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Abstract

We present a data-driven modeling approach to quantify morphology effects on transport

properties in nanostructured materials. Our approach is based on the combination of

stochastic modeling of the 3D nanostructure and numerical modeling of effective transport

properties, which is used to investigate process-structure-property relationships of hierar-

chically structured cathode materials for lithium-ion batteries. We focus on nanostructured

LiNi1/3Mn1/3Co1/3O2 (NMC) particles, the nanoporous morphology of which has a crucial

impact on their effective transport properties (i.e., effective ionic and electric conductivity)

and thus on the performance of the cell. First, we develop a parametric stochastic model for

the 3D morphology of the nanostructured NMC particles based on excursion sets of so-called

χ2-fields. This model, which has only two parameters, is then fitted to FIB-SEM image data

of the NMC particles manufactured with different calcination temperatures and different par-

ticle sizes. This way it is possible to generate digital twins of the NMC particles. In a second

step, measured 3D image data and corresponding digital twins are used as input for the nu-

merical simulation of effective transport properties. Based on the results obtained by these

simulations, we can quantify process-structure-property relationships. Overall, we present a

methodological framework that allows for an efficient optimization of the fabrication process

of nanostructured NMC particles.
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1. Introduction

Energy storage is one of the most important issues with regard to the decarbonization of

the power sector [1]. This leads, in particular, to an increasing need for the development of ef-

ficient new battery systems and the further optimization of existing systems. One promising

approach to further improve the performance of cathodes is the use of hierarchically struc-

tured active materials, as proposed in [2] for lithium-ion batteries and in [3] for sodium-ion

batteries. In [4, 5], a detailed study of cathodes with nanostructured LiNi1/3Mn1/3Co1/3O2

(NMC) particles as active material is presented, where differently prepared active mate-

rial particles are considered, varying both, the size of the particles forming the aggregated

nanoporous active material particles and the calcination temperature to synthesize the ag-

gregated particles. Based on 3D image data, the influence of fabrication parameters on

descriptors of the morphology and performance of cathodes, such as the experimentally

determined specific capacity, is quantified. Note that the 3D morphology of cathodes is

investigated on two different length scales, namely the arrangement of the active material

in the electrode (at the micrometer scale) and the morphology of the nanoporous active

material particles (at the nanometer scale).

Since 3D imaging is costly and time consuming, only a small number of tomographically

measured samples can be studied. Thus, to quantitatively investigate process-structure-

property relationships based on a few datasets of measured 3D images, a common approach

is to develop mathematical tools for the generation of model-based digital twins of micro- or

nanostructures observed by 3D imaging. For this purpose, stochastic modeling of 3D mor-

phologies [6–8] is combined with numerical modeling of effective transport properties [9], it is

possible to study process-structure-property relationships based on modeling and simulation.

Note that, in this context, we follow [10] defining digital twins as “a high-fidelity in-silico

representation closely mirroring the form (i.e., appearance) and the functional response of a

specified (unique) physical twin”. The physical twin, i.e., the micro- or nanostructure under

consideration, is first represented as a 3D image. Second, the calibration of a parametric

stochastic model to image data builds the bridge between reality and the virtual space, since

it allows for the simulation of structures which are statistically mirroring the appearance of

the physical structure. Finally, model validation regarding the functional response, which is
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given by effective transport properties in this case, has to be performed to ensure that the

model creates digital twins.

Using methods of stochastic geometry, 3D models have been developed to generate digi-

tal twins of battery materials at the micro-scale, i.e., for the arrangement of active material

particles in the electrode [11–13]. Furthermore, on micro- and nano-scales, such modeling

techniques have been used to generate digital twins of the outer shell and inner polycrystaline

grain architecture of cathode particles for Li-ion batteries [14]. On both scales, the corre-

sponding models have been fitted to tomographic image data. Moreover, machine learning

approaches have recently been used for the data-driven generation of digital twins of com-

plex 3D morphologies, see [15–17]. However, to the best of our knowledge, there are no

stochastic models available in the literature, which allow us to statistically reproduce the

3D morphology of nanostructured active material particles as digital twins. Filling this gap

is the main aim of the present paper, where our modeling approach is based on excursion

sets of random fields, see e.g. Section 6.6.3 of [6]. Note that this concept has been success-

fully applied to model the 3D morphology of anode materials in lithium-ion batteries [18]

as well as of (three-phase) anode materials in solid oxide fuel cells [19–22] and gas-diffusion

electrodes [23]. In the latter cases, excursion sets of Gaussian random fields have been used

as modeling tool.

In the present paper, we consider so-called χ2-random fields, like in [18], where we derive

a new analytical formula for the two-point coverage probability function that allows for an

efficient model calibration to image data. In particular, model calibration is performed on

the basis of 3D image data obtained by FIB-SEM tomography [24, 25], which represents the

3D morphology of (differently manufactured) nanostructured NMC particles utilized already

in [5]. The goodness of model fit is validated with respect to both, geometrical descriptors

as well as effective transport properties of samples of virtual NMC particles drawn from the

fitted particle model.

Note that effective transport properties of porous media are usually determined by finite

element modeling (FEM), which is extensively used in the literature to investigate structure-

property relationships of electrode materials in fuel cells and batteries, see Section 3.2.1 of [26]

and the references therein. In the present paper, to compute effective transport properties

via FEM, the solid phase of simulated NMC particles is represented as a union of sub-

particles. Each of these sub-particles is analytically described by spherical harmonics [27, 28],

see also [29], where spherical harmonics have been used to describe the outer shape of

active material particles in electrodes of Li-ion batteries. This way we get an analytical
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representation of the solid phase of nanostructured active material particles, which is used

as geometry input for FEM.

