histogram-
based methods which are described in detail,
e.g., in Heumans et al. (1992); Soille (2013);
Vincent (1989). A histogram-based classification is
employed to remove artefacts like wrinkels and
uneven illumination, because they make it difficult to
distinguish clearly between different single axons.

Removement of Wrinkels and Other
Sample Preparation Traces

Artefacts consisting of dark pixels are detected
using thresholding. The result of this step is a binary
image, see Figure 2 (b), where the detected pixels are
now white. This binary image is used as a mask for
a Gaussian filter, see, e.g., Weber et al. (2020) where
this kind of preprocessing procedure has been applied
to cryo-EM images of murine amyloid protein fibrils.
The Gaussian filter serves to eliminate the detected
artefacts. In Figure 2 (d) and (e) the same cutouts as
in Figure 1 (d) and (e) are shown, where the artefacts
(i.e. wrinkles in Figure 2 (d) and other traces of sample
preparation in Figure 2 (e)) are now deleted and single
axons can be separated later on, see Section 3.2 below.
Note however that some artefacts like wrinkles, see
Figure 1 (d) and 2 (d), are not completely deleted.
In particular, wrinkles lying on top of dark myelin
sheaths are not removed, but this does not affect the
segmentation performed later on. It is important that
myelin sheaths are not wrongly connected by artefacts
anymore. The fat blue arrows in Figure 2 (d) and (e)
are pointing at separated myelin sheaths after applying
the Gaussian filter.

In a final step, we visually inspect the preprocessed
greyscale images and manually correct remaining
artefacts which may lead to imperfections in the
final segmentation. This is only necessary for a small
fraction of the image and is done by manually labelling
some pixels as myelin or background.

(b)

(c)

(a)

(d)

(e) (f)

Figure 2. Detecting artefacts in the original greyscale
image (a) by thresholding (b). The result, (d) and (f),
after re-calculating the pixel values in the affected
regions, (c) and (e), see also Figures 1 (d) and (e).

Manual Extraction of the Nerve

Subsequently a mask is created to extract the
nerve. In this way, partly visible other nerves and
the sheath around the whole nerve, the so-called
perineurium, are excluded from the segmentation.

SEGMENTATION

The previous preprocessing steps yield a greyscale
image of the nerve which has been improved
with respect to different artefacts and imperfections.
However, the actual segmentation of this image still
poses a challenging problem as the underlying objects
are highly non-spherical and hollow. As contrast
and greyscale levels vary across the preprocessed
image, a local thresholding serves to simplify the data
without losing information. The binarised image is
then segmented into single objects using a specially
tailored watershed approach.

BINARISATION

Compared to a local environment, the myelin
sheaths are darker than the surrounding image.
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While uneven illumination makes it impossible to
use a global threshold to separate myelin from the
background, a local thresholding approach (Gonzalez
and Woods, 2007) is feasible. Here, the value of each
pixel is compared to the weighted average value in
a defined region around the pixel. For weights, we
choose a Gaussian kernel with standard deviation of 25
px and a cut-off distance of 80 px. A pixel is classified
as myelin if its value is less than the weighted mean
value of the surrounding pixels. The phase-related
segmentation result of a cutout of the 6 months old
nerve is shown in Figure 3 (a).

SINGLE-OBJECT SEGMENTATION

The binarised image contains sufficient
information about all myelin sheaths to identify single
myelinated axons. This single-object segmentation is
performed using a marker-based watershed transform
(Lantuéjoul, 1982; Roerdink and Meijster, 2000). For
this, we need a set of markers within the myelinated
axons and a gradient image for the watershed to
perform on.

For both, we first extract the axons present in the
binarised image, see Figure 3 (b). Note that each axon
is a separate connected component in the black phase
of the binary image, see Figure 3 (a). Furthermore,
we assume that the background consists of a single
connected component which can be easily identified
by size. Thus, by computing the area of the connected
components (Hoshen and Kopelman, 1976) of the
black phase and removing the background, we obtain
a family of more or less circular regions representing
the axons, see Figures 3 and 4.

