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Abstract

The distribution of residual stresses at the crystal scale is investigated in sev-
eral random polycrystalline aggregates of zirconia. The underlying stochas-
tic model generates tetragonal crystals forming three-dimensional herring-
bone microstructures, originating from cooling an initial single cubic crystal
at high temperatures followed by a solid-state phase transition. The ob-
tained microstructures are constructed following crystallographic constraints
in terms of variant selection, as well as twin and band boundary orienta-
tions. This stochastic modeling approach allows generating microstructures
with twin domains of various aspect ratios, embedded in several Voronoi cells
as observed when the phase transition starts simultaneously from different
locations in the cubic crystal. Considering the transformation strain and
the anisotropic elastic and dilation properties at the crystal scale, these mi-
crostructures are solved with the spectral (FFT) full-field method for pure
thermal loading (cooling). Thermal dilation has a limited effect on the resid-
ual stress field, about one order of magnitude smaller than the transformation
strain, even for a cooling of 1000 ◦C. Normal stresses along the tetragonal
crystal axes are in the order of a few GPa and proportional to the tetragonal-
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ity of the zirconia crystal, except for a specific microstructure where stresses
even vanish for infinite aspect ratios.

Keywords: zirconia, three-dimensional herringbone microstructure, phase
transition, full-field residual stress, thermo-elasticity, stochastic geometry

1. Introduction1

Zirconia is a well-known oxide used in numerous applications which is2

renowned for its dual benefits: excellent thermo-mechanical properties (e.g.3

used as a refractory material in high-temperature applications) and high ionic4

conductivity. Dense zirconia-based materials are usually obtained through a5

sintering process at high temperatures or fuse cast from the liquid state. In6

both cases, the final polycrystalline material is out-of-equilibrium, with the7

presence of a dense network of nano-cracks together with very large residual8

stresses (Kelly and Francis Rose, 2002; Ors et al., 2025). The coupling be-9

tween solid-state phase transitions (SPT), residual stresses and mechanical10

response is complex. Nevertheless, for large variations of temperature, the11

mechanical response is mainly guided by the formation of local heterogeneous12

stress fields, due to the intrinsic highly anisotropic elastic and thermal expan-13

sion properties of the crystals constituting the material, the transformation14

strain arising during SPT, and mechanical interactions between neighboring15

twin domains (so-called “microstructural effects”) in order to accommodate16

the incompatible thermal and transformation deformations.17

Due to the ability of zirconia to accommodate different atomic coordi-18

nations, pure zirconia (ZrO2) crystallizes in different phases depending on19

pressure and temperature. At atmospheric pressure, stress-free pure zirconia20

solidifies into a cubic structure (denoted hereafter by ’c’, space group Fm3̄m)21

at about 2700 ◦C, transforms to tetragonal one (denoted by ’t’, space group22

P42/nmc) upon cooling to 2300 ◦C and becomes monoclinic (denoted by23

’m’, space group P21/c) at 1170 ◦C. In a pure zirconia single crystal, the24

t→ m SPT is of first order and it is associated with a large volume expansion25

of about 4% (Smirnov et al., 2003). It has been described in detail in, e.g.,26

Simha (1997) and Kelly and Francis Rose (2002). In polycrystals, this t→ m27

transformation is at the origin of huge internal stresses (GPa range) promot-28

ing the development of a microcrack network into bulk specimens (Ors et al.,29

2021; Guinebretière et al., 2022; Ors et al., 2025). On the contrary, the c→ t30

SPT is a continuous second-order phase transition that can be described by31

an alternative positive and negative shift of the oxygen atoms along the c-32

axis of the cubic cell. It means that along this axis, the oxygen coordinate is33
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no longer than 0.25 but equal to 0.25− η, where η is the order parameter in34

the Landau sense (Landau and Lifshitz, 2013; Yashima et al., 1993). Because35

the c→ t SPT corresponds to a decrease of symmetry, a single cubic crystal36

induces the formation of several adjacent crystals (twins) upon transition. In37

Section 2, we describe the microstructures inherited from this SPT process38

according to these crystallography rules.39

The c→ t SPT induces an anisotropic stress-free strain. Further cooling40

of t crystals leads to anisotropic dilation. These two incompatible strains41

must be accommodated by a significant elastic strain (in the order of 10−2)42

and huge stress (in the GPa range) resulting from the anisotropic elastic43

stiffness at the crystal scale. The aim of the present paper is to make the44

link between the stress distribution at the crystal scale and the material45

microstructure, accounting for the crystallographic constraints of the c → t46

SPT. For the sake of modeling the mechanical response of a polycrystalline47

aggregate using a full-field numerical scheme, representative microstructures48

are required. One possibility for this are phase field simulations (see, e.g.,49

Wang et al. (1995) and Mamivand et al. (2013)), which stand as a powerful50

computational tool for capturing the complex interplay of thermodynamics51

and kinetics. However, these simulations often demand extensive compu-52

tational resources and time due to their inherent complexity and the need53

for fine spatial-temporal resolution. In pursuit of a more expedient analy-54

sis, our research adopts a more direct modeling. Another well-established55

approach for generating virtual, yet realistic, microstructures of polycrys-56

talline materials is given by using tessellations, i.e. a geometric partitioning57

of a given sampling window into individual cells (i.e. twin domains) without58

gaps. These can be obtained by employing methods from spatial stochastics59

such as random point processes or random tessellations, see e.g. Groeber60

et al. (2008), Redenbach and Liebscher (2015), Seitl et al. (2020) and Fu-61

rat et al. (2021). Alternatively, it is possible to start with a random, but62

over-simplistic, microstructure, e.g., from a packing algorithm, and modify it63

with an optimization procedure that utilizes some experimentally observed64

characteristic, in order to acquire a more realistic structure, see Quey and65

Renversade (2018) and Serrao et al. (2021). However, all these approaches66

rely on three-dimensional experimental data, which is not readily available67

for the cubic-tetragonal phase transition of zirconia due to the high tem-68

peratures involved. In the present paper, we therefore employ crystallo-69

graphic laws associated with the phase transition process to obtain realistic70

microstructures without the need of experimental data.71

The structure of the present paper is as follows: In Section 2 we provide72

a detailed description of the herringbone microstructure of t ZrO2, which73
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originated from a c ZrO2 single crystal and was subjected to the SPT. Then,74

in Section 3, we present the microstructure model that has been developed75

to generate 3D herringbone microstructures of the t zirconia phase. Details76

of the numerical implementation of the spectral method used to compute77

the thermo-mechanical response of the microstructures are presented in Sec-78

tion 4. Full-field results are shown in Section 5 and compared with the79

analytical solution for lamella with infinite aspect ratio recalled in Appendix80