Altogether, we develop a data-driven framework to investigate process-structure-property

relationships. In particular, we show that regression formulas like those empirically derived

in [30–33] are appropriate to quantify the impact of 3D morphology on effective conductivity

and effective diffusivity in the solid phase and pore space, respectively, of nanostructured

NMC particles. Furthermore, the obtained results of effective transport properties can then

be used as homogenized input for simulations on the electrode scale. Note that the compu-

tation of effective transport coefficients is required in multiscale approaches to model and

simulate electrochemical processes on the macro-scale of the electrodes. A direct compu-

tation on the nano-scale, especially for hierarchically structured electrodes, would not be

computationally feasible in practice. Thus, the present paper supports in-depth studies on

upscaling from the nano- to the macro-scale and, in this way, it contributes to a better un-

derstanding of process-structure-property relationships for hierarchically structured battery

electrodes through modeling and simulation, which is crucial for further optimizing such

materials.

The rest of this paper is organized as follows. The materials under consideration and

the acquisition of 3D image data is described in Section 2. The spatial stochastic model,

which has been developed for the 3D morphology of nanostructured NMC particles as well

as the structural segmentation of both, measured and simulated image data, are presented in

Section 3. This structural segmentation serves as geometry input for the numerical transport

simulations described in Section 4. Process-structure-property relationships are discussed in

Section 5. Section 6 concludes.

2. Materials and Imaging

2.1. Preparation of hierarchically structured active material

The preparation of hierarchically structured NMC111 active material with three different

secondary particle sizes and varying nanostructure was performed by grinding, spray drying

and calcination. Therefore, NMC111 (Toda Kogyo Corp.) was ground in deionized water

with Darvan 821A dispersant (Vanderbilt Minerals) for around 5 h in an agitator bead

mill (LabStar LS1, Netzsch) with yttria-stabilized zirconia beads (diameter: 0.2 mm) at

3000 rpm. The grinding process was stopped at a mean particle size (considering the volume-

weighted median d50,3) of approximately 220 nm. Subsequently PEG400 (Sigma Aldrich) was

added as dispersant, mixed thoroughly and the suspensions was divided into two fractions
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of equal volumes. Spray drying was performed in a MobileMinor spray dryer from GEA at

three different peripheral speeds of the atomizer wheel to obtain varying secondary particle

sizes. Therefore 1 bar (12000 rpm), 2.7 bar (27000 rpm) and around 4.5 bar (39000 rpm)

nitrogen gas flow was set to drive the atomizer wheel. Obtained spray-dried granules were

sieved and three fractions of secondary particle sizes, namely with d50,3-values of around 9, 14

and 37 µm were obtained. In order to obtain nanostructured powders, which are denoted as

Fine (F), Medium (M) and Coarse (C) in the following, these granules were calcined at 850

and 900◦C for 5 h under pressured airflow (6 l/min) at heating and cooling rates of 5 and

10 K/min. Note that due to the manufacturing process, the size of the secondary particles

(F, M, and C) also influences the formation of the morphology of nanopores within the

secondary particles [5]. In the present paper, we consider fine, medium and coarse secondary

particles calcined at 850 and 900◦C. In the following, these samples are denoted by F850,

M850, C850, F900, M900, and C900.

(a) (b) (c) (d)

Figure 1: 2D cross-section of greyscale image obtained by FIB-SEM tomography for a nanostructured active
material particle with medium particle size and a calcination temperature of 900◦C , where critical regions
for the segmentation are highlighted in blue (a). The greyscale image is compared with the corresponding
binarized image (b), where the solid phase and the pore space are represented in white and black, respectively.
Additionally, the solid phase is partitioned into sub-particles by means of the watershed algorithm (c), which
is used to represent the solid phase as a union of star-shaped sets given by spherical harmonics (d).

2.2. FIB-SEM imaging

Focused ion beam-scanning electron microscopy (FIB-SEM) imaging was performed for

three-dimensional structural data acquisition. The Zeiss Crossbeam 340 at the HZB Core-

Lab “Correlative Microscopy and Spectroscopy” was used for each measurement. Prior to

ion milling, each sample (particles in bulk) was infiltrated with resin (EpoThin 2) and pol-

ished, resulting in resin cubes containing NMC-particles with an average edge length of 1

mm. To ensure good conductivity, each cube was coated with gold (Cressington Sputter

Coater 108auto, 60 seconds). On each cube, FIB-SEM tomography was performed by serial
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sectioning using Ga-ions (300 pA with 30 kV) and SEM imaging (3 kV SE2 detector). For

most samples, an isotropic voxel size of 10 nm was achieved, only for the sample F850°, the

first sample measured in this series, a voxel size of 15 nm was reached. However, the larger

voxel size had no effect on the following statistical analysis.

Due to the high contrast between the resin and NMC, the use of the automatic Otsu

threshold algorithm [34] was sufficient for image segmentation, i.e. to classify each voxel ei-

ther as pore or solid. In Figure 1, a comparison of a 2D cross-section of the greyscale image

and the corresponding segmented 2D cross-section is shown for an active material particle

with medium particle size and a calcination temperature of 900◦C. Even if the samples are

fully infiltrated with epoxy, the 3 kV SE2 detector leads to minor transparency resulting in

slight shine-through artifacts. Nevertheless, the Otsu threshold provides a good segmenta-

tion, even for critical regions, a few of which are exemplarily highlighted by blue circles in

Figure 1a. Moreover, note that without an infiltration of resin, more sophisticated algorithms

are necessary to appropriately segment FIB-SEM images of nanoporous NMC particles [35].