(a)

(b)

(c)

(d)

(e)

Figure 3. Cutouts showing the myelin sheaths (a), the
detected axons (b) and the corresponding part of the
original image (c). Modified distance transform with
respect to the background, with watershed markers
corresponding to the axons shown in white (d) and
resulting watershed lines (e).

Figure 4. Cutouts showing 6, 12 and 24 months old
nerves (from top to bottom). Extracted myelin sheaths
are outlined in different colors. The axons correspond
to the areas within the inner boundaries of the myelin
sheaths.

We chose the whole axons as markers for the
marker-based watershed, see Figure 3 (d). This ensures
that the axons are never split into separate regions
by the watershed transform. Furthermore, we compute
the distance transform with the myelinated axons
with respect to the background. We use the inverse
of this distance transform as gradient image for the
marker-based watershed to perform on. This ensures
that no watershed lines will be placed inside an
axon and, on the other hand, watershed lines are
placed inside the background region whenever this
is possible, see Figure 3 (e). The final result, i.e.,
the myelin sheaths extracted in this way from the
binarised image, is visualised in Figure 4. These
cutouts show the accuracy of the proposed method.
While the shape of most myelin sheaths is accurately
detected and the watershed segmentation separates
neighbouring myelin sheaths well, some artefacts
would pose problems to the local thresholding and
were therefore removed by hand.

By visual inspection of the extracted axons and
myelin sheaths shown in Figure 4 we can hardly see the
changes in the structure of axons and myelin sheaths
during ageing. Therefore, a deeper statistical analysis
of the segmented image data is necessary. This will be
done below, together with parametric modelling of uni-
and bivariate probability distributions of size and shape
descriptors of axons and myelin sheaths. In this way,
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age-dependent changes of the structure of axons and
myelin sheaths can be revealed and quantified.

RESULTS

Application of the segmentation techniques
described in the previous section yields a set of
axons and corresponding myelin sheaths for each
image, where 1598, 1565 and 1996 axons and myelin
sheaths have been extracted from planar nerve sections
of 6, 12 and 24 months old mice, respectively.
Altogether, size and shape information of more than
5100 axons and myelin sheaths is available. Thus,
for each pair of axons and myelin sheaths, we can
compute geometrical descriptors relating to functional
properties and statistically analyse the resulting data.
Moreover, by fitting parametric distributions, we can
characterise age-dependent changes of the structure of
mice nerves.

In comparison to a purely histogram-based
evaluation of geometrical nerve descriptors, the
fitting of parametric distributions allows for a
more comprehensive quantification of ageing effects.
While aggregated quantities, like mean and standard
deviation, computed from raw histograms provide only
partial information about the underlying distributions,
the parameters and, in particular, the temporal
changes of parameters of the fitted distributions fully
characterise their evolution in time. For example,
in general, probabilities for exceeding an arbitrary
specified threshold can not be reconstructed from
aggregated quantities like mean and standard variation,
but can be obtained from the knowledge of the
parametric model type along with the estimated
parameters.

ANALYSIS OF AXON AREA FOR
DIFFERENT AGES

For each axon extracted from the available
greyscale images, we compute its area, denoted by A in
the following, by counting the corresponding number
of pixels. Figure 5 shows the histograms of axon area
for 6, 12 and 24 months old nerves. Mean values and
standard deviations are given in Table 1. Looking at the
mean values, we see that there is an increase of mean
axon area in the time interval between 6-12 months,
and a decrease between 12-24 months.

Figure 5. Histograms and fitted distributions of axon
area and myelin sphericity for 6, 12 and 24 months old
nerves (from top to bottom). Note that the values of the
histograms are normalized.

age 6 12 24

Axon area
mean 18.44 19.03 16.51
sd 16.64 16.83 17.73
mean (small axons) 3.68 3.76 3.53
sd (small axons) 1.64 1.63 1.67
mean (medium axons) 16.23 16.18 14.97
sd (medium axons) 5.89 5.98 5.59
mean (large axons) 42.48 42.26 48.06
sd (large axons) 10.94 9.49 12.62

Myelin sphericity
mean 0.84 0.87 0.79
sd 0.08 0.07 0.10
mean (small axons) 0.83 0.86 0.79
sd (small axons) 0.09 0.08 0.11
mean (medium axons) 0.85 0.87 0.79
sd (medium axons) 0.07 0.06 0.10
mean (large axons) 0.85 0.87 0.82
sd (large axons) 0.06 0.06 0.08

Size of subsamples
small axons 587 583 868
medium axons 596 533 735
large axons 415 449 393

Table 1. Mean value and standard deviation of
axon area (in µm2) and myelin sphericity for
total population and for axons with area-equivalent
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diameter smaller than 3 µm, between 3-6 µm, and
larger than 6 µm of 6, 12 and 24 months old nerves.

