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Abstract Tessellation models have proven to be useful for the geometric description
of grain microstructures in polycrystalline materials. With the use of a suitable tessel-
lation model, the complex morphology of grains can be represented by a small number
of parameters assigned to each grain, which not only entails a significant reduction in
complexity, but also facilitates the investigation of certain geometric features of the mi-
crostructure. However, for a given set of microstructural data, the choice of a particular
geometric model is traditionally based on researcher intuition. The model should provide
a sufficiently good approximation to the data, while keeping the number of parameters
small. In this paper, we discuss general aspects of the process of model selection and sug-
gest several criteria for selecting an appropriate candidate from a certain set of tessellation
models. The choice of candidate represents a trade-off between accuracy and complexity
of the model. Here, the selected model is used solely to approximate given data samples,
but it also provides guidance for developing stochastic tessellation models and generating
virtual microstructures. Model fitting is carried out by simulated annealing, applied in a
consistent manner to twelve different tessellation models.
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1 Introduction

In recent literature, a wide range of approaches can be found for representing polycrys-
talline microstructures using tessellation models. These models include tessellations with
convex cells represented by the basic Voronoi model [13] or the Laguerre tessellation [12,
16], models with curved boundaries like the Johnson-Mehl tessellation [7] or spherical
grain growth models [20], and, finally, even more complex tessellations based on ellip-
soidal grain growth [3,20] with further extension to generalized balanced power diagrams
[2,18,19]. However, selection of the model that is most appropriate to a particular data
set has often been performed a priori, or comparisons have been carried out among a
limited number of models, in the absence of general rules for model selection. In [20],
the microstructure of an IN100 nickel-based superalloy is approximated by the methods
of Voronoi tessellation, spherical grain growth and ellipsoidal grain growth tessellation.
In [3], tessellations generated by eleven distinct distance measures are applied to recon-
structions of the microstructure of martensitic and bainitic steels. Generally, such investi-
gations have found that models relying on a larger number of parameters provide a better
approximation to the data. However, the differences in quality of approximation achieved
by the various models are often quite small.

In this paper, the entire process of model selection is discussed in greater detail. In
principle, the geometric model that is finally used to approximate the morphology of a
given sample’s polycrystalline microstructure should meet two requirements. On the one
hand, a high accuracy of approximation is desired in both the metrical and topological
senses. On the other hand, model complexity should be kept to the lowest possible level.
The latter is a reasonable requirement not only from the standpoint of practicality, as the
fitting of models with a larger number of parameters is computationally more demanding,
but also for subsequent application of the modeled data. For instance, when a tessellation
model is intended to serve as the basis for generating virtual microstructures, it is neces-
sary to estimate the distributions of each model parameter, but this becomes increasingly
difficult as the dimensionality of the parameter space grows. Finally, the preference for
simpler models is consistent with the general scientific goal of expressing complex inter-
relationships as concisely as possible.

Our approach is based on concepts developed in regression theory, or, more generally,
in the framework of statistical learning. The classical techniques use the number of model
parameters as a measure for model complexity. This number is an essential component
of a penalization term, which is applied in a multiplicative or additive sense to a certain
measure for the goodness of fit of the model, usually the residual sum of squares. From
these methods, we employ the most commonly used Akaike [1] and Bayesian [15] infor-
mation criteria. An alternative way of assessing model complexity has been developed
by Vapnik and Chervonenkis, whose approach is nowadays called Vapnik-Chervonenkis
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theory [22,23]. Here, model complexity is described in a more sophisticated manner by
analyzing all possible outcomes of the considered model. With certain necessary sim-
plifying assumptions, this method can be applied to the selection of spatial tessellation
models, as shown in the present paper.

For fitting tessellation models to empirical image data, we adopt and modify the ap-
proach described in [18]. This methodology, originally applied to generalized balanced
power diagrams, is extended here to all of the models considered in the present paper.
Furthermore, we introduce additional improvements: notably, we deal only with ‘connec-
tified’ versions of the tessellations, in which all cells are simply connected sets. Although
non-connected cells can easily arise in the aforementioned tessellation models, this fact
has often been neglected in previous studies.

2 Tessellations

Tessellations can be viewed as a subdivision of space into non-overlapping sets, which
are usually called cells or grains. Note that some definitions of tessellation appearing in
the literature require that the cells be convex. However, we consider a more general class
of tessellations that includes those with non-convex cells; for details, see, e.g., [7,11,14].

Definition 1 Consider a countable collection of closed sets, T = {Ci ⊂ R3, i= 1,2, . . .},
such that

1. C̊i∩C̊ j = /0 for all i 6= j, where C̊i is the interior of the set Ci,
2.
⋃

i Ci = R3,
3. T is locally finite, i.e. #{Ci ∈T : Ci∩B 6= /0}< ∞ for all bounded B⊂ R3.

Then T is called a tessellation of the Euclidean space R3.

Furthermore, we focus on tessellations generated by a locally finite point pattern,
P ⊂ R3. We call the points of P seeds or generators of the tessellation and index them
by natural numbers. The cell Ci corresponding to a given seed xi ∈P is defined to consist
of all points in R3 that are closer to xi than to any other seed in P with respect to an
appropriate distance measure d; i.e.,

Ci = {x ∈ R3 : d(x,xi)≤ d(x,x j) for all x j ∈P}. (1)

We will further restrict our considerations to finite tessellations of a bounded domain
W ⊂ R3, consisting of N cells indexed by 1, . . . ,N.
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2.1 General model

A wide class of tessellation models can be obtained if the distance measure is expressed
by

d(x,xi) = [(x−xi)
>Mi(x−xi)]

k/2−wi, (2)

where Mi ∈M+
3 , with M+

3 denoting the set of all positive definite 3×3 matrices, wi ∈
R and k ∈ N, see, e.g., the discussion of generalized Voronoi diagrams in [5]. Several
special cases of distance measure are known from literature, which can be obtained by
making particular choices for the parameters. The following list summarizes some typical
examples, where I3 denotes the unit 3×3 matrix:

• k = 1,Mi = I3,wi = 0 : Voronoi tessellation [13] with Euclidean distance

dV (x,xi) = ‖x−xi‖;

• k = 2,Mi = I3 : Laguerre tessellation [4] with power distance

dP(x,xi) = ‖x−xi‖2−wi, wi ∈ R;

• k = 1,Mi = I3 : additively weighted Voronoi tessellation [13] with distance

dA(x,xi) = ‖x−xi‖−wi, wi ∈ R;

• k = 2,wi = 0 : ellipsoid-based tessellation [3] with distance

dE(x,xi) = (x−xi)
>Mi(x−xi), Mi ∈M+

3 ;

• k = 2 : generalized balanced power diagram [2] with distance

dG(x,xi) = (x−xi)
>Mi(x−xi)−wi, Mi ∈M+

3 , wi ∈ R.