Data processing was performed using the open source software ImageJ/Fiji [36].

3. Structural segmentation and stochastic 3D modeling

In Section 3.1, we first explain how the solid phase of aggregate particles can be rep-

resented by a union of sub-particles using spherical harmonics. This representation will be

exploited later on for the numerical simulation of effective transport properties, see Section 4.

Then, in Section 3.2, we present a spatial stochastic model, which has been developed for

the 3D morphology of nanostructured NMC particles as described in Section 2. Note that

the goodness of model fit is validated with respect to both, geometrical descriptors and, in

Section 5, effective transport properties of samples of virtual NMC particles drawn from the

fitted particle models.

3.1. Representation of solid phase by spherical harmonics

Binarized 3D image data as described in Section 2 is given on a voxel grid, i.e., for each

voxel the image contains the information, whether the voxel belongs to the solid phase or

to the pore space of the considered aggregate particle. To obtain an off-grid representation

of the nanostructure, the solid phase is represented by a union of sub-particles, which are

defined in the (continuous) Euclidean space R3. For this purpose, we extract the sub-particles

from 3D images by means of the watershed algorithm described in [37] and approximate them

by series expansions with respect to spherical harmonics [27, 28]. It is important to note
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that the segmentation into sub-particles is a methodological approach to obtain a lattice-free

representation of the solid phase (i.e., the union of all sub-particles), rather than a perfect

extraction of the real primary particles is aimed at. The benefit of an off-grid representation

for the numerical simulation of effective transport properties is discussed in Section 4.2.

The representation of sub-particles by spherical harmonics leads to star-shaped sets, i.e.,

there exists at least one point within the sub-particle such that all points of the sub-particle

can be connected to this point by a straight line which is completely contained in the sub-

particle. However, the star shape of sub-particles obtained in this way is far from being

a restrictive model assumption. Typically, the sub-domains of binary 3D images, so-called

basins, determined by a watershed algorithm can be nicely approximated by star-shaped

sets [29, 38], see also Figure 1 for a visual comparison of binarized FIB-SEM image data

(Figure 1b) and its representation as a union of star-shaped sets given by spherical harmonics

(Figure 1d).

More precisely, the star shape allows for an identification of each sub-particle by a center

xc ∈ R3 and a function ψ : [0, π] × [0, 2π) → (0,∞) on the unit sphere (given in polar

coordinates). Then, for a star-shaped sub-particle Pxc,ψ ⊂ R3 identified by xc and ψ it holds

that

Pxc,ψ = xc + {y ∈ R3 : r(y) ≤ ψ(θ(y), ϕ(y))}, (1)

where the vector (r(y), θ(y), ϕ(y)) ∈ (0,∞) × [0, π] × [0, 2π) denotes the polar coordinates

of y ∈ R3. Thus, the value ψ(θ, ϕ) models the distance from xc to the boundary of the set

Pxc,ψ ⊂ R3 in the direction given by (θ, ϕ).

Note that the radius function ψ : [0, π] × [0, 2π) → (0,∞) considered in Equation (1)

exhibits – under mild regularity conditions [28] – a representation as a series expansion with

respect to spherical harmonics [27, 28]. In particular, if ψ is square integrable, then it admits

the representation

ψ(θ, ϕ) = lim
L→∞

L∑
ℓ=0

ℓ∑
m=−ℓ

cmℓ Y
m
ℓ (θ, ϕ), (2)

for all (θ, ϕ) ∈ [0, π] × [0, 2π), where the complex number cmℓ ∈ C is called a spherical

harmonics coefficient of ψ, and the function Y m
ℓ : [0, π]× [0, 2π) → C denotes the spherical

harmonics given by

Y m
ℓ (θ, ϕ) =

(
sin θ

2

)m
eimϕ

√
(2ℓ+ 1)(ℓ−m)

4π(ℓ+m)!

ℓ−m∑
k=0

(m+ l + k)!

k!(m+ k)!(ℓ−m− k)!

(
cos θ − 1

2

)k
,

(3)
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for all integers m and ℓ fulfilling 0 ≤ m ≤ ℓ. For −ℓ ≤ m < 0, we define Y m
ℓ (θ, ϕ) =

(−1)m Y −m
ℓ (θ, ϕ). Given ψ, the spherical harmonics coefficients cmℓ ∈ C can be obtained via

cmℓ =

∫ 2π

0

∫ π

0

ψ(θ, ϕ)Ȳ m
ℓ (θ, ϕ) sin θ dθdϕ, (4)

where Ȳ denotes the complex conjugate of Y ∈ C.
To practically determine the star-shaped representation of sub-particles extracted from

3D image data, we estimate the values of cmℓ for all |m| ≤ ℓ ≤ L and truncate the series in

Equation (2) at L = 10. For this purpose, we proceed as in [29], where a detailed description

of estimating the spherical harmonics coefficients from 3D image data is given.

A quantitative comparison of volume fractions and specific surface areas, which have

been obtained for the solid phase of aggregate particles using binarized 3D FIB-SEM image

data and the corresponding spherical harmonics representation, respectively, is given in

Table A1 for the six samples described in Section 2, see also Figure A1 of Appendix A

for a quantitative comparison of two-point coverage probability functions. Considering these

geometrical descriptors, binarized 3D image data and the corresponding spherical harmonics

representation nicely coincide.