A. The paper ends with some concluding remarks in Section 6.81

2. Herringbone microstructure inherited from c → t phase trans-82

formation83

In this section, we provide the crystallographic elements necessary for84

the random generation of synthetic herringbone microstructures of t zirconia85

(Section 3), as the 3D geometry of crystal orientations and shapes is strongly86

related to crystallographic relationships. This study is restricted to the case87

of the SPT occurring during the cooling of a c single crystal, ending with a88

herringbone structure made of many t crystals.89

In the following, by (hkl)c and (hkl)t we denote the Miller indexes of90

lattice planes when expressed with respect to the c and t lattices, respec-91

tively. A similar convention is used for directions, i.e. [uvw]c and [uvw]t.92

As mentioned above the tetragonal lattice is a primitive one and the at and93

bt lattice vectors are rotated by 45◦ with respect to the corresponding cubic94

lattice vectors. In order to avoid additional rotations, all along the present95

article, the t structure will be described with respect to the multiple “tetrag-96

onal face centered” cell where the axes of the cubic and tetragonal cells are97

in parallel of each other. The obtained tetragonal microstructure results98

from the association of all the rotational variants allowed by the c and t99

point group relationships. It is noteworthy that the 4/mmm point group100

is a subgroup of the m3̄m one (Authier, 2003). These two point groups do101

not belong to the same crystal system, but instead are the holohedral class102

of their crystal lattice. This transition is thus a ferroelastic one, i.e. it is103

associated to a spontaneous change of the crystal lattice and of a variation104

of the number of independent nonzero components of the symmetric second105

rank tensor associated to spontaneous strain. According to Aizu (1970) it106

can be noted by m3mF4/mmm and the number of “spontaneous nonzero107

strain components” (called “stress-free strain components” in the following)108

is equal to 3 in two cases, while the number of those that are independent109

is 1 and 2 for the m3̄m and 4/mmm, respectively. The number of variants110

and their relative orientations are directly induced by the loss of symmetry111
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associated with the transition from the m3̄m to 4/mmm point group. It is112

obvious that this is associated with the loss of the 3-fold axis and thus it113

generates three single crystalline states (variants). In the cubic state, the114

3-fold axis is around the [111] direction (or any equivalent direction), that115

is collinear to the [111]∗ direction (here the notation ‘.∗’ stands for the re-116

ciprocal space). This reciprocal space direction is orthogonal to any ⟨hh̄0⟩∗117

directions. Thus, the 3-fold axis around the [111] direction lies in the {hh̄0}118

plane families that are oriented at 120◦ from each other. Considering that119

the ct/at ratio in the tetragonal state is close to 1, the twin domains ap-120

pearing through the c → t SPT are separated by twin walls belonging to a121

{11̄0}, {1̄01}, or {011̄} planes. These planes are rotated by 120° with each122

other around [111] that is the common zone axis.123

From the experimental point of view, the formation of t microstructures124

in doped zirconia has been described in detail by Hayakawa et al. (1986).125

Typical examples of herringbone microstructures are shown also in Hayakawa126

et al. (1989). There are three trivial possibilities to grow a t child phase into127

a c parent single crystal. The two sets of lattice vectors, at, bt, ct and ac,128

bc, cc, stay parallel with each other, but the ct vector can align either with129

ac or bc or cc due to the cubic and tetragonal symmetries. According to the130

International Table For Crystallography (Authier, 2003), Hayakawa et al.131

(1986) denotes the orientation relationship for which ct ∥ ac (with at ∥ bc132

and bt ∥ cc) as x variant. Similarly, a y variant has ct ∥ bc (with at ∥ cc133

and bt ∥ ac), and a z variant has ct ∥ cc (with at ∥ ac and bt ∥ bc). The134

herringbone structure consists of bands containing either x−y, x−z or y−z135

crystal sequences.136

A schematic representation of such a microstructure is provided in Fig-137

ure 1. The x and z twins in the x− z band are separated by a (1̄01)t plane,138

the y and z twins in the y − z band by (011̄)t, and the two bands by the139

(11̄0)t plane. Note the continuity of z twins across the (11̄0)t band bound-140

aries, whereas x and y twins alternate. As the three possible variants have141

an identical probability to grow, due to the symmetries of the c structure,142

their volume fractions in the final herringbone structure should be 1/3, as143

also observed experimentally. Therefore, the width of z twins in the config-144

uration (called “stacking sequence” in the following) x− z ↔ y− z shown in145

Figure 1 should be half that of x and y ones as in the figure (and similarly146

for other stacking sequences).147

The plane at the interface between two crystals, called twin wall, can148

be either (11̄0)t or (110)t when there is a succession of x and y crystals.149

Similarly, it is either (101)t or (1̄01)t for a succession of x and z orientations,150

and (011)t or (01̄1)t for a succession of y and z orientations. In general,151
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a single twin wall is selected all along a band, but it can appear that the152

plane changes within the same band, e.g. the plane is (101)t in some part153

of the band but (1̄01)t further away, e.g. see Figure 6 of Hayakawa et al.154

(1986), leading to more complex microstructures that are not considered in155

the present work.156

Figure 1: Schematic illustration of the herringbone structure comprising many t twins
denoted x, y or z according to the convention indicated in the text. The twin walls (in
blue) separate x− z or y − z twin pairs that constitute the two different kinds of bands.
Band boundaries (in red) separate x−y twins. The figure is a section of the microstructure
normal to the [111] direction. It corresponds to the stacking sequence denoted x−z ↔ y−z.
The loss of the 3-fold symmetry is clearly illustrated by the association of all twins.

3. Generation of synthetic 3D herringbone microstructures157

In this section, we detail the model that has been developed for the158

generation of synthetic herringbone microstructures. For doing this, we have159

relaxed the strict crystallographic rules provided in the previous version. We160

still consider that only three t variants can form from the c parent crystal.161

Sequences of x−y, x− z and y− z twins are considered, organized in bands,162

but we take more degrees of freedom concerning the twin planes and band163

boundaries - we consider all possible planes of the {110} families.164

The 3D t microstructures are generated in two steps. First some seed165

points are simulated in a sampling window filled with a cubic single crystal166

at high temperature. Then, the region of influence for each seed point is167

subdivided by inserting herringbone structures generated in accordance with168

the crystallographic rules described in Section 2.169

More formally, consider the sampling window W = [0, 1]3 containing a c170

single crystal with lattice parameter ac and whose crystal axes ac, bc and171

cc are oriented along the axes of the used coordinate system. Based on172
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the model parameter nVo = 1, 2, . . . , which specifies the number of nucle-173

ation (i.e. seed) points for the phase transition, in total nVo seed points174

pVo
1 , . . . ,pVo

nVo ∈ W are drawn uniformly and independently in W (i.e. a175

realization of a binomial point process, see Chiu et al. (2013)). With these,176

a Voronoi tessellation (Chiu et al., 2013) with the cells CVo
1 , . . . , CVo

nVo ⊂ W177

is built. Here, the i-th cell CVo
i comprises all points in the sampling window178

W that are closer to the i-th seed point pVo
i than to any other seed point.179

In other words, CVo
i is given by180

CVo
i = {x ∈ W : ∥x− pVo

i ∥ ≤ ∥x− pVo
j ∥ for all j ̸= i} (1)

for all i = 1, . . . , nVo where ∥·∥ denotes the Euclidean distance. In each181

Voronoi cell CVo
i , a t herringbone structure is then constructed as follows:182

As the first step, to disentangle the crystal symmetries, a coordinate system183

is chosen at random from the 24 equivalent possibilities that are aligned184

with the cubic crystal of the sampling window (6 possibilities to align the185

new x-axis with the axes of the coordinate system, then 4 for the y-axis186

and only 1 remaining for the z-axis to ensure a right-handed system). This187

leads to (orthonormal) basis vectors b1,b2,b3 ∈ R3 and the lattice LVo =188

{(aci1b1, aci2b2, aci3b3) : i1, i2, i3 integers}, which is used in the following.189