To better understand possible reasons for the
change of mean axon area between 6, 12 and 24
months, we subdivided the data into axons with small,
medium and large area-equivalent diameter (i.e., the
diameter of a circle with equal area), where small
means that the area-equivalent diameter is smaller than
3 µm, medium that it is between 3-6 µm, and large
that it is larger than 6 µm. When looking at Table 1,
we see that there is a slight decrease of mean area for
small and medium axons between 12 and 24 months,
whereas the mean area of large axons drastically
increases. At first glance, the latter effect seems to be
contradictory to the decrease of global mean axon area
between 12 and 24 months stated in Table 1. However,
when looking at the sizes of subsamples for 24 months
old mice, it becomes clear that the subsample sizes
drastically increase for small and medium axon and,
simultaneously, slightly decrease for large axons, due
to a left shift of the distribution of medium and large
axon areas in the time interval between 12 and 24
months.

Furthermore, globally, the standard deviation of
axon areas slightly increases over time, see Table 1.
The main reason for this is the considerable increase
of standard deviation of large axon areas in the time
interval between 12 and 24 months (from 9.49 to
12.62).

An efficient way to characterise age-dependent
changes of structural properties of mice nerves is to
use parametric distribution models. Then, for each age,
we obtain a set of parameters characterising the whole
distribution of a geometrical descriptor of nerves, e.g.,
of axon area. Note that several types of parametric
distributions may be fitted to the given data. For an
overview of various families of univariate probability
distributions, see Bickel and Doksum (2015). To
parametrically model the distribution of axon areas,
we used a mixture of two gamma distributions whose
probability density is given by

fω,α1,α2,β1,β2(x) = ω
1

β
α1
1 Γ(α1)

xα1−1e
−x
β1 +

(1−ω) 1
β

α2
2 Γ(α2)

xα2−1e
−x
β2

for parameters α1,α2,β1,β2,x > 0,ω ∈ [0,1].

Figure 5 shows the histograms of axon area along
with the fitted mixed gamma distributions, where the
estimated parameter values are given in Table 2. It

turns out that all model parameters exhibit interesting
differences of trend in the time intervals between 6-
12 months and 12-24 months, respectively, see also
Figure 7.

age α1 β1 α2 β2 ω

6 2.78 9.70 3.17 1.13 0.63
12 3.50 8.42 3.26 1.38 0.58
24 9.98 4.65 1.50 5.92 0.20

age a b θ

6 20.92 3.90 0.0807
12 26.00 4.08 0.0754
24 13.56 3.58 0.0978

Table 2. Estimated parameter values of the fitted mixed
gamma distributions for axon area (α1,α2, β1,β2,ω),
the fitted beta distributions for myelin sphericity (a, b)
and the copula describing the joint distribution (θ ) of
6, 12 and 24 months old nerves.

ANALYSIS OF MYELIN SPHERICITY
FOR DIFFERENT AGES
As a second descriptor, complementary to axon

area, we consider the so-called sphericity of the
myelin sheaths. Note that the sphericity of a planar
geometrical object extracted from image data is given
by the ratio

S =
Ce

C

of the circumference Ce of the area-equivalent circle
and the circumference C of the object itself. As a
ratio of two lengths, the quantity S defined above is
dimensionless. The sphericity of an object depends on
its shape and, in particular, on its roundness and takes
values between 0 and 1. For a higher value of S the
shape of the considered object is closer to the shape of
a circle. Note that geology (Wadell, 1932) was one of
the first fields where shape analysis of non-spherical
objects was performed, see also (Furat et al., 2019b)
for more recent applications to objects with complex
(non-spherical) shapes extracted from image data.