The positive definite matrix Mi in (2) can be thought of as an ellipsoid centered at the
origin. The eigenvectors of Mi correspond to the principal axes of the ellipsoid, and the
reciprocals of the eigenvalues denote the squared lengths of the semi-axes. Depending
on the number of distinct eigenvalues, we can obtain different models. Let the parame-
ters k = 2,wi = 0 be fixed for now. Then, the case with three distinct eigenvalues leads
to the ellipsoidal grain growth model. Besides the three coordinates of each seed, this
model has six additional parameters per cell that are necessary to describe each matrix
Mi. The model can be reparameterized by three semi-axis lengths and three angles (e.g.
Euler angles) determining the orientation of the principal axes with respect to a reference
coordinate system. If each matrix Mi has only two distinct eigenvalues, we obtain the
special case of oblate or prolate ellipsoids. Here, the number of extra parameters per cell
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is four, because only two angles and two lengths are required to describe the principal
directions, and, therewith, the matrix Mi. If all eigenvalues of each Mi are equal, then
the resulting tessellation is the spherical grain growth model with one extra parameter
per cell. Finally, if in addition all matrices Mi have the same eigenvalue (e.g. equal to 1),
we obtain the Voronoi model with no additional parameters. An analogous sequence of
models arises for the versions with additive weights wi ∈ R.

Let ζ be the maximum number of distinct eigenvalues that are allowed for each matrix
Mi. In what follows, we denote each model by Tαβ , where the indices α,β represent the
following quantities:

α =

{
0 if wi = 0 for all i,
k otherwise;

(3)

β =

{
0 if all eigenvalues of all matrices Mi are equal,
ζ otherwise.

(4)

For instance, T00 denotes the Voronoi tessellation, T20 is the Laguerre tessellation, and
T23 represents the generalized balanced power diagram. Note that in models without
additive weights wi (α = 0), the inequality in (1) with distance given by (2) does not
depend on the choice of k, thereby allowing for the aforementioned definition of the
coefficient α . Furthermore, for the case of β = 0 we can assume that all matrices Mi are
unit matrices, while for β = 1 they are distinct multiples of unit matrices. The number of
additional parameters assigned to each point xi in model Tαβ is 2β −1{β = 1}+1{α >
0}, where 1{·} denotes the indicator function. Altogether, we will consider twelve models
obtained from the ranges α ∈ {0,1,2} and β ∈ {0,1,2,3}.

2.2 Connectedness of cells

A negative feature of many non-convex tessellation models is that they can easily include
cells that are not simply connected; see Fig. 1. This is an undesirable effect, as it is absent
from real microstructures, in which separate regions identified as grains are labeled by
different grain indices. There are several possible ways to overcome this problem. One
option would be to restrict one’s considerations to subclasses of tessellations in which
all cells are simply connected. However, this would considerably limit the range of tes-
sellations that could be employed. Another possibility would be to follow the common
interpretation of tessellations as growth models, which supposes that each grain grows
from a seed with a predefined velocity and direction until it meets another growing grain.
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(a) (b)

Fig. 1 (a) Part of a 2D tessellation T11 with a disconnected cell colored in blue. (b) Simply connected modifi-
cation T ∗ of the tessellation obtained after the first iteration of the algorithm described in Section 2.2.

Indeed, in such grain growth tessellation models, all cells are simply connected. How-
ever, growth models do not cover the entire class of tessellation models discussed in this
paper.

As a slight generalization of grain growth models, we propose the following defini-
tion. It relies on the condition that each point x in cell Ci must be connectable (via a path
fully contained within this cell) to some reference point x∗i , which is assumed to belong
to the cell. We will denote this relation by x↔x∗i . In principle, an arbitrary point of the
cell can be chosen as the reference point. In grain growth models, these reference points
can be represented by the seeds from which grains start to grow. However, for the general
model (2) the seed does not necessarily lie within the cell it generates. In practice, we
want the reference point to be located at a suitably defined central position of the largest
connected component of the cell. We choose the reference point of cell Ci to be the cen-
ter of the largest ball that is fully contained in this cell. Simple connectedness of the
cells is then achieved via the following recursive definition. We start from the tessellation
T (0) = {C(0)

i = Ci ⊂W, i = 1, . . . ,N} with cells Ci defined by (1). In each cell we find
the region

C̃(0)
i = {x ∈C(0)

i : x↔x∗i }

consisting of points that are connected to the reference point, and we denote the union of
these sets by C̃ (0) =

⋃N
i=1 C̃(0)

i .
In the second step the points of the complement W \ C̃ (0) are reassigned to the other

cells:

C(1)
i = C̃(0)

i ∪{x ∈W \ C̃ (0) : d(x,xi)≤ d(x,x j) for all j ∈ P(1)(x)},
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where P(1)(x) is the so-called potential set defined for each point x ∈ W \ C̃ (0). The
potential set collects indices of all cells of the tessellation T (0) that are adjacent to the
disconnected region to which x belongs. It means that x is connectable to each cell C j, j ∈
P(1)(x), via a path fully contained within a connected component of the set W \ C̃ (0).
Furthermore, the potential set P(1)(x) contains indices of all generators for which the
corresponding cell in the tessellation T (0) is an empty set.

Now, the union of connected regions is C̃ (1) =
⋃N

i=1 C̃(1)
i , where C̃(1)

i = {x ∈ C(1)
i :

x↔x∗i } .
In the m-th step we have

C(m)
i = C(m−1)

i ∪{x ∈W \ C̃ (m−1) : d(x,xi)≤ d(x,x j) for all j ∈ P(m)(x)},

C̃(m)
i = {x ∈C(m)

i : x↔x∗i },

where the potential set P(m)(x) is defined for each x ∈W \ C̃ (m−1) on the basis of the
tessellation T (m−1) = {C(m−1)

i ⊂W, i = 1, . . . ,N} analogously as described above.

Definition 2 Let {C(m)
i } be the sequence of sets defined above. The simply connected

version of a tessellation T in a bounded window W is defined as

T ∗ = {C(m∗)
i ⊂W, i = 1, . . . ,N}, where m∗ = argmin

m∈N0

(
N⋃

i=1

C(m)
i =W ).

Usually, the simply connected version is obtained after the first iteration, i.e. with
m∗= 1. A formal justification that the algorithm terminates would be difficult to carry out;
however, in all cases that we examined, the algorithm terminated after a small number of
iterations. We do not address the issue of infinite tessellations, in which case it is possible
to build tessellations for which the simply connected version remains undefined, owing
to infinite recursion. Furthermore, it should be noted that disconnected components of the
original tessellation T can actually be parts of the same cell separated by the face of the
bounding box. However, this is impossible to detect without knowledge of the structure
outside the bounding box. We neglect such boundary effects and consider each separate
region contacting the bounding box to be an individual cell.

2.3 Additional notation

The empirical image data are observed on a cubic voxel grid W ′ ⊂W within a bounded
window W ⊂ R3 and consist of a finite number of cells indexed by 1, . . . ,N. Let I(x) de-
note the grain index at a point x ∈W ′ in the empirical image data and IT (x) the index of
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the cell that covers the point x in a tessellation T fitted to these data. The cells of a tessel-
lation given by empirical data, conventionally called grains in polycrystalline materials,
will be denoted by G1, . . . ,GN , and they can be expressed as Gi = {x ∈W ′ : I(x) = i}.
The cells of a fitted tessellation will be denoted by C1, . . . ,CN , and they can be expressed
as Ci = {x ∈W : IT (x) = i}.