Next, a herringbone configuration as described in Section 2 is selected at190

random consisting of a stacking sequence s (either y−x↔ z−x, x−y ↔ z−y,191

or x−z ↔ y−z), twin wall boundaries and band boundaries. Let nbn be the192

unit normal vector for the band boundaries and ntw
A ,ntw

B be the unit normal193

vectors of the twin walls for crystals in the two bands (denoted A and B),194

respectively. With this, parallel planes P bn
Kbn

min
, . . . , P bn

Kbn
max
⊂ CVo that define195

individual band boundaries are constructed such that they are orthogonal196

to nbn and the distances to their nearest neighboring planes are equal to197

wbn for some width parameter wbn > 0 and integers Kbn
min ≤ Kbn

max. More198

specifically, for the k-th band boundary plane, consider the points pbn
k ∈ P bn

k199

given by200

pbn
k =

⌊
k + 1

2

⌋
vA +

⌊
k

2

⌋
vB + pVo (2)

with the shift vector201

vA = wbn
(
nbn −

〈
nbn,ntw

A

〉
ntw
A

)
(3)

for the A-bands and202

vB = wbn
(
nbn −

〈
nbn,ntw

B

〉
ntw
B

)
(4)
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for the B-bands where ⌊·⌋ denotes the floor function, ⟨·, ·⟩ denotes the scalar203

product and Kbn
min ≤ k ≤ Kbn

max. The corresponding band boundary plane204

P bn
k is then given by205

P bn
k =

{
x ∈ CVo :

〈
(x− pbn

k ),nbn
〉
= 0

}
. (5)

In the following, the band Cbn
k ⊂ CVo is the region enclosed by P bn

k−1 and P bn
k .206

The values of Kbn
min and Kbn

max are selected such that Cbn
Kbn

min+1
and Cbn

Kbn
max

have207

a volume larger or equal to some minimum volume vmin > 0, respectively. In208

the case where the Voronoi cell CVo has already a smaller volume than 2vmin,209

no band boundary is inserted and Cbn
0 = CVo. Otherwise, P bn

0 is certainly210

present because the seed point pVo = pbn
0 is always included in the Voronoi211

cell CVo. As the last step for constructing the bands, a type is assigned to212

each Cbn
k : if k is odd the Cbn

k is of type A, and of type B otherwise.213

Similarly to the Voronoi cells above, every band is subsequently subdi-214

vided into individual t crystals by inserting twin walls P tw
k,Ltw

min
, . . . , P tw

k,Ltw
max
⊂215

Cbn
k , with some integers Ltw

min ≤ Ltw
max, whose normal vector is given by the216

considered herringbone configuration. The twin wall normal vector ntw ∈ R3
217

is denoted ntw
A if the k-th band is of type A, and ntw

B if it is of type B. Each218

band consists of crystals from two different crystal variants – one that is219

unique for this type of band, and another one that is present in both types,220

as described in the previous section. Their assignment to each band is dic-221

tated by the stacking sequence s of the herringbone configuration, e.g., for222

s = x − z ↔ y − z as in Figure 1, the z-variant is shared between all223

bands, the y-variant belongs to the A-bands and the z-variant to the B-224

bands. The (maximum) width of a crystal is determined by whether it is225

shared or unique. In the first case, twin walls P tw
k,ℓ are separated by a distance226

wtw
s > 0 and by wtw

u > 0 in the second case. For our simulations, we chose227

wtw
u = 2wtw

s and wtw
s = αARw

bn for some aspect ratio parameter αAR > 0.228

The ℓ-th twin plane contains the point229

ptw
k,ℓ =

(⌊
ℓ+ 1

2

⌋
wtw
u +

⌊
ℓ

2

⌋
wtw
s

)
ntw + pbn

k (6)

and is therefore given by230

P tw
k,ℓ =

{
x ∈ Cbn

k :
〈
(x− ptw

k,ℓ),n
tw
〉
= 0

}
(7)

with the integer Ltw
min ≤ ℓ ≤ Ltw

max. The crystal Gk,ℓ is given by the band231

boundaries P bn
k−1 and P bn

k as well as the twin walls P tw
k,ℓ−1 and P tw

k,ℓ. The232
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values of Ltw
min and Ltw

max are chosen such that GKbn
min+1 and GLtw

max
have a233

volume larger or equal to the minimum volume vmin, respectively. For bands234

whose volume is lower than 2vmin, only one crystal exists, which is equal to235

the band. A lattice orientation is then assigned to the crystals, depending236

on the selected variants sequence.237

Note that not all combinations of variant sequences, twin walls, and band238

boundaries lead to geometrically acceptable microstructures. For example,239

in a hypothetical x − z ↔ y − z sequence with a (110) band boundaries, a240

(1̄01) twin wall for the x − z A band and a (01̄1) twin wall for the y − z B241

band, one ends up with an unrealistic microstructure with no continuity of242

the z variant as it should be. Such microstructures are thus discarded in the243

present work.244

In the following, two datasets are considered.245

i) The first one, denoted by Dhs, focuses only on the herringbone structure246

inside a single Voronoi tessellation cell. More precisely, it was obtained247

by forcing the Voronoi tessellation to have exactly one cell CVo = W248

with seed point pVo = (0, 0, 0). This dataset comprises 100 realization249

for each value of the aspect ratio αAR ∈ {1, 10}. The minimum volume250

parameter was set to vmin = 3 · 10−5.251

ii) The second dataset Dsm consists of 400 realizations of the (unmodified)252

stochastic model. For this, 100 microstructures were obtained for each253

parameter configuration given by a value for the number of Voronoi254

cells nVo ∈ {4, 20} and for the aspect ratio αAR ∈ {1, 10}. Again,255

vmin = 3 · 10−5 was chosen.256

In order to be able to compute the mechanical response of those mi-257

crostructures with the FFT method (see next section), all realizations were258

discretized into 256×256×256 regularly spaced voxels. Figure 2 shows three259

typical 3D microstructures obtained with the above model, comprising 1, 4260

and 20 Voronoi cells filled with herringbone structures.261

In Figure 3, some characteristics of Dsm are presented. In Figure 3(a) the262

mean number of twins in each realization of the stochastic microstructure263

model is shown. As might be expected, the number of crystal variants –264

whose type depends on the local stacking sequence – that are located in265

both types of band are approximately twice the number of variants that are266

only in one type of band. It is noteworthy that the aspect ratio αAR has a267

stronger influence on the number of twins than the number (and therefore the268

size) of Voronoi cells nVo. This fact is further illustrated when considering269

the mean volume-equivalent diameters in Figure 3(b).270
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(a) (b) (c) (d)

Figure 2: 3D visualizations of two realizations from the dataset Dhs comprising a unique
Voronoi cell (nVo = 1) with (a) aspect ratio αAR = 1 and (b) αAR = 10, as well as two
realizations drawn from Dsm where (c) nVo = 4 with αAR = 10, and (d) nVo = 20 with
αAR = 10.
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Figure 3: (a) Plot of the mean number of twins in each realization, and (b) box plot of the
volume-equivalent diameter of the twins, for each variant type and model configuration in
the dataset Dsm.