3.2. Stochastic 3D model for the solid phase

We develop a parametric stochastic model for the 3D morphology of the nanostructured

NMC particles, which is based on excursion sets of random fields, where we use tools from

stochastic geometry [6] and mathematical morphology [7]. In particular, we consider ex-

cursion sets of so-called χ2-fields with two degrees of freedom to model the solid phase of

the nanostructured active material particles as described in Section 2. Note that we use

χ2-fields instead of the commonly considered Gaussian random fields [20–22], since it turned

out that χ2-fields are more appropriate to fit constrictivity, i.e. bottleneck effects, of the solid

phase of the nanostructured NMC particles, see the results of model evaluation presented in

Section 3.3 below.

To explain the notion of a χ2-field with two degrees of freedom, we consider two inde-

pendent copies X1 and X2 of a motion-invariant, i.e. stationary and isotropic, Gaussian

random field X = {X(t), t ∈ R3}, whose expectation function EX : R3 → R and variance

function VarX : R3 → [0,∞) fulfill EX(t) = 0 and VarX(t) = 1 for each t ∈ R3. Another

important characteristic of X is its covariance function ρX : [0,∞) → [−1, 1], which is given

by ρX(h) = Cov(X(s), X(t)) for each h > 0, where s, t ∈ R3 with |s − t| = h. Due to

the assumed motion invariance of X, the value of ρX(h) does not depend on the particular
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choice of s and t. Moreover, note that motion-invariant Gaussian random fields are uniquely

determined by the expectation EX(o), where o ∈ R3 denotes the origin, and the correlation

function ρX . For further information regarding Gaussian random fields, the reader is referred

to [6, 39].

Using the Gaussian random fields X1 and X2, we can define the random field Y =

{Y (t), t ∈ R3} by putting Y (t) = X2
1 (t) +X2

2 (t) for each t ∈ R3, where Y is called a χ2-field

with two degrees of freedom. Note that, like the Gaussian random field X, the χ2-field Y is

uniquely determined by the expectation EX(o) and the correlation function ρX of X.

The solid phase of nanostructured active material particles is then modeled by the (ran-

dom) excursion set Ξ = {t ∈ R3 : Y (t) ≥ λ} for some λ > 0. In order to fit λ (and further

model parameters) to the 3D image data described in Section 2, we use analytical relation-

ships between these parameters and geometrical descriptors which can easily be extracted

from 3D image data. For this purpose, we consider the volume fraction p = Eν(Ξ ∩ [0, 1]3)

of the (motion-invariant) random set Ξ, where ν(Ξ ∩ [0, 1]3) denotes the volume of the set

Ξ ∩ [0, 1]3 ⊂ R3, as well as its two-point coverage probability function C : [0,∞) → [0, 1]

defined by C(h) = P(s ∈ Ξ, t ∈ Ξ) for each h = |s − t| ≥ 0. Analogously to the invariance

property of the covariance function ρX of X mentioned above, the value of C(h) = C(|t−s|)
does not depend on the particular choice of t and s. Moreover, the following formulas are

true. First, we make use of the fact that

p = P(o ∈ Ξ) = P(Y (o) ≥ λ), (5)

see Equation (6.34) in [6], and we exploit the following relationship.

Proposition 1. The two-point coverage probability function C : [0,∞) → [0, 1] of the ran-

dom excursion set Ξ fulfills

C(h) = 2p− 1 + (1− ρ2X(h))
∞∑
j=0

ρ2jX (h)

(j!)2

(∫ λ

2(1−ρ2
X

(h))

0

tj exp(−t)dt

)2

, (6)

for each h > 0.

To the best of our knowledge, so far relationships of the form given in Equation (6) are

available in the literature only for the cases, when Y is either Gaussian or a χ2-field with

one degree of freedom, see Equations (6.158) and (6.160) in [6], respectively.

A proof of Proposition 1 is given in Appendix B. Note that for each h > 0, the value of

C(h) is monotonically increasing for increasing values of ρX(h) ∈ [0, 1]. This follows directly
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from a Slepian-type result for random variables, which can be represented as compositions of

random variables with elliptically contoured distributions, see Theorem 4.3 in [40]. Due to

this result, it is possible for each h > 0, to numerically solve Equation (6) for ρX(h) by the

method of bisection. This means that Proposition 1 allows for determining the covariance

function ρX based on the knowledge of the two-point coverage probability function C, which

can be directly estimated from image data as described in Chapter 6 of [41].

3.3. Calibration and validation of the stochastic 3D model

We now assume that the covariance function of X has the form ρX(h) = exp(−α2h) for

each h > 0, where α > 0 is some parameter. Thus, to calibrate the stochastic 3D model for

the FIB-SEM image data described in Section 2, we have to compute estimates of the model

parameters λ and α. First, in order to estimate λ, we use Equation (5). This leads to the

estimator

λ̂ = χ2
2,1−p̂, (7)

where χ2
2,1−p̂ denotes the 1 − p̂ quantile of the χ2-distribution with two degrees of freedom.

Here p̂ denotes an estimator for the volume fraction p = E|Ξ∩ [0, 1]3| of Ξ, which is obtained

by the so-called point-count method, see Section 6.4.2 in [6]. Then, to estimate α, we use

the analytical relationship between C and ρX stated in Proposition 1, where Equation (6) is

numerically solved for ρX(h) after replacing the two-point coverage probability C(h) by an

appropriately chosen estimate Ĉ(h). The values obtained in this way for the estimators λ̂

and α̂ are provided in Table 1, together with the volume fractions estimated from binarized

3D FIB-SEM image data for the six samples described in Section 2.

Table 1: Estimated values for p, λ and α, computed from binarized 3D FIB-SEM image data.