Moreover, by BI we denote the set of boundary voxels in the empirical image data
set, i.e.,

BI =
{

x ∈W ′ : ‖x−y‖ ≤
√

3 for some y ∈W ′ with I(x) 6= I(y)
}
. (5)

The latter condition (with distance measured in units of voxel side length) expresses
the requirement that the corresponding cubic voxels make contact at a vertex, edge or
face. We denote by BT an analogous set of boundary voxels in the tessellation model T
projected onto the same voxel grid. Besides the set W ′, we consider a complementary
set W̃ ′ ⊂W , the so-called dual voxel grid, consisting of the midpoints of the segments
connecting nearest neighbors from W ′. In a grid of cubic voxels, the points of W ′ can
be identified with voxel midpoints, while the points of W̃ ′ can be identified with the
midpoints of faces separating neighboring voxels. Grain boundaries are represented by
the set

B̃I =

{
x ∈ W̃ ′ : ‖x−y‖= ‖x− z‖= 1

2
for some y,z ∈W ′ with I(y) 6= I(z)

}
. (6)

For a tessellation model T , the corresponding set B̃T is an off-grid compact subset of W
containing all points of the interfaces between the tessellation cells. Finally, we define the
subsets B̃I(i, j) ⊆ B̃I and B̃T (i, j) ⊆ B̃T of boundary points separating the grains Gi,G j
in the empirical image data I or the cells Ci,C j in the tessellation model T , respectively.

Assessing the quality of the fitted model with respect to empirical data is possible via
the discrepancy measure

DI,T =
#{x ∈W ′ : I(x) 6= IT (x)}

#{x ∈W ′}
, (7)

which provides information regarding the fraction of voxels that are incorrectly assigned.
This measure is minimized by the simulated annealing algorithm explained in Section 4.
We are also interested in its restriction to the subset of grain boundary voxels:

DB
I,T =

#{x ∈ BI : I(x) 6= IT (x)}
#{x ∈ BI}

. (8)

Consider the relation Gi ∼ G j that grains Gi and G j are neighbors—i.e., there exists
a pair of points x,y ∈ BI ,‖x−y‖= 1 : I(x) = i, I(y) = j. The same symbol is used for the
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neighborhood of cells in the fitted tessellation projected onto the same voxel grid. Then,
for the ith grain the quantity

µI,T (i) = #{ j ∈ 1, . . . ,N : (Gi ∼ G j and Ci 6∼ C j) or (Gi 6∼ G j and Ci ∼ C j)} (9)

describes the neighborhood fit by counting the number of disagreements in the list of
neighbors between the observed data and the model. By

µ̄I,T =
1
N

N

∑
i=1

µI,T (i) (10)

we denote the mean neighborhood fit.

3 Model selection

For the selection of an optimal model, we gain inspiration from the methods used in
statistical learning, particularly in regression. Here the response y is assumed to depend
on a vector of observed (explanatory) variables x. The dependency is approximated by a
class of functions { f (x,θ),θ ∈Θ}, where Θ is an abstract parameter space. The goal is
to select a function that best approximates the response.

We will adapt these ideas to our situation, in which a grain structure is approximated
by a tessellation model. To this end, consider the response y to be the set of grain bound-
aries observed in the microstructure. Then the class of approximating functions can be
identified with the tessellation models defined in Section 2, where the interfaces between
cells are considered to be the model output. Each tessellation is solely determined by its
parameters; therefore, in this setting we are missing the usual dependency on explanatory
variables. However, this does not limit the range of approximations of the response that
are accessible using a suitably defined discrepancy measure. Note, in addition, that we
deal only with a single observation. However, statistical inference is still possible, tak-
ing information at distinct locations in space into account. This is a common situation in
spatial statistics, where the lack of observations is compensated by a sufficient amount
of information in the spatial domain. Consistency of statistical estimators is often studied
with respect to increasing size of the observation window [9].

3.1 Criteria based on number of parameters

Let us now assume we are given a sample (x1,y1), . . . ,(xn,yn) that, in the terminology
of statistical learning, plays the role of training data. A common criterion for assessing
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model accuracy is the residual sum of squares (RSS) defined by

RSS(θ) =
n

∑
i=1

(yi− f (xi,θ))
2. (11)

Since our response is given by the voxelized version of grain boundaries, BI , the residual
sum of squares for a tessellation T can be defined by

RSS(T ) = ∑
x∈B̃I

‖x− x̃‖2, (12)

where x̃∈ argmin y∈B̃T (i, j) ‖x−y‖ is a (not necessarily unique) closest point to x∈ B̃I(i, j)
belonging to the exact boundaries between cells Ci and C j in the tessellation model. It
remains to define the contribution of points belonging to those boundaries B̃I(i, j) for
which the corresponding boundary in the tessellation T does not exist: i.e., B̃T (i, j) = /0.
The penalization of such points could be set, for instance, to the maximum value of ‖x−
x̃‖2 taken over all points for which it is defined. We employ a more robust version using
the 99% quantile instead of the maximum. For ease of notation, we omit the argument θ

or T in the definition of RSS and in related quantities defined in the remaining part of
this section.

A natural first choice for the optimal model would be the candidate with minimum
RSS. However, we require the model not only to be sufficiently accurate but also simple. It
is known from statistical learning theory that an increase in model complexity often leads
to the overfitting of training data, which, in turn, can worsen the predictive power of the
model. Thus, various ways of penalizing the RSS by a term related to model complexity
have been suggested. Many of these approaches are based on the number of parameters
being a measure for model complexity. Among these we mention the two most common
approaches in the following definition [1,15]:

Definition 3 The Akaike information criterion (AIC) and the Bayesian information cri-
terion (BIC) are defined by

AIC = n ln(RSS)+2p, (13)
BIC = n ln(RSS/n)+ p ln(n), (14)

where n is the sample size and p is the number of free parameters of the model.

Good asymptotic consistency of both criteria of Definition 3 is obtained if the number
of observations n is much larger than the number of parameters p. In our case, the sample
size n is equal to the number of boundary points involved in the computation of the RSS
defined in (12). In order to lower the computation time, only a fraction of the points in B̃I
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can be used. Note that smaller sample sizes lead to a stronger effect of penalization. In
comparison to that of AIC, the penalization term in BIC increases more rapidly with p,
resulting in a stronger preference for simpler models.

The aforementioned criteria have frequently been criticized on the basis that the num-
ber of parameters need not properly reflect a given model’s complexity. Often, the pa-
rameters of a model are found to have differing levels of significance, but these are not
considered by the criteria of Definition 3. In the next section, we will introduce a method
that aims to assess model complexity in a more objective manner, without requiring ex-
plicit determination of the significance of individual model parameters, but taking it into
account implicitly.