4. Full-field computation271

4.1. Computational method272

Significantly high internal stress is expected in t zirconia. On the one273

hand, this is due to the c→ t phase transformation occurring at ∼ 2300 ◦C,274

which leads to changes in the crystal lattice parameters and resulting in275

stress-free deformations with a marked anisotropy. The second source of276

internal stresses is the anisotropic thermal dilation of the t phase, leading to277

anisotropic strain during subsequent cooling. These two sources of stress-free278

and incompatible deformation add up. In the following, the total stress-free279

strain is denoted εth. In this work, only thermal and elastic responses are280

considered, no plasticity nor damage is introduced. The constitutive law of281
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the material is thus similar to a thermo-elastic one, and reads282

σ(x) = C(x) : εe(x) = C(x) :
(
ε(x)− εth(x)

)
(8)

with x denoting some position inside the herringbone microstructure and283

εe, εth and ε the elastic, thermal and total (i.e. thermal + elastic) strain.284

To solve for the stress fields, we use the full-field method based on the285

spectral method initially proposed by Moulinec and Suquet (1998) and the286

associated open-source numerical code CRaFT (Boittin et al., 2024). In this287

method, the computational domainW is discretized into 256×256×256 vox-288

els (or Fourier points). This discretization determines a regular grid in the289

cartesian space and a corresponding grid in the Fourier space. The method290

also requires the selection of a linear reference medium of stiffness C0. The291

heterogeneous problem of a polycrystal exhibiting a different elastic stiffness292

C at each position x, as in Eq. (8), is rewritten equivalently as a homoge-293

neous problem with the arbitrary homogeneous stiffness C0 and an additional294

stress-free strain (or polarization) field ε0(x), which is unknown. The solu-295

tion is given by a convolution of the Green tensor associated to C0 with the296

polarization field of interest. In the Fourier space, this convolution turns into297

a direct product. The Fourier transform of the Green operator associated298

with the reference medium can be readily calculated. Due to highly opti-299

mized numerical implementations of FFTs, the numerical efficiency of this300

method is very high. An iterative scheme must be implemented to obtain,301

upon convergence, the compatible strain field associate with a kinematically302

admissible displacement field, that minimizes the average of the local strain303

energies, under the constraint imposed by stress field balance (Suquet et al.,304

2012).305

4.2. Material behavior and loading conditions306

The spectral method described above is limited to computational do-307

mains submitted to periodic boundary conditions. It is only very recently308

that a method allowing non-periodic boundary conditions has been proposed309

(Paux et al., 2025). Therefore, periodic microstructures are often used in310

combination with this FFT method, e.g. see Lebensohn et al. (2011). This311

prevents from having an impact of the applied boundary conditions on the312

mechanical fields, but at the same time this also limits the randomness of313

the studied microstructures. Periodicity of synthetic herringbone microstruc-314

tures cannot be achieved. When computing the mechanical response of poly-315

crystalline aggregate, as a rule of thumb, specific boundary conditions are316

often considered to have an impact on the outer shell of the computation317
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domain over a thickness of typically one twin domain. Therefore, a layer318

of 20-voxels thickness at the outer surface of the computational domain has319

been removed for the statistical analysis presented below. Moreover, we have320

verified that the results are similar if a thicker outer shell is removed.321

The results presented below are obtained for cooling. Zirconia crystal-322

lizes into a polycrystalline aggregate made of cubic crystals at about 2700 ◦C.323

As cubic crystals exhibit an isotropic thermal dilation, residual stresses due324

to cooling are not expected in the cubic domain down to 2300 ◦C, the tem-325

perature at which the c→ t transformation is engaged. Here, we consider a326

simple scenario in which the herringbone t microstructure is formed at once327

at 2300 ◦C in a parent c stress-free single crystal. The t zirconia is then328

further cooled down by ∆T = −1000 ◦C, i.e. down to 1300 ◦C which lies still329

higher than the t → m transformation temperature for pure zirconia. All330

results are given at this target temperature.331

The residual stress field at 1300 ◦C depends on the Bain strain during332

the c → t transformation, the thermal dilation of the t phase, the elastic333

behavior of t crystals, and of course also on the specimen microstructure.334

The herringbone microstructure for t zirconia has been mostly observed335

for doped zirconia, as dopants such as yttrium stabilizes the t phase at lower336

temperatures. Lattice parameters of c and t phases depend on the dopant337

concentration. Here, we use the data from Mamivand et al. (2013):338

ac = 5.27Å , at = bt = 5.141Å , ct = 5.2609Å . (9)

The transformation strain for a z-variant is therefore339

εtr =

−2.448× 10−2 0 0
0 −2.448× 10−2 0
0. 0. −1.727× 10−3

 . (10)

As for the thermal dilation of the t phase, several published values have340

been listed in Table 2 of Guinebretière et al. (2022) for bulk specimens and341

powders. Here, the data of zirconia powders measured by Lang (1964) be-342

tween 1150 ◦C and 1700 ◦C was considered with three different compositions.343

It was found that the lattice parameters evolve almost linearly with temper-344

ature:345

dat
dT

= 6.36× 10−5 ÅK−1 ,
dct
dT

= 7.57× 10−5 ÅK−1 . (11)

From these values, one can already anticipate that the thermal strain, due to346

dilation, will have a limited effect on the residual stress field. Indeed, with347
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∆T = −1000 ◦C, the difference in the longitudinal thermal strain along at348

and ct directions is approximately one order of magnitude smaller than the349

difference for the transformation strain.350

Concerning the elastic stiffness of t crystals, several values have been351

proposed in the literature, see for example Table 2 of Fadda et al. (2002).352

The values of the components can vary significantly, for example C12 and C13353

can differ by a factor ∼ 4, and the largest component C11 by 70%, depending354

on the author. Here, we use the values measured by Kisi and Howard (1998)355

and also used as reference by Zhao et al. (2011) and Mamivand et al. (2013):356

C1111 =327GPa , C1122 = 100GPa , C1133 = 62GPa ,

C3333 =264GPa , C1212 = 59GPa , C2323 = 64GPa .
(12)

5. Results357

5.1. Results for a single Voronoi cell358

In this section, we start with the microstructures from the simpler dataset359

Dhs, i.e. those for which only a single Voronoi cell was used (i.e. nV o = 1)360

as in Figures 2a and 2b. Each cell is defined by a number of geometri-361

cal/crystallographical features, namely a stacking sequence, the twin planes362

inside the bands and the band boundary plane. Three different stacking363

sequences are possible, named as y − x ←→ x − z, x − y ←→ y − z and364

x− z ←→ z− y where the repeated variant name corresponds to the variant365

shared by the two bands. To indicate the twin planes and the band bound-366

ary orientation, we use a notation such as y
(011)
− x

(110)←→ x
(101)
− z indicating a367

(011) twin planes between y and x variants in the first band, a (101) twin368

plane between variants x and z in the second band, and a plane (110) as369

band boundary. In total, 18 different combinations are possible, 3 possible370

stacking sequences and for each stacking sequence 6 possible permutations371

of plane indices, all listed in Table 1. Evidently, as the initial c crystal ex-372

hibit cubic symmetries, and since we are considering only isotropic loadings373

(thermal loading) of the herringbone t microstructures, some of these 18 mi-374

crostructures generate similar stress and strain fields that are only rotated375

by 90◦ with respect to one of the cubic axes. This is for example the case for376