Parameter F850 F900 M850 M900 C850 C900

p̂ 0.46 0.68 0.52 0.60 0.62 0.70

λ̂ 1.55 0.77 1.31 1.02 0.96 0.71
α̂/µm−1 7.28 4.63 6.01 4.27 5.47 3.49

Visual comparison of binarized 3D FIB-SEM image data with realizations drawn from the

stochastic 3D models, which have been fitted to the 3D FIB-SEM data, shows a quite good

accordance, see Figure 2. Furthermore, the fitted 3D models are quantitatively validated by

comparing geometrical descriptors of model realizations with those computed from the 3D

FIB-SEM data. For this purpose, ten model realizations with a size of 4 µm×4 µm×4 µm are

drawn from each of the six model specifications fitted to the particle samples as described
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above. Then, for each model specification, various geometrical descriptors are computed

for each of the then model realizations and, finally, averaging over these ten realizations is

performed.

F850 (data) F850 (sim) F900 (data) F900 (sim)

M850 (data) M850 (sim) M900 (data) M900 (sim)

C850 (data) C850 (sim) C900 (data) C900 (sim)

Figure 2: Visual comparison between tomographic image data and simulated model realizations.

To quantitatively validate the fitted 3D models, we investigate the following geometrical

descriptors of the nanostructured NMC particles. In particular, we consider the volume

fraction p of the solid phase, as well as the specific surface area S, which is estimated from

discrete 3D image data as described in Section 5.2 of [41]. Moreover, we consider the mean

geodesic tortuosity τgeod and constrictivity β of both, the solid phase and the pore phase. The

notion of mean geodesic tortuosity of a materials phase (solid or pores) is given as the quotient

of the expected length of shortest paths through the material, which are fully contained in

the phase under consideration, divided by the thickness of the material. Note that mean

geodesic tortuosity is a purely geometrical descriptor, while the so-called effective tortuosity

characterizing transport phenomena in a given structure is considered in Sections 4.2 and 4.3.
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Beyond that there are many different notions of tortuosity used in the literature. For an

overview, we refer to [42]. The constrictivity β is a descriptor for the strength of bottlenecks

effects, given as squared ratio of the width of the typical bottleneck obtained from simulated

mercury intrusion porosimetry over the median of the continuous phase size distribution, see

e.g. [43] for details. A formal definition of mean geodesic tortuosity and constrictivity in the

framework of stationary random sets can be found in [22].

The values given in Table 2 show that the volume fraction of the solid phase as well

as mean geodesic tortuosities of pores and solid are nearly identical when comparing the

results obtained for model realizations and tomographic image data, respectively. For the

volume fraction p of the solid phase, this is not surprising since the parameter λ defining the

level of the excursion set was fitted in order to match the volume fraction, see Equation (7).

Mean geodesic tortuosity, however, as well as specific surface area and constrictivity are

not used for model fitting. For the latter two descriptors, slight discrepancies between the

values obtained for model realizations and tomographic image data can be observed, see

Table 2. The specific surface area S is slightly overestimated by the models (except of

the case with coarse particles calcined at 900◦C), while the qualitative trend observed in

tomographic image data is reproduced, i.e., the values of S become smaller with coarser

particles and the increase of calcination temperature from 850◦C to 900◦C. With respect to

constrictivity, the goodness-of-fit depends on the sample under consideration. While a nearly

perfect fit is obtained in the cases of F850 (solid and pores), F900 (solid), M850 (pores) and

M900 (solid), slightly larger deviations are observed for the other samples up to a relative

error of 17 % for M900 (pores). However, it will be shown in Section 5.1 that despite of

these deviations, the numerically simulated effective conductivities of the solid phase and

the effective diffusivities of the pore space are in good agreement when comparing the values

obtained for simulated model realizations with those for the corresponding 3D image data.

We refer to Appendix C, where we show that both, the SEM images as well as the sample

sizes of the virtual microstructures are representative.
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Table 2: Values of geometrical descriptors computed from tomographic image data and simulated model
realizations, respectively.

Sample p S/µm−1 τgeod (solid) τgeod (pores) β (solid) β (pores)
F850 (data) 0.46 8.44 1.10 1.05 0.51 0.68
F850 (sim) 0.46 9.34 1.11 1.05 0.53 0.68
F900 (data) 0.68 5.75 1.05 1.13 0.61 0.55
F900 (sim) 0.68 6.23 1.05 1.11 0.61 0.63
M850 (data) 0.52 7.80 1.10 1.07 0.47 0.67
M850 (sim) 0.52 8.04 1.09 1.07 0.54 0.68
M900 (data) 0.60 5.27 1.07 1.09 0.55 0.58
M900 (sim) 0.60 5.82 1.07 1.09 0.57 0.66
C850 (data) 0.62 7.14 1.06 1.09 0.55 0.58
C850 (sim) 0.62 7.46 1.06 1.09 0.60 0.66
C900 (data) 0.70 4.72 1.05 1.12 0.53 0.52
C900 (sim) 0.70 4.66 1.05 1.12 0.62 0.61

Furthermore, the goodness-of-fit of the calibrated stochastic 3D models is analyzed with

respect to the two-point coverage probability function C : [0,∞) → [0, 1]. More precisely,

the centered two-point coverage probability function C0 : [0,∞) → [−1, 1] given by C0(h) =

C(h) − p2 is considered. Note that the closer, the centered two-point coverage probability

C0(h) is to zero, the less pronounced is the spatial dependence of the events that s ∈ Ξ and

t ∈ Ξ for points s, t ∈ R3 of distance h = |t − s| > 0 from each other. In Figure 3, one the

functions C0 computed from tomographic image data are compared with the average curve

from 10 model realizations. There are slight deviations for some samples. Nevertheless,

keeping in mind that one and the same model type (with only two parameters) is fitted to

all six differently manufactured samples, we consider the results in Figure 3 as a good fit.