3.2 Structural risk minimization

An alternative approach toward complexity control—called structural risk minimization
(SRM)—was introduced in Vapnik-Chervonenkis (VC) theory [23]. The set F of approx-
imating functions f (x,θ) is assumed to consist of nested subsets Fk = { f (x,θ),θ ∈Θk}
with F1 ⊂F2 ⊂ . . . ⊂F . The complexity of each model Fk is described by a number
hk ∈ R+ called the VC-dimension. In accord with the hierarchy of models F1,F2, . . .,
the VC-dimensions are ordered such that h1 ≤ h2 ≤ . . .. Furthermore, model selection
means choosing an optimal element of the structure of nested subsets using so-called VC
generalization bounds. These bounds provide an approximate upper limit for the true risk,
which is defined as the mean squared error of the approximation. This approximate upper
limit for the true risk is called the guaranteed risk and is denoted by Rg. For regression
problems, the guaranteed risk is known to be

Rg =
RSS

n
(1− c

√
εk)
−1
+ , (15)

where n is the number of observations, (·)+ denotes the positive part, i.e., x+ =max(x,0),
c is a constant, and εk is given by

εk =
a1

n

(
hk

(
ln

a2n
hk

+1
)
− ln

η

4

)
(16)

with two additional constants a1,a2, see [23]. The guaranteed risk is an approximate
upper bound for the true risk with confidence level 1−η (see [22]). The constants c,a1,a2
depend on the joint distribution of the response and the explanatory variables. However,
empirical results suggest that the choice c = a1 = a2 = 1 provides a good approximation
of the guaranteed risk [6].
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Furthermore, SRM has often been used in binary classification, where the following
expression for the guaranteed risk,

Rg = min

(
1,

RSS
n

+
εk

2

(
1+

√
1+

4RSS
nεk

))
, (17)

has been obtained [6], once again with εk as defined in (16). Here, the constants a1 and
a2 must be in the range 0 < a1 ≤ 4, 0 < a2 ≤ 2, but empirical guidance for selecting
more precise values for these constants is lacking. As in the case of regression, the values
a1 = a2 = 1 are frequently used. The RSS is thus a (non-standardized) estimation of the
risk based on training data. Note that for binary classification, the RSS equals the number
of misclassified cases.

The strategy of the SRM method is as follows. First, the subset Fk ⊆F is identified
for which the guaranteed risk is minimal. Fk represents the model of optimal complexity.
Then, the function in Fk is found that minimizes the empirical risk, evaluated for the
training data. This corresponds to the task of parameter estimation.

For the application of VC theory, the models need to be structured as described above.
However, for our set of tessellation models, we have only a partial ordering, i.e., Tαβ1 ⊂
Tαβ2 if β1 < β2, and T0β ⊂Tαβ for α > 0. This partial hierarchy can be schematized as
follows:

T10 ⊂T11 ⊂T12 ⊂T13,

∪ ∪ ∪ ∪
T00 ⊂T01 ⊂T02 ⊂T03,

∩ ∩ ∩ ∩
T20 ⊂T21 ⊂T22 ⊂T23.

Due to incomplete ordering, it is not always possible to pick out an optimal candidate.
For instance, the guaranteed risk of models from the first line is not directly comparable
with the guaranteed risk of models from the third line, since they do not share a model-
submodel relationship. As a complementary rule, a topological fitting characteristic (e.g.
µ̄I,T ) can be used to decide between models in these cases as well as in situations in
which the minimum guaranteed risk is not significantly unique.

The concept of the VC-dimension as an integer-valued measure of model complexity
was introduced in [23]. The purpose of this quantity is to quantify in the form of a single
number how powerful a set of approximating functions is for approximating the given
response. We consider only the class of indicator functions for which the VC-dimension
can be defined directly by means of so-called shattering [23]. The VC-dimension is the
maximum number h of vectors from Rd that can be separated into two output classes,
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zero and one, in all 2h possible ways using indicator functions. A more precise definition
follows.

Definition 4 Consider an abstract parameter space Θ . The VC-dimension of a set of
indicator functions

{
q(·,θ) : Rd 7→ {0,1},θ ∈Θ

}
is defined as the maximum number h

such that there exists a sequence of distinct vectors x1, . . . ,xh ∈ Rd that satisfies

#{(q(x1,θ), . . . ,q(xh,θ)),θ ∈Θ}= 2h.

If such a sequence of vectors exists for any h ∈ N, then the VC-dimension of this set of
functions is equal to infinity.

Alternatively, we say that the vectors can be shattered by the indicator functions. As an
example, consider the following set of linear indicator functions,

q(x,a) = ϑ

(
d

∑
i=1

aixi +a0

)
,

of a d-dimensional vector x = (x1, . . . ,xd) ∈ Rd , where ϑ(x) is the step-function

ϑ(x) =

{
0, if x < 0,
1, if x≥ 0,

and a = (a0, . . . ,ad) is a vector of real-valued coefficients. The VC-dimension is then
equal to h = d + 1, since at most d + 1 vectors can be shattered by functions of this set;
see Fig. 2.

We will apply the concept of VC-dimension to tessellations in the following manner.
Consider a set of test points T ⊂ B̃I on the empirical grain boundaries. The sampling
scheme for this test set will be discussed later in Section 6.2. According to the tessel-
lation setting described in Section 3.2, we will define a binary response for each obser-
vation t ∈ T that takes the value 0 if t is a boundary point between the same cells in
the fitted tessellation as in the empirical data; otherwise, the response is given the value
1, which occurs if t is not a boundary point of the fitted tessellation or if t is a bound-
ary point between different cells in the fitted tessellation than in the empirical data. The
VC-dimension h of the model Tαβ (with fixed α,β ) is the maximum number of points
of T that can be shattered by a tessellation Tαβ (with appropriate choice of tessellation
parameters) with respect to the aforementioned binary response. Here, the tessellation is
assumed to be projected onto the same voxel grid as the observed data.

The idea of estimating the VC-dimension is to generate tessellations repeatedly with
varying parameters and to examine points from T . The key finding is whether the tessella-
tion can separate the points of T into two classes with indicator output 0 or 1, respectively,
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x1

x2

x3

(a)

x1

x2

x3

(b)

x1

x2
x3

x4

(c)

Fig. 2 Linear indicator functions in R2: (a,b) each observation xi ∈ R2 is assigned a value 0 (open circle) or
1 (filled circle), depending on the halfspace—generated by the dashed line—to which xi belongs. (c) It is not
possible to shatter four vectors in R2. For example, the vectors x1,x3 cannot be separated by a line from the
vectors x2,x4. Therefore, the VC-dimension of this example is h = 3.