y
(110)
− x

(011)←→ x
(101)
− z and x

(110)
− y

(101)←→ y
(011)
− z. Accounting for these symme-377

tries, we end up with 6 different microstructures and 6 different mechanical378

responses. Symmetrically equivalent microstructures are grouped by a color379

code in Table 1.380
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Table 1: Mean value of the normal stress σc, expressed in MPa, for various microstructures.
Full-field results for the aspect ratios αAR = 10 and αAR = 1 and a single Voronoi cell.
Exact results for rank-2 laminates, corresponding to infinite aspect ratio (αAR = ∞)
are also provided. The color code indicates the microstructures with similar thermo-
mechanical response.
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In the following, we discuss the results from the full-field computations,381

performed for two aspect ratios, αAR = 10 and αAR = 1. We expressed all382

stress tensors in a reference frame attached to the t crystal lattice. Here,383

we will mostly concentrate on the normal stress components denoted σa, σb,384

σc. For example, σc is the normal stress along the c-axis of a t-crystal, i.e.385

acting on a (001)t lattice plane along the direction [001]t. For each generated386

microstructure, we have computed the stress distributions in twin domains387

with a given lattice orientation (i.e. same variant) and a given band, and388

estimated the mean and dispersion values of these distributions. The results389

for the mean normal stress σc within each variant are reported in Table 1.390

Exact results for rank-2 laminates, corresponding to infinite aspect ratio391

(αAR =∞) are also provided, see Appendix A.392

(i) It can be remarked that the obtained mean stress values for σc are huge.393

In all microstructures except for the ones indicated in the first line of394

the table (yellow cells), there is at least one variant for which σc lies395

in the GPa range, and up to −3.8GPa. In general, only non-positive396

values (compressive stress) are obtained.397

(ii) All mean normal stress components are reported in Table 2 for the case398

αAR = 10 and for 6 representative microstructures (the 12 remaining399

ones can be obtained by symmetry operations as discussed above).400

Similar to σc, the values for σa and σb also lie in the GPa range, except401

for the yellow cells. This time, however, positive (tensile) stress values,402

up to +3.2GPa, are also obtained.403

(iii) For the sake of conciseness, shear stress values are not given explicitly404

here. They have been found to be significantly smaller (in absolute405

value) than normal stresses, generally in the range of tens of MPa.406

The largest obtained value for αAR = 10 is 450MPa.407

(iv) According to Table 1, the aspect ratio of the t lamellae plays an impor-408

tant role in the stress distribution. Results for αAR = 1 and αAR = 10409

show some similarities but the obtained values for σc can be quite dif-410

ferent.411

(v) Note that in Table 1 some microstructures exhibit similar distribution412

of σc beyond the basic symmetry operations discussed above. This is,413

for example, the case for the gray and green cells, as well as for the414

orange and blue ones. For these microstructures, however, σa and σb415

do not match together (see Table 2) for a given variant, but we find the416

same stress values in other variants. The values are simply permuted.417

For the yellow and red cells, we find the same values for σa and σb418

belonging to the variant not shared by both bands. These values are419
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Table 2: Mean value of the normal stresses components σa, σb and σc, expressed in MPa,
for each set of equivalent microstructures. Full-field results for an aspect ratio αAR = 10
and a single Voronoi cell. The color code is similar than for Table 1.

y
(110)
− x

(011)←→ x
(101)
− z

σa 31 124 97 144
σb 144 97 124 31
σc -200 -32 -32 -200

y
(110)
− x

(101)←→ x
(011)
− z

σa 307 -1838 2218 1593
σb 254 194 271 1803
σc -1992 -130 -3514 -529

y
(101)
− x

(011)←→ x
(110)
− z

σa 257 3275 -142 188
σb 188 -142 3275 257
σc -1850 -376 -376 -1850

y
(101)
− x

(110)←→ x
(011)
− z

σa 124 1450 -1445 87
σb 2144 3203 667 1844
σc -2047 -755 -3166 -2156

y
(011)
− x

(101)←→ x
(110)
− z

σa 1844 667 3203 2144
σb 87 -1445 1450 124
σc -2156 -3166 -755 -2047

y
(011)
− x

(110)←→ x
(101)
− z

σa 1803 271 194 254
σb 1593 2218 -1838 307
σc -529 -3514 -130 -1992

simply swapped. We also find the same swapped sets of values for gray420

and green cells.421

When looking into the details of the stress distributions within the various422

microstructures, it is apparent that there are basically three different cases:423

1. For some microstructures, a bimodal stress distribution is obtained424

within the whole microstructure. This is the case for the yellow and425

red cells in Table 1, where the twin domains belonging to the variant426

shared by the two bands on one side, and belonging to the two other427

variants on the other side, exhibit the same mean stress value σc.428

2. For other microstructures (blue and orange cells in Table 1), the mean429

stress in twin domains belonging to the variant shared by both bands430

are significantly different, whereas in the other two variants, values of431

σc are almost identical.432

3. For the remaining configurations (gray and green), four significantly433

different mean values of σc are obtained for each variant in each band.434
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In the case of αAR = 10, for example in y
(110)
− x

(101)←→ x
(011)
− z, the mean435

stress in twin domains belonging to variant x can be relatively small436

inside the band containing also the variant y (namely −0.13GPa),437

but huge (in absolute value) inside the other band containing also the438

variant z (namely −3.5GPa).439

Note that the classification above depends on the stress component consid-440

ered (Table 2). For example in y
(101)
− x

(011)←→ x
(110)
− z, the same value for σc is441

found within the variant x for both bands, but significantly different values442

for σa and σb in the same variant between both bands.443

Figure 4: Distribution of σc in microstructures y
(101)

− x
(011)←→ x

(110)

− z (left) and y
(011)

− x
(110)←→

x
(101)

− z (right) with one Voronoi cell (nVo = 1) and aspect ratio αAR = 10. Spatial 3D
stress distributions (top) and corresponding probability distribution functions (bottom)
showing 2 or 4 distinct peaks (the arrows indicate the variant for the distribution shown).

Figure 4 illustrates the observations above. It shows the 3D field of σc444

for a microstructure y
(101)
− x

(011)←→ x
(110)
− z corresponding to case 1 (bimodal445

distribution of σc), and a microstructure y
(011)
− x

(110)←→ x
(101)
− z for which 4446

different stress values arise (case 3), both with αAR = 10. The probability447
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densities of the residual stress are also provided. Here, the stress hetero-448

geneity inside each twin domain is small, leading to well distinct and narrow449

peaks in the stress distribution. In y
(101)
− x

(011)←→ x
(110)
− z, the x variants of450

both bands show the same stress level. This is also the case for variants y451

and z. Contrarily, for y
(011)
− x

(110)←→ x
(101)
− z, the 4 variants exhibit different452

stress states, and in particular the stress in the x variant in both bands is453

significantly different (−3.5GPa and −0.13GPa). These results show that454

in such herringbone microstructures, the mean stress in twin domains with455

similar crystallographic orientation is not guided essentially by their lattice456

orientation as often encountered in polycrystalline aggregates e.g. see Gu457

et al. (2017) and Purushottam Raj Purohit et al. (2021), but crystal stresses458

are highly dependent on the local crystal arrangement.459

(a) (b) (c)

Figure 5: Probability density functions averaged over the 18 possible microstructures with
αAR = 10 and nVo = 1 for (a) σa, (b) σb, and (c) σc.