This justifies our parametric model choice for the covariance function ρX , i.e., assuming

that ρ(h) = exp(−α2h) for h > 0. Thus, it can be ascertained that the 3D morphology

of the nanostructured active material considered in this paper can be nicely modeled by a

relatively simple stochastic 3D model with only two model parameters, namely the level λ

of the random excursion set Ξ and the parameter α appearing in the covariance function of

the underlying Gaussian random field X.
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F850 M850 C850

F900 M900 C900

Figure 3: Centered two-point coverage probability functions for FIB-SEM image data and the average curve
over 10 model realizations. The comparison is shown for all samples.

4. Numerical modeling of effective transport properties

For hierarchically structured battery electrodes, where the 3D morphology on different

length scales influences the performance of the cell, multi-scale approaches are exploited

for numerical modeling. For this purpose, effective transport properties of the micro- and

nanoscale are used as aggregated information for numerical modeling on the macroscopic

scale. For the materials considered in the present paper, the effective diffusion coefficients

of ionic and electric transport within nanostructured NMC particles are crucial quantities

on the nanoscale. In the present paper, we focus on limitations of the electric transport

in the solid phase arising due to the nanopores and do not consider the influence of the

polycristalline grain architecture, experimentally investigated in [44].

4.1. Intrinsic versus effective transport coefficients

There are different mathematical methods to determine effective transport coefficients [45–

47]. A common approach is to scale the intrinsic transport coefficients. The scaling factors

obtained in this way account for transport processes within nanostructured active material

particles being limited by their morphology on the nanoscale. For example, the diffusion

of ions in the pore space is hindered, in comparison to a straight path, by the windedness
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of transportation paths of ions through the nanostructured active material particles. This

effect is quantified by the notion of mean geodesic tortuosity mentioned in Section 3.3. In

the present paper, we consider electric conduction in the solid phase and ionic diffusion in

the pores of nanostructured active material particles, where the mathematical concepts of

these two transport phenomena coincide.

Note that the direct comparison of the flux of a transport problem on two different length

scales is a common approach to determine the scaling factor corresponding to the effective

transport coefficient in the material phase under consideration, i.e., the pore space for ionic

diffusion in the electrolyte and the solid phase for the electric conduction. For this, one

needs to compute the flux on a domain Ωref ⊂ R3, which is considered as the material phase

(pores or solid) where transport occurs. The domain Ωref is assumed to be contained in

a rectangular cuboid Ωhom ⊂ R3, see Figure 4. The cuboid Ωhom is then used to solve the

so-called homogenized problem, where the top, bottom and side surfaces of Ωhom are denoted

by Γu, Γd and Γ0, respectively, see Figure 4.
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Figure 4: Schematic representation of outer surfaces of the homogeneous volume Ωhom, where different
boundary conditions are applied: Dirichlet boundary conditions to the top and bottom surfaces (a), and a
Neumann condition of zero flux to the side surfaces (b).

The domain Ωref is taken as reference volume of the nanostructure, where the diffusion

tensor is approximated by a diagonal tensor such that each component is determined by

solving a diffusion problem with respect to a main transport direction. More precisely, this
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diffusion problem for the nanostructure is treated by solving

∇ · (D∇u) = 0 in Ωref , (8)

for u : Ωref → R, where D > 0 is the intrinsic transport coefficient (of either electric

conduction or ionic diffusion), and with Dirichlet conditions in the main transport direction

and no-flux conditions on the rest of surfaces of Ωref . For example, considering the main

transport along the (0, 0,−1)-direction from top to bottom, see Figure 4, Dirichlet boundary

conditions apply to the top surface Γu ∩ Ωref and the bottom surface Γd ∩ Ωref of Ωref , i.e.,

u(x) = 1 for x ∈ Γu ∩ Ωref and u(x) = 0 for x ∈ Γd ∩ Ωref , and a Neumann condition of

zero flux is applied to the rest of the outer surface Γ0 ∩ Ωref (and to the inner interface

between solid and pore phase, not shown in Figure 4). Note that the solution u : Ωref → R
of Equation (8) describes the spatially resolved ion concentration or electric potential in

the material phase under consideration, in dependence on whether ionic diffusion or electric

conduction is considered.

To determine the effective transport coefficient Deff > 0, the flux of the transport problem

within the nanostructure is compared to the flux of the homogenized problem, where the

difference between these two problems is just induced by the different domains. Recall that in

Equation (8) the nanostructure domain Ωref is considered, while for solving the homogenized

problem

∇ · (Deff∇w) = 0 in Ωhom, (9)

for w : Ωhom → R, the nanostructure is not taken into account. However, similarly to the

diffusion problem considered in Equation (8), the boundary conditions of Equation (9) are

Dirichlet conditions in the main transport direction and the no-flux condition on the side

surfaces of Ωhom. The solution of the homogenized problem stated in Equation (9) can be

determined analytically. If one is interested in transport along the (0, 0,−1)-direction, the

solution is given by w : Ωhom → R with w(x) = x3/L, where x = (x1, x2, x3) ∈ R3 is the

position vector and L > 0 denotes the edge length of the cuboid Ωhom in (0, 0,−1)-direction,

see Figure 4.