For the given data of mice nerves, it turns out that
there is a considerable change in the distribution of
sphericity between 12 and 24 months. On the other
hand, over the first 12 months the distribution of the
sphericity seems to change less, see Figure 5. Thus,
the sphericity of myelin sheaths behaves similarly in
time in comparison to the axon area considered earlier.

Moreover, when separately considering axons with
area-equivalent diameters smaller than 3 µm, between
3-6 µm, and larger than 6 µm, respectively, it turns
out that the mean values of myelin sphericity of these
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subsamples behave similar as the mean value of myelin
sphericity of the entire sample at the corresponding
time points, see Table 1.

However, the changes in the distribution of
sphericity observed in Figure 5 are much better
reflected by the probability P(S < s) that the myelin
sphericity S is smaller than a certain predefined
threshold s ∈ [0,1], see Table 3. For example, for
s = 0.85 this probability clearly decreases in the
time interval between 6 and 12 months and increases
between 12 and 24 months.

age 6 12 24
P(S < 0.85) (total) 0.437 0.287 0.703
P(S < 0.85) (small) 0.491 0.360 0.702

P(S < 0.85) (medium) 0.379 0.275 0.758
P(S < 0.85) (large) 0.446 0.205 0.603

Table 3. Level crossing probabilities of myelin
sphericity for the entire sample of all axons, for axons
with area-equivalent diameter smaller than 3 µm,
between 3-6 µm, and larger than 6 µm of 6, 12 and
24 months old nerves

Similar to the modelling of axon area by
parametric distributions, we considered gamma,
lognormal, Weibull and beta distributions for
modelling myelin sphericity and estimated the
corresponding parameters. The globally best fit was
obtained using beta distributions, which are two-
parametric distributions given by the density

fa,b(y) =
1

B(a,b)
ya−1(1− y)b−1, a,b > 0,y ∈ [0,1].

Figure 5 shows the histograms of myelin sphericity
along with the fitted beta distributions, where the
estimated parameter values are given in Table 2. Again,
both model parameters, a and b, exhibit interesting
inversions of trend in the time intervals between 6-
12 months and 12-24 months, respectively, where both
parameters first increase and then decrease, see also
Figure 7.

BIVARIATE DISTRIBUTION MODELS
To look just at univariate histograms of single

geometrical nerve descriptors can be problematic,
because there is no information included regarding
the correlation between the different descriptors. It is
well known (Friede, 1986; Smith et al., 1982) that the
geometries of myelin sheaths and axons are related
with each other. A computation of Pearson’s linear
correlation coefficient (Bickel and Doksum, 2015),

denoted by ρ , of the area of axons and the sphericity
of myelin sheaths for 6, 12 and 24 months old nerves
confirms this, see Table 4.

age 6 12 24
ρ 0.03 0.11 0.14

Table 4. Pearson’s linear correlation coefficient ρ of
the area of axons and the sphericity of corresponding
myelin sheaths.

Therefore, it is necessary to take correlation
effects into account when modelling the bivariate
probability distribution of axon area and myelin
sphericity. Again, similar to the situation considered
previously, the fitting of a two-dimensional parametric
distribution model allows for a more comprehensive
quantification of ageing effects compared to the
exclusive computation of aggregated statistical
descriptors like mean values and covariances from the
two-dimensional histograms.

In the literature dealing with statistical analysis
of image data, Gaussian distributions are often used
because of their simple closed form. In particular, it
is easily possible to fit a multidimensional Gaussian
model to available data, using the maximum likelihood
method. However, looking at the distributions of axon
area and myelin sphericity visualised in Figure 5, it
becomes obvious that they are clearly not Gaussian at
any time point. Moreover, because of the correlation
between these characteristics shown in Table 4, the
standard method of a bivariate product distribution
is not working either. Therefore, we use a copula
approach (Durante and Sempi, 2010; Joe, 1997) for
modelling the joint distribution of axon area and
myelin sphericity. Note that the copula approach has
demonstrated its benefits in various other applications
in order to fit parametric models to multivariate
probability distributions, see, e.g., Furat et al. (2019a);
Neumann et al. (2021); von Loeper et al. (2020). A
short introduction to this topic is given in the following
section. More details about copulas can be found, e.g.,
in Durante and Sempi (2010) and, in particular, how to
estimate their parameters in Joe (1997).