To go one step further in the analysis of the statistical distribution inside460

the constituting crystals, in Figure 5 the probability density of σa, σb and461

σc is shown for an aspect ratio αAR = 10 when considering all possible462

microstructures indicated in Table 1. The main findings are:463

(i) The distributions of σa and σb turn out to be similar, due to the tetrag-464

onal symmetry of the crystal lattice.465

(ii) The distributions of σa and σb show 4 peaks, whereas that of σc has466

only 3.467

(iii) These three distributions are extremely broad with widths between468

−4GPa and 4GPa.469

These results highlight again the huge impact of the local crystallographic470

and morphologic environment on the stress state of a given crystal in the471

whole microstructure.472
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5.2. Influence of the aspect ratio of twin domains473

We have also investigated the impact of the twin domain aspect ratio on474

the resulting distribution of residual stress in the various microstructures.475

Examples of microstructures with aspect ratios αAR = 1 and αAR = 10 are476

shown in Figure 2a and 2b, respectively.477

(a) (b)

Figure 6: Probability density functions of σc for the microstructure y
(011)

− x
(101)←→ x

(110)

− z
with nVo = 1 for the aspect ratios (a) αAR = 1 and (b) αAR = 10. The arrows indicate
which variant the distribution corresponds to.

The probability density of σc for the sequence y
(011)
− x

(101)←→ x
(110)
− z is478

shown in Figure 6, for both aspect ratio. Increasing the aspect ratio from479

1 to 10 very clearly leads to a narrowing of the stress distribution in all480

variants. Apparently, for αAR = 1, the distribution of σc in the y and z481

variants are well separated (by ∼ 2GPa), but for αAR = 10 they are almost482

overlapping. Conversely, the x variants in both bands behave very similarly483

for αAR = 1, but are clearly distinct for αAR = 10.484

The case αAR = 1 was investigated mostly to track the effects of drastic485

changes in microstructures. It probably departs from real microstructures486

due to exhibiting a very extreme morphology. For example, the experimental487

observations (electron micrograph) of Hayakawa et al. (1986) show aspect488

ratio more in the range αAR ∼ 10 − 20, i.e. similar to microstructures489

investigated in Section 5.1. On the other hand, this shows that the procedure490

for microstructure generation, described in Section 3, is robust and capable491

of constructing highly different microstructure types.492

Herringbone microstructures with very large aspect ratio can hardly be493

studied numerically, as this would require a much larger computational do-494

main for the FFT solver. However, microstructures with infinite aspect495
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(a) (b)

Figure 7: (a) Schematic representation of a rank-1 laminate with normal n, made of two
materials with elastic stiffness and stress-free strain C and ε0, respectively. (b) In the
rank-2 laminate with normal n, each layer is itself a rank-1 laminate with effective stiffness
and effective stress-free strain C̃ and ε̃0.

ratio (αAR → ∞) are easy to handle through the analytical solution for496

thermo-elastic laminates. The microstructure of such a periodic composite497

is illustrated in Figure 7. A rank-1 laminate is composed of a succession498

of planar, parallel, infinite and perfectly bonded layers. Each layer has a499

different elastic stiffness and stress-free strain. The exact effective stiffness500

and effective stress-free strain of such a composite can be easily calculated.501

A rank-2 laminate can be constructed similarly by piling-up layers made of502

rank-1 laminates. Continuing the same process, it is possible to construct503

rank-n laminates, up to infinite order as in Francfort and Murat (1986) and504

Idiart (2007). The elastic response of rank-1 laminates has been investigated505

first by Backus (1962). The thermo-elastic response has received much less506

attention. In Appendix A, we extend the analytical solution given in Milton507

(2002) by providing a compact expression of the residual stress field. A well-508

known exact result concerning the thermo-elastic response of laminates is509

that the stress and strain fields inside each layer are uniform, and therefore510

the stress distributions shown above for finite αAR values (Figures 4, 5 and511

6) become Dirac shaped for αAR →∞.512

The interest for such a rank-2 laminate structure within the present study513

is twofold. First, it resembles the herringbone structure described in Sec-514

tion 2, with the finest lamellas representing the twinning process, and the515

largest (rank-2) lamination the large bands observed in herringbone struc-516

tures. And second, if at each stacking step, one piles up a very large number517

of thin layers so that the physical scale of the whole laminate is much larger518

than the one of each layer, then the analytical solution provided in Appendix519

A is exact. This condition implies that the aspect ratio of the layers, at each520

stacking step, is infinite.521

We have thus constructed rank-2 laminates for herringbone microstruc-522

tures following the same crystallographic rules as described in Section 3. The523
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Figure 8: Effect of the tetragonality ct/at on the stress component σc in one of the x twin

domains for the microstructure y
(110)

− x
(101)←→ x

(011)

− z (gray curves), accounting for SPT

only (continuous line) and for SPT plus cooling (dashed line). For y
(110)

− x
(011)←→ x

(101)

− z
(yellow curve), the value of σc in all twin domains remains zero regardless of tetragonality,
dilation coefficients of the t phase and cooling range. Results from the rank-2 analytical
solution corresponding to αAR →∞ and nVo = 1.

values obtained for σc are indicated in Table 1.524

(i) One can observe that the difference in σc between the cases αAR = 10525

(mean values of σc) and αAR →∞ (exact values of σc) are rather small,526

generally of the order of a few tens of MPa, the largest difference being527

0.33GPa.528

(ii) The 3 microstructures highlighted in yellow in Table 1 turn out to be529

very specific. Already in the cases αAR = 1 and αAR = 10, much lower530

σc values were found compared to other microstructures. In the case531

αAR →∞, one obtains that σc is strictly zero, and we have checked that532

all other stress components also vanish. These specific microstructures533

thus correspond to a case for which both SPT and anisotropic ther-534

mal dilation of the t phase do not lead to any residual stress, thus no535

stored elastic energy, and also no reason for the appearance of cracks.536

It can be checked that this corresponds to configuration for which both537

transformation strain and thermal strain are compatible, and therefore538

there is no need for additional elastic accommodation during the cool-539

ing process. Also, interestingly, these 3 microstructures correspond to540

the experimental ones described in Section 2, based on the possible541

twinning planes associated with the crystal structures.542

(iii) We have verified with the analytical solution for the laminate that543

the sign of the Miller indices used to describe the twin planes and544
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band boundaries has no effect on the stress field, i.e. calculating the545

response of a microstructure comprising e.g. a (110) plane or a (1̄10)546

plane gives exactly the same results. The same behavior has also been547

found with the full-field numerical approach, even if the microstructures548

are geometrically different. This is why we have removed the sign of549

all Miller indices in Tables 1 and 2.550

(iv) Using the analytical solution for laminates, one can also easily estimate551

the relative importance of the transformation strain associated with the552

SPT and thermal dilation in the build-up of the residual stress field.553

Performing calculations accounting for the SPT either with cooling554

(∆T = −1000 ◦K) or without cooling (∆T = 0 ◦K), both resulting555

residual stress fields are very close. All stress components in the case556

that included cooling are slightly smaller by about 5% (in absolute557

value) than without cooling. The residual stress field is thus essentially558

governed by the transformation strain.559

(v) Among all material parameters listed in Section 4.2, all results pre-560

sented above do not depend directly on the lattice parameters, nor on561

the dilation coefficients. Only the tetragonality ct/at and the ratio of562

the dilation coefficients along ct and at of the t phase come in play.563

The lattice parameter of the c phase does not have any influence on564

the stress field for the calculation conditions adopted here. The tetrag-565

onality is a particularly important parameter as it is routinely adjusted566

by adding dopants such as yttria in order to stabilize the t phase down567

to room temperature, see e.g. Krogstad et al. (2011). Figure 8 shows568

the effect of the tetragonality on the value of σc in one illustrative569

microstructure y
(110)
− x

(101)←→ x
(011)
− z, when the zirconia has been sub-570

mitted to SPT only (thus forming the herringbone structure) or when571

it has been submitted to SPT and cooling (∆T = −1000 ◦C) as above.572

This figure illustrates the small effect of thermal cooling compared to573

the SPT, i.e. a constant difference of 216MPa being found between574

both curves. For both cases, the residual stress field evolves linearly575

with ct/at, and a similar linear response (not shown) is obtained when576

modifying the ratio of the dilation coefficients of the t phase. Again,577

the specific y
(110)
− x

(011)←→ x
(101)
− z microstructure (yellow in Tables 1578

and 2) shows a very specific behavior with vanishing residual stress (all579

components in all twin domains), regardless of tetragonality, cooling580

range, and ratio of dilation coefficients for the t phase.581
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5.3. Microstructure comprising several Voronoi cells582