0

01

1

(a)

0

10

0

(b)

Fig. 3 2D scheme for shattering test points on grain boundaries (blue) by straight lines (dashed), which cor-
respond to interfaces between cells in the Voronoi or Laguerre tessellation. Each test point (filled red circle)
is located on a horizontal or vertical line segment (red). The test point is assigned an indicator value of 0 if
the segment makes contact with the red dashed line and 1 otherwise. Shattering means obtaining all possible
sequences of zeros and ones for the test points.

in all possible ways; see Fig. 3. Thus, the VC-dimension expresses the potential of a given
tessellation model to describe the grain boundaries of a given empirical image data set,
subject to small errors caused by uncertainty in the recognition of grain boundaries. Eval-
uation of the VC-dimension is a purely data-driven procedure. Detailed discussion and
results of the estimation procedure follow in Section 6.2.

Note that our estimation of the VC-dimension depends strongly on the sampling
scheme of the test set T as well as on the cardinality of this set. In Section 6.2, a sampling
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Fig. 4 Schematic illustration of part of the tessellation during a single step of the fitting algorithm. The figure
depicts a planar section through the voxelized tessellation, in which each voxel is labeled by the index of the
cell to which it belongs. Each cell approximates one grain from the original data. (The original grains are
omitted here for ease of graphical representation.) (a) Fitting starts by changing the parameters of the generator
of a randomly chosen cell—here, the cell with index 1. Checking for reassignment begins with voxels near
the boundaries of cell 1 (shaded grey). (b) The cell indices of reassigned voxels are denoted in red, as are the
new cell boundaries that result from voxel reassignment. A small cluster of voxels with cell index 5 (shaded
red) is disconnected from the main part of cell 5; the disconnected cluster must be reassigned. (c) Changed
configuration following reassignment of the disconnected region, with the new set of boundary voxels colored
gray. The disconnected part of the cell with index 5 was reassigned to cells 1 and 4. For more details regarding
the simulated annealing algorithm, the reader is referred to [18].

scheme will be suggested that avoids the proximity of test points and the resulting strong
correlations, which would negatively influence the estimation. Moreover, the size of T is
set to a common value for all models. Under these assumptions, the VC-dimension leads
to an objective comparison of different tessellation models.

4 Model fitting

For fitting tessellation models to empirical image data, we use a stochastic optimization
algorithm based on simulated annealing. This method was utilized previously with the
generalized balanced power diagram model in [18], and its flexibility allows its appli-
cation to all of the models considered in the present paper. Here, we propose further
improvements to the algorithm. The main modification is adaptation of the algorithm to
simply connected versions of the tessellations, as described in Section 2.2.

The fitting procedure starts from an initial configuration and proceeds by iterative
changes of selected parameters, such that the quality of fit is improved sequentially. Suc-
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cessful application of the method relies on several requirements. First, the initial tessel-
lation should provide a sufficiently good fit to the data. We use initial states based on the
heuristic approaches described in [2,3,18]. Here, initial parameters are determined from
the lengths or directions of principal axes of best-fitting balls, spheroids or ellipsoids that
are placed at the centers of mass of the observed grains. These objects have the same
volume as the grains, and their orientation is optimized such that they describe the real
positions of the grains. Additional details are given in [2,18]. In particular, the initial val-
ues of parameters are set as follows. The initial seeds are assigned to the centers of mass
of the grains. For the models Tαβ , α > 0, the initial weights wi in (2) are computed as
volume-equivalent radii of the grains if β = 0, and they are set to zero if β > 0. The initial
matrices Mi are computed from best-fitting balls in models with β = 1 (which are, again,
balls with volume-equivalent radii), best-fitting spheroids for β = 2, and best-fitting ellip-
soids for β = 3. An alternative option for the initial configuration in models Tαβ , α > 0,
β > 0, is letting the weights wi be the volume-equivalent radii and the matrices Mi be
unit matrices. The latter option is used if it provides a better initial fit than the previously
mentioned configuration.

Our main improvement of the algorithm presented in [18] is adaptation of the latter
to simply connected versions of tessellations with non-convex cells. The connectedness
of cells is checked, and disconnected regions are removed according to the recursive
definition of a simply connected version of a tessellation given in Section 2.2 (Figs. 1
and 4). At first, in each cell we identify a reference point that is assumed to belong to
the fitted grain. This point is found as the center of the largest ball that is fully contained
within the corresponding cell. Next, we assign a connectivity number 0 to the voxel at
each reference point, 1 to all neighbors of these voxels, 2 to neighbors of these neighbors,
and so on. This algorithm assigns a connectivity number to all points belonging to C̃ (0),
and any disconnected parts remain unassigned. Furthermore, following Definition 2 we
reassign the voxels of W \ ∪iC

(0)
i to the other cells for which the voxel-seed distance

has the smallest value. This distance is computed using the measure appropriate to each
tessellation model. For the reassigned voxels, we apply the same algorithm again and
assign connectivity numbers to all components connectable to the reference point. This
procedure is repeated until all voxels have been assigned a connectivity number.

Each time a change is applied to the tessellation parameters, the connectedness needs
to be checked, and connectivity numbers need to be recomputed. The detection of dis-
connected regions can be performed quickly using the connectivity number. Each voxel
that has been reassigned to another grain in the last step is added to a list of candidates
for disconnected voxels. Furthermore, all their neighbors are added to this list, if they
do not have a neighbor with the same cell index and lower connectivity number. This
procedure is continued iteratively, resulting in a list of candidates for disconnected vox-
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els. The connectivity number of all these voxels is deleted. Those voxels in the list that
have a neighbor with the same cell index and assigned connectivity number are obviously
connectable to the corresponding reference point, so they can be assigned a connectivity
number and removed from the list. This procedure is again performed iteratively, until no
further candidate can be removed from the list. The remaining voxels are disconnected
and have to be reassigned as described in Section 2.2. The procedure described above
seems complicated; however, it is computationally much less demanding than recomput-
ing all connectivity numbers in each step.

5 Microstructure data

In this section we describe four different microstructure data sets to which our methods
have been applied. At first, we compare results obtained from two simulated data sets,
which were drawn from different models. For these data we can determine whether our
methods are able to identify the correct model. Secondly, we consider two data samples
obtained by experimental techniques for characterizing polycrystalline materials in 3D.
The length scale of microstructural features differs considerably in the two sample data
sets.

5.1 Simulated data

We have simulated two data sets, denoted as S1 and S2, in a cube of size 150× 150×
150 voxels. These tessellations were generated from two different simply connected
models defined in (2): the Laguerre tessellation (T ∗

20) and the ellipsoidal grain growth
model (T ∗

03). While in the former case, there is only one extra parameter assigned to each
seed and all cells are convex sets, in the latter case we have six extra parameters for each
seed and interfaces between cells are parts of quadric surfaces, allowing for a wide range
of surface curvatures. Both simulated data sets are visualized in Fig. 5.

For the simulation of data set S1, an algorithm for random sphere packing was used.
The packing of spheres is achieved by a collective rearrangement algorithm applied to
an initial random system of (overlapping) spheres. During this rearrangement, individual
spheres were repeatedly displaced with the aim of reducing and finally eliminating sphere
overlap. The algorithm is described in detail in [17]. The centers of spheres together with
their radii are considered as marked points, which generate a Laguerre tessellation. In our
example, the resulting tessellation (Fig. 5(a)) contains 1128 cells.