Fitting a Parametric Copula

Copulas provide a useful framework for
parametrically modelling multivariate probability
distributions. They represent the correlation structure
within the multivariate distribution. In the two-
dimensional case, where A is a (one-dimensional)
random variable with cumulative distribution function
FA and S is a (one-dimensional) random variable
with cumulative distribution function FS, the joint
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cumulative distribution function FA,S of the (two-
dimensional) random vector (A,S) with FA,S(x,y) =
P(A≤ x,S≤ y) can be represented by

FA,S(x,y) =C(FA(x),FS(y)), −∞ < x,y < ∞, (1)

where C is a so-called copula, i.e., a suitably chosen
two-dimensional cumulative distribution function with
marginals being uniform distributions on [0,1]. This
representation of the joint cumulative distribution
function FA,S is ensured by Sklar’s theorem (Sklar,
1959). Various classes of parametric copulas can be
used to model C which, together with FA and FS,
characterises the bivariate probability distribution.

In the following, we model the joint distribution
of axon area and myelin sphericity by estimating the
parameter θ > 0 of a so-called Clayton copula, which
is given by

Cθ (u,v) = (u−θ + v−θ −1)−
1
θ , x,y ∈ [0,1].

Note that we choose the Clayton copula from
the class of Archimedean copulas in favour of Ali-
Mikhail-Haq, Frank, Gumbel and Joe copulas (Joe,
1997) as the best fit to the empirical bivariate
distribution of axon area and myelin sphericity is
obtained using a Clayton copula. Recall that the
univariate cumulative distributions functions FA and FS
are obtained from the parametric models fitted earlier.
Then, the parameter θ is estimated using the maximum
likelihood method. The estimated values of θ are given
in Table 2.

The fitted Clayton copula, together with the
(mixed) gamma and beta distributions for axon
area and myelin sphericity, provides a parametric
characterisation of the (joint) bivariate probability
distribution of axon area and myelin sphericity, see
Figure 8.

Computation of Conditional Distributions

The representation of the joint bivariate
distribution of axon area A and myelin sphericity S
via Clayton copulas, visualised in Figure 8, facilitates
further analyses of the age-dependent morphology
of mice nerves. In particular, using Equation (1) the
conditional probability P(S < s | a1 < A < a2) can
be computed that the sphericity of myelin sheaths
takes values smaller than some threshold s, under
the condition that their axon areas belong to a given
range of values, e.g. to the interval [a1,a2] for some
a1,a2 > 0.

Figure 6 shows conditional distributions of myelin
sphericity for the different ages. We can clearly see that
small axons tend to have less rounded myelin sheaths
than medium and large axons. This effect is already
visible in young nerves, but gets stronger for later ages
and can thus be interpreted as another structural effect
of ageing.

Figure 6. Conditional distributions of myelin sphericity
S for given ranges of axon area A and three
different ages. The three different ranges of axon area
correspond to area-equivalent diameters < 3 µm, 3−
6 µm and > 6 µm, respectively.

PREDICTIVE MODELS BY PARAMETER
INTERPOLATION

Another important benefit of parametric
distribution models is the possibility to express the
model parameters as time-dependent functions. Using
this approach, it is possible to predict the distributions
of axon area and myelin sphericity for time points
with no experimental image data available. This is
especially useful as acquisition of image data for
multiple time points can be time-consuming and
expensive.

We showed that the distributions of axon area
and myelin sphericity can be nicely approximated by
(mixed) gamma and beta distributions, respectively.
By assuming these models, the actual distribution
of each, axon area and myelin sphericity, can be
characterised by a small number of parameters per
age, denoted by α1,α2,β1,β2,ω and a,b. For the joint
distribution of both properties, a further parameter θ

is considered, based on the copula approach discussed
earlier. In Figure 7, the values of these parameters
are shown as blue dots for the ages of 6, 12 and 24
months. Assuming that the same type of parametric
models would describe the distributions of axon area
and myelin sphericity for non-measured ages as well,
we can interpolate the parameter values to obtain
estimates of them for not observed ages. Figure 7
shows the interpolated functions based on 4 different
interpolation techniques.