The fluxes Jnano, Jhom ≥ 0 of the two problems described above are then given by

Jnano = D

∫
A

∂u(x)

∂n
H2(dx) and Jhom = Deff

∫
A

∂w(x)

∂n
H2(dx) = Deff

H2(A)

L
, (10)

16



where H2 denotes the two-dimensional Hausdorff measure, A ⊂ Ωref is an arbitrary planar

section of the domain Ωref orthogonal to the (0, 0,−1)-direction with area H2(A) > 0, and

n = (0, 0,−1) denotes the unit normal vector to this planar section. Note that the specific

choice of the planar cross section A ⊂ Ωref is arbitrary due to the divergence theorem, since

the solutions of Equations (8) and (9) are divergence-free and no-flux conditions are applied

on the inner and side surfaces of Ωref and Ωhom, respectively. By identifying the fluxes Jnano

and Jhom, i.e., putting Jhom = Jnano, we get that

Deff = Jnano
L

H2(A)
. (11)

4.2. Numerical computation of the effective transport coefficient using level sets

The effective transport coefficient Deff as described in Section 4.1 is computed by nu-

merically solving Equation (8), where we use the finite element method on a regular grid.

For this purpose, the domain Ωeff of the material phase under consideration is represented

by a union of sub-particles, where the outer shell of each sub-particle is approximated by a

series expansion with respect to spherical harmonics, see Section 3.1. Then, for each sub-

particle Pxc,ψ ⊂ R3 with center at xc ∈ R3 and radius function ψ, we consider the (centered)

distance function φxc : R3 → R given by φxc(x) = |x − xc| − ψcart(x) for each x ∈ R3,

where ψcart(x) = ψ(θ, ϕ) is the value of the radius function ψ at x ∈ R3 and the angles

(θ, ϕ) ∈ [0, 2π) × [0, π] denote the spherical coordinates of x (with respect to the reference

point xc). Note that x ∈ R3 belongs to the inner part or the boundary of Pxc,ψ if φxc(x) < 0

or φxc(x) = 0, respectively. Therefore, the sub-particle Pxc,ψ can be represented by a level

set, i.e.,

Pxc,φ = {x ∈ R3 : φxc(x) ≤ 0}. (12)

A particular advantage of the level-set approach described above, based on spherical har-

monics expansions of the radius functions of the sub-particles constituting the domain Ωref ,

is the possibility to arbitrarily adjust the grid size (as long as computationally feasible) when

numerically solving Equation (8). Moreover, this approach can be used for the generation of

locally adapted mesh grids as an input for the finite element method [48, 49].

To construct a computational grid for solving Equation (8) on the nano-scale, a subdi-

vision of the domain Ωhom into a regular uniform hexahedral grid is performed. In our case,

this grid coincides with the voxel grid given by the image data. Based on the values of the

distance functions φxc evaluated at the nodes of this grid, an approximation of the domain

Ωref representing the nanostructure is defined. However, there can be cells of the grid where
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the distance function φxc vanishes on a set of points within the cell, for some sub-particle

Pxc,ψ. These cells are assigned to a given material phase (pores or solid) if the major part

of their volume belongs to that material phase.

Now, inserting the numerical solution u : Ωref → R of Equation (8) into Equation (10), the

flux Jhom and, using Equation (11), the effective transport coefficient Deff can be computed.

However, instead of Deff , the notion of effective tortuosity (denoted by τeff in the follow-

ing) is frequently used in multiscale models, like in the-well known pseudo-two-dimensional

(P2D) Doyle-Fuller-Newmann model [50], where τeff can easily be expressed by Deff via the

relationship

τeff =
ε

Deff

D. (13)

Here ε denotes the volume fraction of the material phase under consideration, i.e., ε = p and

ε = 1− p when transport in the solid phase and the pore space, respectively, is considered.

Thus, using Equations (10), (11) and (13), the effective tortuosity τeff can be computed,

where

τeff = εD
H2(A)

LJnano
and, equivalently, τeff = ε

H2(A)

L
∫
A
∂u(x)
∂n

H2(dx)
.

Note that the solution u : Ωref → R of Equation (8) does not depend on the intrinsic

transport coefficient D, since D is assumed to be constant, i.e., not location-dependent.

Thus, from the latter representation formula for τeff , it can be concluded that τeff also does

not depend on D.

4.3. M-factor for predicting the microstructure influence on effective transport

Besides the effective transport coefficient Deff and the effective tortuosity τeff , there still

is a third quantity, which can be used to characterize transport processes in porous media.

This is the so-called M -factor, see e.g. [42], which is the ratio of effective over intrinsic

conductivity, when the solid phase is considered, and the ratio of effective over the intrinsic

diffusivity in the case of the pore space. Formally, the M -factor 0 ≤M ≤ 1 is given by

M =
Deff

D
or, equivalently, M =

ε

τeff
. (14)

In [33], an empirically derived relationship between the M -factor and three morphological

descriptors (volume fraction ε, mean geodesic tortuosity τgeod and constrictivity β) of the
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transporting phase has been investigated, where the predictor

M̂ =
ε1.15 β0.35

τ 4.39geod

(15)

of theM -factor defined in Equation (14) is considered. A detailed discussion of the predictive

power of the quantity M̂ given in Equation (15) is provided in [30], see also [31, 32].

Although the (simulated) 3D morphologies, on the basis of which Equation (15) has been

derived in [33], differ from those of nanostructured active materials, it turns out that the

predictor M̂ given in Equation (15) is also suitable for the 3D morpohologies considered in the

present paper. Moreover, the M -factor can be be used to evaluate the stochastic 3D model

introduced in Section 3.2, by comparing the effective transport coefficients computed for

tomographic image data and simulated 3D nanostructures of NMC particles, see Section 5.