Finally, we have investigated the effect of having several Voronoi cells in583

the computational domain, each of which contains a herringbone structure of584

a random configuration. These generated microstructures match the experi-585

mental ones more closely. The different Voronoi cells may reflect a process in586

which the phase transition starts simultaneously at different positions within587

a large parent c crystal at high temperature. Several herringbone microstruc-588

tures thus grow concurrently and meet at some point where a new boundary589

is formed between the individual herringbone structures. These boundaries590

are modeled by the facets of the Voronoi cells described in Section 3.591

Figure 9: Box plots describing the distributions of σc in the Voronoi cells comprising

the sequence y
(101)

− x
(011)←→ x

(110)

− z for nine generated microstructures with αAR = 10 and
nVo = 20 Voronoi cells. The colors correspond to the variants (i.e. x, y and z) as indicated
by the arrows.

We focus in the following on the stacking sequence y
(101)
− x

(011)←→ x
(110)
− z592

with an aspect ratio αAR = 10. In Figure 9, nine generated microstructures593

are considered each comprising nVo = 20 Voronoi cells. For these, box plots594

of the distribution of σc within the Voronoi cells containing the sequence595

y
(101)
− x

(011)←→ x
(110)
− z are shown . It is apparent that quite strong fluctuations596

occur in all the 3 variants from one microstrostructure to another, not only597

for the mean values of σc, but also for the dispersion of the distributions. For598

example, the standard deviation of σc can vary from 100MPa to 600MPa in599

variant y, depending on the microstructure.600

Figure 10 shows the distributions of σc, for the same sequence, still in601

microstructures comprising 20 Voronoi cells, but now as a statistical aver-602

age over many replications from the stochastic microstructure model. These603

23



Figure 10: Probability density functions of σc in one Voronoi cell comprising the sequence

y
(101)

− x
(011)←→ x

(110)

− z averaged over many generated microstructures with αAR = 10 and
nVo = 20 Voronoi cells.

distributions can be compared to that given in Figure 4a which was calcu-604

lated for a microstructure comprising a single Voronoi cell for the same se-605

quence. Clearly, the presence of boundaries randomly delimiting two specific606

sequences of variants significantly increases the spread of the distributions607

of residual stress.608

A general conclusion of this section is that when different herringbone609

structures grow simultaneously in the same initial c crystal, the residual610

stress field is globally of higher intensity, and stress distributions are broader611

compared to the case with a single Voronoi cell (i.e. a single nucleation point612

of the SPT). This is due to the additional strain incompatibilities between613

all herringbone structure, compared to the case where only one Voronoi cell614

is present.615

However, there is still a very specific case with the microstructures y
(110)
−616

x
(011)←→ x

(101)
− z highlighted in yellow in Table 1. For αAR → ∞, besides617

vanishing residual stresses for the case of a single herringbone structure as618

found in Section 5.2, the effective stress-free strain ε̃0 of such microstructures619

turns out to be isotropic (strain value is found to be −2.36 × 10−2i, with i620

the second rank isotropic tensor). Therefore, when all Voronoi cells of the621

microstructure contain such a sequence, even oriented differently, the final622

residual stress field still vanishes, with no elastic energy stored, regardless of623

the position and orientation of the boundary between the different herring-624

bone structures (i.e. facets of the Voronoi tessellation) because the effective625

stress-free strain inside each Voronoi cell is equal and isotropic, thus com-626
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patible. This might be the reason why the Laue microdiffraction patterns627

measured at high temperature in pure tetragonal zirconia in Purushottam628

Raj Purohit et al. (2024) seem to indicate very little lattice distortion.629

6. Concluding remarks630

In this work, we have investigated the residual stress field that may arise631

during the c→ t phase transition and thermal cooling in zirconia. For doing632

this, we have proposed a new scheme for the generation of three-dimensional633

herringbone microstructures that are representative of the tetragonal phase.634

These synthetic microstructures can contain one or more herringbone struc-635

tures, each in a separate Voronoi cells, and the individual twin domains636

inside these structures can exhibit various aspect ratios. Such microstruc-637

tures have been investigated numerically by a spectral method for two twin638

domain aspect ratios, αAR = 1 and αAR = 10. The exact behavior in the639

case of infinite twin domain aspect ratio has also been provided based on the640

analytical solution for rank-2 thermo-elastic laminates. The main results can641

be summarized as follows:642

(i) 18 individual herringbone microstructures have been generated and in-643

vestigated. They can be grouped into 6 different sets each containing644

3 similar microstuctures, which, due to the isotropic thermal loading,645

differ only by symmetry operations of the initial c crystal.646

(ii) In all investigated cases – except the specific ones described below –647

normal residual stresses in each type of twin domain reach huge values,648

with mean values lying in the range [−3.8GPa : +3.8GPa]. Shear649

stresses are found to be much smaller by one order or magnitude. The650

mean residual stress along the c axis, σc, is always negative, while the651

mean values of σa and σb are mostly positive, although some negative652

values are also found for some specific microstructures.653

(iii) The stress distribution over the whole microstructure can have 2, 3654

or 4 well-defined maxima, depending on the microstructure type. In655

particular, twin domains of the same variant can exhibit significantly656

different residual stress levels depending on their local environment, i.e.657

to which band they belong. A consequence of this result is that, if local658

stress measurements are performed once, e.g., using high resolution659

EBSD (Plancher et al., 2017) or Laue microdiffraction (Purushottam660

Raj Purohit et al., 2024), the interpretation of the results will require661

thorough knowledge of the local specimen microstructure.662
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(iv) The effect of thermal expansion is negligeable compared to the one663

of the transformation strain (∼ 5%) even for a significant cooling of664

∆T = −1000 ◦K.665

(v) Microstructures with twin domains having a small aspect ratio (αAR =666

1) globally exhibit similar features than the ones with higher aspect667

ratio (αAR = 10), but show a larger spread of the stress distributions.668

(vi) When several herringbone structures live together in a single microstruc-669

ture, represented in this work by several Voronoi cells, the distributions670

of the residual stress field remains globally similar to those for a sin-671

gle herringbone structure, but with broader stress distributions. We672

expect that the stress distributions in a specimen of t zirconia arising673

from a polycrystal of c zirconia (at high temperature), will be similar674

to those investigated here and comprising many Voronoi cells.675

(vii) Finally, three very specific microstructures have been identified, namely676