The four candidates for an interpolation technique
comprise of a piecewise linear interpolation, a general
spline interpolation, a modified Akima interpolation
(makima, Akima (1974)) and a piecewise cubic
hermite interpolating polynomial (pchip, Carlson
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and Fritsch (1985)). As we have only 3 observed
values, choosing a proper interpolation technique
is challenging. Based on visual inspection of the
emergent characteristics, i.e., mean and standard
deviation, we can assess plausibility of the different
techniques and give a range of possible values.

In Figure 7, the calculated means and standard
deviations of axon area and sphericity based on these
interpolations are shown. Especially for the mean
sphericity, pchip seems to yield unreasonable results
and thus should not be used for interpolation. To a
lesser extent, the same holds for linear interpolation.
Thus, an interpolation technique similar to spline or
makima seems to be best suited to the problem at hand.
As makima reduces undulations in the interpolated
curve and no data is available to support the excessive
undulations introduced by regular spline interpolation,
we choose the akima technique for interpolation.

Figure 7. Time-dependent functions for the model
parameters α1,α2,β1,β2,ω,a,b,θ , using different
interpolation techniques and resulting expectations
and standard deviations for area and sphericity. Blue
dots indicate values estimated from data, used as
support points for the interpolation.

Figure 8. Comparison of parametric joint distributions
for axon area and sphericity of 6, 9, 12, 18 and 24
months old nerves. For 6, 12 and 24 months old nerves,
these are based on the fitted parametric marginal
(mixed) gamma and beta distributions and Clayton
copulas.

Using the interpolated time-dependent parameter
functions visualised in Figure 7 based on makima
interpolation, we can predict the joint distribution
of axon area and myelin sphericity for ages not
observed in experimental image data. Figure 8 shows
the predicted distributions for 9 and 18 months old
nerves along with the fitted distributions for 6, 12, and
24 months. The corresponding mean values of axon
area and myelin sphericity are given in Table 5.

age 6 9 12 18 24
area 18.47 17.86 19.05 22.19 16.51

sphericity 0.84 0.86 0.86 0.85 0.79

Table 5. Mean values of axon area and myelin
sphericity for 6, 9, 12, 18 and 24 months old nerves.
Note that, while being calculated from the copula
model, the values for 6, 12, and 24 months seem to
match the empirical mean values from Table 1.

DISCUSSION

Segmentation of images of granular structures
composed of highly non-spherical objects poses
serious challenges, especially when image resolution,
contrast and artefacts are taken into account. In
the present paper, we developed an automated
segmentation algorithm for these types of structures
which made use of a specifically adapted watershed
method. The proposed method requires only little
manual processing. We successfully applied this
technique to images of cross-sections of femoral
quadriceps nerves of mice to extract morphological
properties of axons and the subcellular structures
surrounding axons, so-called myelin sheaths, which
play an important role in the propagation of action
potentials. Here, our method proved robust against
potential artefacts in the data. We extracted size
and shape information of more than 5100 axons
and myelin sheaths from image data of 6, 12
and 24 months old mice. From this information,
we determined two relevant geometrical descriptors,
axon area and sphericity of the myelin sheaths. A
subsequent statistical analysis of these datasets showed
a clear change of axon size and myelin sphericity
due to ageing. This confirms the expectation that
ageing leads to degradation of axons into clover-like
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shape. Furthermore, we fitted parametric distribution
models to the histograms of axon area and myelin
sphericity and described the joint bivariate distribution
of these geometrical descriptors using copulas. We
found that the distribution of each, axon area and
myelin sphericity, as well as the corresponding copula
can be approximated by the same model type for
all ages. This made it possible to describe the joint
bivariate distribution for each age by eight parameters.
Using this parametric representation of the data, we
were able to further investigate the ageing-induced
changes in size and shape. In particular, we found that
that small axons tend to have less round myelin sheaths
than medium and large axons and that this effect gets
stronger for later ages. Finally, we proposed a method
of parameter interpolation to predict the distribution
of geometrical nerve descriptors for ages where no
experimental image data is available.
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