The simulated data set S2 was generated on the basis of a synthetic microstructure
builder, which is part of the DREAM.3D software package [10]. This builder enables
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(a) (b)

Fig. 5 Simulated data sets (a) S1 and (b) S2. Grain colors assigned at random.

microstructures to be simulated with predefined statistical properties, using an algorithm
for packing a cubic spatial domain with ellipsoids of given sizes, aspect ratios and orien-
tations. We modified its output such that the resulting model corresponds exactly to the
simply connected version of the ellipsoidal grain growth model, as described in previ-
ous sections. Details of this modification can be found in [18]. The resulting tessellation
(Fig. 5(b)) contains 898 cells.

5.2 Experimental data

The first experimental data sample—denoted E1—was taken from an aluminum alloy
with nominal composition Al-1 wt% Mg. A cylindrical specimen of the material was
annealed at 400◦C for 1 h, which resulted in a microstructure with mean grain volume
of 0.006mm3. A 3D image of the microstructure was acquired by 3D X-ray diffrac-
tion (3DXRD) microscopy performed at the synchrotron radiation facility SPring-8 in
Japan. In this nondestructive characterization technique, a specimen is irradiated with a
monochromatic X-ray beam while being rotated up to 360◦ about an axis perpendicular
to the beam, such that each grain in the illuminated volume fulfills the conditions for
Bragg reflection numerous times. From the position and shape of the resulting diffraction
signals, it is possible to compute the lattice orientation and spatial extent of the diffract-
ing grains. The overall data sample covers a cylinder of approximate radius 0.8mm and
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height 2.7mm, with a voxel size of (5 µm)3. The number of grains contained in this
cylinder is 753.

The second experimental data sample—denoted E2—had nominal composition Al-
3 wt% Mg-0.2 wt% Sc. It was processed by 8 passes of equal-channel angular pressing
(ECAP) with route BC at room temperature; see e.g. [21] for a full discussion of this pro-
cedure. The specimens for ECAP had a cross section of 10mm×10mm and an approxi-
mate length of 55mm. Following ECAP processing the specimen was annealed at 400◦C
for 1 h, which induced the formation of a fine-grained microstructure with well-defined
crystallites. Imaging was carried out using an FEI Quanta 3D FEG field-emission scan-
ning electron microscope (SEM) equipped with a high-speed EDAX/TSL EBSD camera
and focused ion beam (FIB). The step sizes of EBSD mapping and FIB slicing were both
0.1 µm, resulting in a voxel volume of 10−3 µm3. Three-dimensional characterization
of the microstructure was accomplished by combining EBSD mapping with sequential
micro-milling of the top surface using the FIB. The resulting 3D image consists of a
stack of equidistantly spaced planar sections. The number of grains identified in the 3D
volume is 3052.

For additional details regarding the preparation of samples E1 and E2 and the re-
spective methods of data acquisition, the reader is referred to the following publications.
The microstructure of Sample E1 was analyzed in [8] in order to assess the evolution of
crystallographic orientations during particle coarsening. In [18], the microstructure of E2
was represented by a generalized balanced power diagram, employing the fitting proce-
dure described in Section 4. The morphology of grain boundaries in each sample was
described in [19].

6 Results

6.1 Fitting models to data

Simply connected versions of the tessellation models T ∗
αβ

, where α ∈ {0,1,2}, β ∈
{0,1,2,3}, were fitted to the empirical image data sets described in Section 5 using the
simulated annealing methodology of Section 4. We applied 5 million iterations of the al-
gorithm to each model fitted to samples S1,S2,E2 and 2 million iterations to each model
fitted to sample E1, which contains fewer grains. For each fitted model, we first evaluate
the summary statistics presented in Table 1. These include the percentage of correctly
assigned voxels, δI,T = (1−DI,T ), the percentage of correctly assigned voxels at grain
boundaries, δ B

I,T = (1−DB
I,T ), and characteristics related to the neighborhood of each

grain.
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(a) (b)

Fig. 6 Tomographic 3D images obtained from polycrystalline specimens of (a) Al-1 wt% Mg (sample E1) and
(b) Al-3 wt% Mg-0.2 wt% Sc (sample E2). Grain colors assigned at random.

Obviously, the goodness of fit improves with increasing number of parameters in-
volved in the tessellation model. For the generalized balanced power diagram (T ∗

23), the
fraction of correctly assigned voxels achieved for the experimental data via the simulated
annealing fitting procedure is about 95% for sample E1 and about 92% for sample E2. The
discrepancy between these two values can be attributed to two factors. On the one hand,
the two data sets come from different materials, and different procedures were followed
during preprocessing of the sample data. On the other hand, the average number of voxels
per grain differs between the data sets, which affects the level of precision regarding the
description of grain boundaries. This also accounts for discrepancies in the goodness of
fit with respect to topological characteristics, with a significantly better neighborhood fit
being achieved for sample E1 than for E2.

In Fig. 7, the distribution of distances between observed and modeled grain bound-
aries in the experimental data is plotted, on the basis of which the residual sum of squares
(RSS) considered in (12) is defined. In general, the empirical risk decreases with increas-
ing number of parameters involved in the model. However, for some pairs of models
the discrepancies between grain boundary distance distributions are quite small. In these
cases, adding further parameters does not have a significant effect on the overall quality
of the fit.
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Table 1 Statistics for simply connected tessellations T ∗
αβ

fitted to simulated data samples S1, S2 and ex-
perimental data samples E1, E2 by the simulated annealing methodology of Section 4. Percentage of cor-
rectly assigned voxels, δI,T = (1−DI,T ) ·100%; percentage of correctly assigned voxels at grain boundaries,
δ B

I,T = (1−DB
I,T ) ·100%; percentage of grains with all neighbors correct, µ0

I,T = #{i : µI,T (i) = 0}/N ·100%;
and mean number of incorrect neighbors, µ̄I,T . The optimal value in each row (i.e. the maximum for δI,T ,
δ B

I,T , µ0
I,T , and the minimum for µ̄I,T ) is printed in bold type.