y
(110)
− x

(011)←→ x
(101)
− z, x

(110)
− y

(101)←→ y
(011)
− z and x

(101)
− z

(110)←→ z
(011)
− y.677

In the case of infinite aspect ratio, they all lead to isotropic effective678

stress-free strain and no residual stress at the twin domain level, re-679

gardless of the number of herringbone structures included in the whole680

microstructure. Therefore, these specific microstructures do not store681

any elastic energy and should not develop any cracks during the SPT682

and cooling processes, assuming the microstructure transforms to the683

t phase all at once. For finite aspect ratio, the obtained residual stress684

are much smaller than those for all other microstructures. Interest-685

ingly, these microstructures are the ones expected in real t zirconia due686

to the twinning plane being compatible with the crystal structures.687

We aim to expand the present study to residual stress fields resulting688

from the t → m SPT in pure zirconia. The m zirconia microstructures689

are slightly more difficult to construct due to a larger number of variants690

(namely 24) compared to the t case, but this should be very helpful to691

interpret recent experimental data acquired with electron microscopy (Ors692

et al., 2025) and with high resolution x-ray diffraction experiments at high693

temperatures obtained on synchrotron beamlines (Guinebretière et al., 2022;694

Purushottam Raj Purohit et al., 2022, 2024).695
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Appendix A. Exact results for a rank-2 thermo-elastic laminate853

In this section, we recall the expression for the effective behavior of a854

rank-n thermo-elastic laminate (Milton, 2002) and we provide compact ex-855

pressions for the residual stress field. Schematic representation of the mi-856

crostructure of rank-1 and rank-2 laminates are shown in Figure 7.857

In the rank-1 laminate, the unit vector normal to the layers is denoted n.858

These layers are denoted ’mechanical phases’ in the following. Each layer has859

a different elastic stiffness C and stress-free strain ε0. The effective stiffness860

and effective stress-free strain of such a composite are denoted C̃ and ε̃0861

respectively.862

In a rank-2 laminate, each layer is itself a rank-1 laminate, and n now863

denotes the unit normal to the planar boundary between each of these rank-864

1 laminates. The stiffness and stress-free strain of each layer of the rank-2865

laminate are thus those computed for the constituting rank-1 laminates.866

Solving for a rank-n laminate can thus be done iteratively.867

The mechanical phases constituting the laminate are supposed to exhibit868

a thermo-elastic behavior869

ε(x) = S(r) : σ(x) + ε0 (r) , σ(x) = C(r) :
(
ε(x)− ε0 (r)

)
(A.1)

with C(r) and S(r) the elastic stiffness and compliance tensors, respectively,870

and ε0 (r) the stress-free (or thermal) strain, for the phase designed by its871

index (r). Furthermore, σ(x) is the stress tensor at position x within the872

laminate, while ε(x) is the total strain tensor at x, i.e. ε(x) is the sum of the873

elastic and stress-free deformations. Here, we use the notation χ(r) when the874

field χ(x) is uniform within phase r, i.e. when χ(x) = χ(r) for all locations875

x in the phase (r). When the stress-free strain is due to thermal dilation, it876

holds877

ε0 (r) = α(r)∆T (A.2)

with α(r) the local dilation modulus of phase (r) and ∆T the temperature878

change, supposed homogeneous within the laminate. We consider hereafter879

the case of general anisotropy for both the elastic stiffness and thermal strain880

(or dilation tensor). The elastic strain field is given by881

εe(x) = S(r) : σ(x) (A.3)

and is due to both the elastic accommodation of the incompatible thermal882

strain and to elastic strain due to the applied macroscopic stress. The effec-883

tive behavior is given by884

ε̄ = S̃ : σ̄ + ε̃0 (A.4)
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with S̃ the effective compliance and ε̃0 the effective thermal strain. One885

defines for a purely elastic problem (i.e. for which ε0 (r) = 0 for all (r), e.g.886

when ∆T = 0) the stress concentration tensor B relating local and effective887

stresses888

σ(x) = B(x) : σ̄ (A.5)

so that, for the thermo-elastic problem, the local stress can be expressed as889

σ(x) = B(x) : σ̄ + σres(x) (A.6)

with σres the field of residual stress. One can similarly define a strain local-890

ization tensor A such that, for a purely elastic problem,891

ε(x) = εe(x) = A(x) : ε̄ . (A.7)

It is thus true that, for any microstructure,892

C̃ = ⟨C : A⟩ , S̃ = ⟨S : B⟩ , ε̃0 =
〈
ε0 : B

〉
, (A.8)

together with ⟨A⟩ = ⟨B⟩ = I where < . > denotes the volume average over893

the whole laminate volume.894

Accounting for their specific microstructure, the effective elastic stiffness895

C̃ for rank-1 laminates is given by the following exact expression (Milton,896

2002)897 [
C0(C0I− C̃)−1 − Γ1(n)

]−1
=<

[
C0(C0I−C(r))−1 − Γ1(n)

]−1
> (A.9)

with C0 an arbitrary stiffness used to introduce the polarization field and I898

the fourth order identity tensor with components Iijkl =
1
2(δikδjl + δilδjk).899

The projection tensor Γ1 only depends on the unit normal n900

Γ1
ijlm =

1

2
(niδjlnm + niδjmnl + njδilnm + njδimnl)− ninjnlnm (A.10)

and the complementary tensor Γ2 is defined as901

Γ1 + Γ2 = I . (A.11)

A well-known remarkable result is that, for homogeneous boundary condi-902

tions, the stress and strain in laminates are uniform within each layer, i.e.903

σ(x) = σ(r) , ε(x) = ε(r) (A.12)

33



for all locations x within the phase (r) with some components being equal904

to their effective counterparts. This can be expressed as905

Γ1 : σ(x) = Γ1 : σ̄, and Γ2 : ε(x) = Γ2 : ε̄ (A.13)

for all locations x. Considering the purely elastic problem, remarking that906

the local constitutive relation can be written (Γ1 + Γ2) : σ = C : (Γ1 +907

Γ2) : ε, and using the properties indicated above, it can be shown that the908

stress concentration tensor (which is uniform within phases) is given by the909

following expression910

B(r) =
[
Γ1 : S(r) − S(r) : Γ2

]−1
:
[
S(r) : Γ1 − Γ2 : S̃

]
(A.14)

and the strain localization by911

A(r) =
[
Γ2 : C(r) −C(r) : Γ1

]−1
:
[
C(r) : Γ2 − Γ1 : C̃

]
. (A.15)

To express the residual stress field, which turns out to be uniform in each912

phase, one has to remark that (A.13) combined with (A.11) leads to913

σ = σ̄ + Γ2 : (σ − σ̄) , ε = ε̄+ Γ1 : (ε− ε̄) . (A.16)

These latter expressions can be plugged into the local behavior (A.1)2 to914

give915 (
S(r) : Γ2 − Γ1 : S(r)

)
: σ(r) = Γ2 : (ε̄− ε0 (r))− S(r) : Γ1 : σ̄ . (A.17)

The residual stress is defined as the field of stress remaining in the material916

when there is no applied stress, i.e. for σ̄ = 0 leading also to ε̄ = ε̃0. One917

thus gets918

σres(r) =
(
S(r) : Γ2 − Γ1 : S(r)

)−1
: Γ2 : (ε̃0 − ε0 (r)) (A.18)

with ε̃0 given by (A.8).919
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