T ∗
00 T ∗

01 T ∗
02 T ∗

03 T ∗
10 T ∗

11 T ∗
12 T ∗

13 T ∗
20 T ∗

21 T ∗
22 T ∗

23

S1

δI,T 77.9 96.6 96.8 97.0 97.8 97.9 97.8 97.0 98.8 98.2 98.3 97.2
δ B

I,T 56.6 85.7 86.5 87.3 90.9 91.0 90.6 87.2 95.0 92.7 92.9 88.0
µ0

I,T 21.9 53.3 55.6 57.7 71.6 71.2 76.8 59.2 88.4 79.4 81.9 64.6
µ̄I,T 1.66 0.70 0.62 0.57 0.36 0.36 0.28 0.55 0.13 0.25 0.20 0.48

S2

δI,T 84.2 96.4 97.8 98.5 95.7 96.3 97.8 98.4 94.5 96.4 97.7 98.4
δ B

I,T 61.5 85.4 91.1 93.8 83.0 85.1 90.8 93.4 79.1 85.2 90.6 93.2
µ0

I,T 19.1 62.2 74.8 82.7 54.1 60.9 75.9 79.8 38.3 59.5 71.9 77.1
µ̄I,T 1.74 0.47 0.28 0.20 0.64 0.49 0.29 0.24 0.98 0.53 0.34 0.28

E1

δI,T 57.9 90.7 93.9 95.0 89.5 90.5 94.0 95.0 86.2 92.0 94.4 95.2
δ B

I,T 39.7 60.9 66.5 69.3 60.0 60.6 66.8 69.4 57.5 62.8 67.5 69.7
µ0

I,T 1.1 9.0 23.4 36.1 22.6 6.8 24.1 38.0 15.0 17.3 29.7 39.5
µ̄I,T 5.40 2.55 1.66 1.10 1.73 2.74 1.50 1.00 2.14 2.00 1.26 0.99

E2

δI,T 57.5 83.8 90.0 91.8 82.7 83.6 90.1 91.8 79.4 84.6 90.2 92.0
δ B

I,T 42.1 61.4 70.6 74.4 61.3 61.1 70.5 74.3 58.2 62.0 70.7 74.5
µ0

I,T 0.3 6.9 23.4 30.8 9.7 6.8 22.4 29.7 6.9 7.8 23.8 30.7
µ̄I,T 6.95 3.28 1.66 1.32 3.13 3.32 1.72 1.34 3.91 3.14 1.66 1.30

6.2 Estimation of VC-dimension

The ideas underlying the estimation of VC-dimension have already been sketched out
in Section 3.2. Recall that the VC-dimension is intended to characterize the capacity of
a tessellation model to describe the grain boundaries appearing in observed microstruc-
tures. This capacity is explored through a set of testing points located at grain boundaries,
for which shattering—as explained in Section 3.2—is examined. Additional details con-
cerning our estimation procedure, which is based on the simulation of tessellations with
varying parameters, now follow.

The first task is to generate a random test set T ⊂ B̃I of points belonging to the grain
boundaries of the empirical data sample. In order to avoid an undesirable proximity of
test points, we define a hard-core radius r > 0 as the lower limit for the pairwise distance
between points in T . For the simulation, we use a simple acceptance-rejection algorithm,
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Fig. 7 Distribution of the distance ||x− x̃|| separating grain boundary points x ∈ BI from the nearest points
x̃∈ BT of the corresponding grain boundaries in tessellation models: (first row) T ∗

00 through T ∗
03; (second row)

T ∗
10 through T ∗

13; and (third row) T ∗
20 through T ∗

23, evaluated for (left column) sample E1 and (right column)
sample E2.

in which points are generated sequentially and rejected if they do not satisfy the hard-core
condition. The generation of points is terminated when a prescribed cardinality of T is
achieved.

Next, we need to find a maximum subset of T that can be shattered by tessellations
of given type. This necessitates carrying out a deep analysis of the state space of the
tessellations. For each element of the state space, the value 0 or 1 is assigned to each
point of T , indicating whether the point lies on the corresponding grain boundary of the
voxelized version of the tessellation or not. Complete shattering would be achieved if all
possible sequences of zeros or ones can be assigned to the points of T by making suitable
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choices of tessellation parameters. Obviously, since T contains hundreds or thousands
of elements, it would be intractable to investigate all 2#T sequences of zeros and ones.
Instead, we search for a maximum subset T0 ⊆ T having the following two properties:

1. A tessellation exists for which all points of T0 have the indicator value 0.
2. Each subset of points of T0 belonging to the same grain boundary can be shattered.

This transforms the problem of shattering test points over the entire network of grain
boundaries into an evaluation of the shattering of points on individual grain boundaries.

Instead of varying the tessellation parameters systematically—which would neces-
sitate identifying appropriate parameter ranges and step sizes—we perform a random
search through the state space. In particular, we employ the simulated annealing algo-
rithm in modified form to maximize the number of points of T having the indicator
value 0. This leads to an approximation of the maximum subset satisfying the first con-
dition. For each proposed change in cell parameters, the indicator values of all points
of T are stored and later analyzed with respect to the shattering of points on individual
grain boundaries. Thus, ad hoc analysis of the simulation allows finding a T0 that fulfills
the aforementioned conditions. It should be noted that the range of (random) parameter
values considered by our fitting routine is approximately three times wider than in the
simulated annealing algorithm of Section 4, which allows for the deeper search through
state space that is required for a correct analysis of shattering.

6.3 Identification of appropriate model

Before proceeding to the presentation of numerical results, we give an overview of pa-
rameters used in the computational procedures. In order to reduce computational time,
evaluation of the residual sum of squares considered in (12) was based on computing
the distance ‖x− x̃‖ for a randomly chosen subset of points of B̃I , comprising one tenth
of the cardinality of B̃I . This resulted in the cardinalities n in expressions (13) and (14)
ranging from 7.6×104 to 2.7×105. The number of parameters p therein depends on the
number of grains and is much lower, ranging from 2.2×103 for the Voronoi tessellation
to 3.1× 104 for the generalized balanced power diagram. Test sets for the estimation of
VC-dimension were generated with at most 5 points on each grain boundary, depending
on the feasibility of placing 5 points on the particular grain boundary while respecting the
hard core condition. This resulted in 1.9× 103 to 4.5× 103 test points. VC-dimensions
were estimated on the basis of 5 million steps of the simulated annealing methodology
mentioned at the end of Section 6.2. Finally, the guaranteed risk considered in (17) was
estimated with parameters a1 = a2 = 1 at confidence level 1−η = 0.95. Here, the RSS
differs from the one used in the evaluation of AIC and BIC, because the discrepancy be-
tween the response and its approximation is now measured by a binary variable taking
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Table 2 Values for the standardized residual sum of squares RSS/n, the Akaike information criterion AIC, the
Bayesian information criterion BIC, and the guaranteed risk Rg, evaluated for each simply connected tessellation
model fitted to simulated data samples S1 and S2. Each quantity is rescaled by the power of 10 indicated in
parentheses. The minimum value in each column is printed in bold type.

sample S1 sample S2

RSS/n AIC BIC Rg RSS/n AIC BIC Rg
(×102) (×10−4) (×10−3) (×102) (×102) (×10−5) (×10−4) (×102)

T ∗
00 664.0 99.0 179.9 83.5 418.2 71.7 74.1 80.7

T ∗
01 29.7 75.9 -40.3 42.5 21.8 57.2 -70.4 43.7

T ∗
02 31.1 77.0 1.0 41.0 25.6 58.0 -58.9 30.3

T ∗
03 20.3 74.2 -5.7 39.5 8.4 52.6 -111.5 23.1

T ∗
10 15.8 71.2 -87.5 30.6 29.9 58.7 -54.9 49.2

T ∗
11 14.8 76.8 -21.7 45.1 21.1 57.0 -70.8 44.8

T ∗
12 20.4 77.8 20.1 41.1 23.7 57.7 -61.6 31.0

T ∗
13 29.5 77.2 35.2 39.6 8.2 52.5 -111.3 24.3

T ∗
20 15.1 70.8 -91.2 17.3 59.2 62.1 -21.2 56.6

T ∗
21 15.9 74.3 -46.5 38.5 21.7 57.2 -69.4 44.1

T ∗
22 20.3 77.0 11.6 39.7 27.1 58.3 -54.9 31.5

T ∗
23 18.8 73.9 1.3 37.9 9.3 53.1 -105.3 24.9

value one for x ∈ B̃I if x is not a boundary point between the same cells in the dis-
cretized version of the tessellation T ∗ and zero otherwise. For this indicator-based RSS,
which corresponds to the number of misclassified cases in binary classification, we can
use the expression given in (17), employing a VC-dimension based on the same indicator
functions. The number of observations n in (17) counts all points of B̃I and ranges from
7.6×105 to 2.7×106.

At first, we focus on the simulated data, for which we know the correct model from
which the tessellation was drawn. Results of the fitting were already summarized in Ta-
ble 1. We note that the correct models—T ∗

20 for S1 and T ∗
03 for S2—were the most ac-

curate regarding the fraction of correctly assigned voxels as well as with respect to the
topological characteristics µ0

I,T and µ̄I,T . Note also that for S1, the decrease in accuracy
from Laguerre tessellation T ∗

20 to the more general models T ∗
21, T ∗

22 and T ∗
23 can be at-

tributed to the fitting procedure, because there is greater uncertainty when fitting a larger
number of parameters. In practice, it is impossible to achieve the same precision for the
more general models as for the Laguerre tessellation, as the latter entails optimizing only
one parameter per cell in addition to the seed coordinates.

Further insight into the precision of particular models is offered by the standardized
RSS given in Table 2 and in Figs. 8(a,b). For the simulated sample S1, model T ∗

11 is
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even more precise with respect to the standardized RSS than is the Laguerre tessellation.
However, both penalization-based criteria, AIC and BIC, prefer the correct model T ∗

20
(Figs. 8(c,e)). This is also true for the optimal candidate picked out by SRM, for which
the preference for the Laguerre tessellation is even more obvious (Fig. 8(g)).

For the simulated data S2, the lowest values of RSS are attained for the ellipsoidal
grain growth model T ∗

03 and its additively weighted versions T ∗
13 and T ∗

23. However,
the complexity of these models can be excessive compared to simpler ones. Thus, the
model selection criteria described in Section 3 were applied again for identification of
an optimal candidate. The results are given in Table 2 and plotted in Fig. 8. Evidently,
penalization lowers the differences between models with the same α but different β .
However, the increase in accuracy with increasing β outweighs the decrease in simplicity
of the models. The ellipsoidal grain growth model is correctly identified by both BIC and
SRM, while for AIC the model T ∗

13 is preferred by a negligible amount. Note that the
difference between the non-weighted model T ∗

03 and its weighted versions T ∗
13 and T ∗

23
is small. In this particular case, one extra parameter per cell has only a minor impact on
both accuracy and complexity of the tessellation, which implies that the effect of additive
weights can be mimicked sufficiently by appropriate modifications of the matrices Mi.

Results for the experimental data sets are provided in Table 3 and Fig. 9. Here, the
situation resembles that of the simulated dataset S2, generated by the ellipsoidal grain
growth model. The most complicated models of our collection seem to provide not only
the most accurate fitting of polycrystalline data samples, but these models also remain
the most appropriate when their increased complexity is taken into account. Again, we
observe only negligible differences in the results for different values of α when the pa-
rameter β is held at a fixed value greater than zero. This means that the additive weights
wi in these tessellation models have no significant impact on their appropriateness for
approximating empirical data.

7 Conclusions

We have applied a simulated annealing methodology to fit a wide class of tessellation
models to 3D datasets of polycrystalline materials. Optimal models for each dataset were
identified using criteria developed in statistical learning theory. These models meet two
requirements: high approximation accuracy and low model complexity.

Validation performed on simulated datasets revealed that several model selection ap-
proaches were able to identify the optimal model correctly. For experimental datasets of
polycrystalline microstructures, penalization for increasing model complexity according
to several criteria does not seem to outweigh the increase in fitting accuracy afforded by
tessellation models having a greater number of parameters. We conclude that, in real poly-
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Fig. 8 Evaluation of various criteria used for model selection, applied to simulated data samples S1 and S2: (first
row) standardized RSS; (second row) Akaike information criterion (AIC); (third row) Bayesian information
criterion (BIC); (fourth row) guaranteed risk Rg obtained by SRM. All quantities rescaled as described in the
caption of Table 2.
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Fig. 9 Evaluation of various criteria used for model selection, applied to experimental data samples E1 and E2:
(first row) standardized RSS; (second row) Akaike information criterion (AIC); (third row) Bayesian informa-
tion criterion (BIC); (fourth row) guaranteed risk Rg obtained by SRM. All quantities rescaled as described in
the caption of Table 3.
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Table 3 Values for the standardized residual sum of squares RSS/n, the Akaike information criterion (AIC),
the Bayesian information criterion (BIC), and the guaranteed risk Rg, evaluated for each simply connected
tessellation model fitted to experimental data samples E1 and E2. Each quantity is rescaled by the power of 10
indicated in parentheses. The minimum value in each column is printed in bold type.

sample E1 sample E2

RSS/n AIC BIC Rg RSS/n AIC BIC Rg
(×10−1) (×10−5) (×10−5) (×10−2) (×103) (×10−5) (×10−5) (×102)

T ∗
00 408.9 105.7 41.3 99.4 442.0 60.8 -2.8 95.1

T ∗
01 27.7 92.4 28.1 91.2 74.5 52.1 -11.2 82.0

T ∗
02 11.9 88.3 24.2 85.0 20.1 45.8 -16.5 70.4

T ∗
03 7.1 85.8 21.9 81.1 9.0 41.9 -19.6 64.7

T ∗
10 31.8 93.1 28.8 91.7 88.8 52.9 -10.3 82.0

T ∗
11 29.6 92.8 28.6 91.5 71.8 51.9 -11.0 82.5

T ∗
12 10.1 87.5 23.5 84.5 14.0 44.1 -17.9 70.5

T ∗
13 7.0 85.7 21.9 80.9 8.3 41.6 -19.6 64.8

T ∗
20 60.0 96.2 31.9 93.4 145.4 55.4 -7.9 85.3

T ∗
21 19.7 90.7 26.5 89.2 56.2 50.7 -12.2 81.3

T ∗
22 10.4 87.7 23.7 83.6 19.1 45.6 -16.3 70.2

T ∗
23 6.5 85.4 21.6 80.5 8.5 41.7 -19.5 64.4

crystalline materials, features like the heterogeneity of grain sizes, the local anisotropy
of grain shapes and also the curvature of grain boundaries play an important role; there-
fore, models based on ellipsoids still provide the most reliable approximation of observed
microstructures, despite these models’ significantly higher complexity.
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