5. Process-structure-property relationships

This section is devoted to process-structure-property relationships of nanoporous NMC

particles. First, we validate the stochastic 3D model introduced in Section 3.2 in terms of

effective transport properties, see Section 5.1. Then, in Section 5.2, we show that previously

derived structure-property relationships [30, 33] are valid to quantify the influence of the 3D

morphology of the nanostructured active material on its effective conductivity and effective

diffusivity. Finally, in Section 5.3, we discuss the influence of manufacturing parameters

(particle size and calcination temperature) on effective transport properties.

5.1. Validation of the stochastic 3D model in terms of effective transport properties

Recall that in order to compute the M -factor for tomographic image data and virtual

(simulated) nanoporous NMC particles, we represent their solid phase as a union of sub-

particles, the outer shell of which is given by a series expansion with respect to spherical

harmonics as described in Section 3.1. Doing so, we obtain an analytical representation of

the nanostructured active material. Based on this representation, for each of the six samples

F850, M850, C850, F900, M900, and C900, the M -factors of the solid phase and the pore

space are numerically computed for tomographic image data and for five model realizations

drawn from the correspondingly calibrated stochastic 3D model described in Section 3.2.1

1Here we use five of the ten realizations, which have been drawn from the stochastic 3D model, see
Section 3.3. Recall that these realizations have a size of 4 µm× 4 µm× 4 µm.
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(a) (b)

(c) (d)

Figure 5: Comparison of model realizations and tomographic image data in terms of numerically computed
M -factors for solid phase (a) and pore space (b). The data points with one and the same color correspond
to the different model realizations (five per sample) drawn from the correspondingly calibrated stochastic
3D model. Comparison of geometrically predicted and numerically computed M -factors for solid phase (c)
and pore space (d) of the 30 model realizations.
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For this purpose, FEM has been used as described in Section 4.2, where, in total, we consider

36 datasets for six different scenarios, defined by particle size and calcination temperature.

In Figures 5, the results are compared which we obtained for the M -factors computed on

tomographic image data and on virtual nanostructures, respectively, for both, solid phase

(Figure 5a) and pore space (Figure 5b). It can be observed that the M -factors of the

model realizations reproduce those of the tomographic image data quite well. Thus, this

comparison further validates the stochastic 3D model and, in particular, complements the

validation performed in Section 3.2 by means of morphological descriptors. The additional

model validation in terms of effective transport properties also shows that the deviations

observed for constrictivity (see Table 2) are relatively small such that the fit of the M -factor

is still good. On the other hand, note that there is some variability within the M -factors

computed for the five realizations of each sample. However, this variability is small enough

such that there is no major overlap between the M -factors of different samples. This shows

that the representative volume element has been chosen large enough in order to distinguish

between the different samples in terms of effective transport properties.

5.2. Predicting the M-factor from morphological descriptors

A comparison of geometrically predicted and numerically computed M-factors for solid

phase and pore space of the 30 model realizations is given in Figures 5c and 5d, respectively,

where the geometrical predictor M̂ is determined by means of Equation (15). It turns out

that the quality of the predictor M̂ is quite good, which shows that Equation (15) is suitable

for a larger class of 3D morphologies than the one originally used in [33], where the prediction

formula given in Equation (15) has been derived. As a further result in this direction, it has

been shown in [51] that Equation (15) leads to good predictions for the effective diffusivity

in porous silica.

5.3. The influence of manufacturing parameters on effective transport properties

Figure 5 also shows the influence of parameters of the manufacturing process on effective

transport properties. For a fixed particle size, an increase of the calcination temperature

leads to an increase of the M -factor computed for the solid phase. The difference between

the M -factors computed for calcination temperatures of 850◦C and 900◦C, respectively, is

the greater the finer the particles are. An analogous behavior is observed for the M -factors

of the pore space, which show a qualitatively opposite trend compared to the M -factors of

the solid phase. A more detailed discussion of the influence of manufacturing parameters,

which goes beyond transport properties within nanostructured active material particles, can
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be found in [5]. In particular, it is shown there that the M -factor of the solid phase has a

stronger influence on the electrode performance than theM -factor of the pore space. Among

the cathodes considered in the present work, those with coarse active material particles also

have a larger specific capacity than those cathodes with fine active material particles (in

addition to the larger M -factors of the solid phase). Moreover, their specific capacity is

larger than that of a reference cathode fabricated without nanostructuring, see Figure 3

in [5]. It is important to note that for performance indicators such as specific capacity, the

spatial arrangement of all active material particles and the binder-additive phase within the

electrode also plays a crucial role. Detailed investigations with respect to the influence of

the binder-additive phase in lithium-ion batteries can be found, e.g., in [52, 53].

6. Conclusion

In the present paper, we have developed a data-driven modeling approach to efficiently

investigate process-structure-property relationships of nanostructured active material parti-

cles for cathodes in lithium-ion batteries. For this purpose, a stochastic 3D nanostructure

model with only two parameter has been developed which allows for the generation of dig-

ital twins of differently manufactured active material particles, the morphology of which is

resolved by FIB-SEM tomography. Model validation is performed by comparing model re-

alizations with image data in terms of morphological descriptors not used for model fitting.

Even if slight deviations with respect to constricitivity are observed for some samples, the

overall fit is good.

Moreover, when using finite element modeling to compute effective transport properties of

the considered materials, we observe a nearly perfect match between model realizations and

image data regarding effective conductivity of the solid phase and effective diffusivity in the

pore space. In addition to the performed model validation, we show that structure-property

relationships, which have been established for other types of morphologies in previous pub-

lications [30, 33], are also valid for the nanostructured active material particles investigated

in the present paper. Considering the absolute values of effective conductivity of the solid

phase and effective diffusivity in the pore space, we observe that the impact of increasing the

calcination temperature from 850◦C to 900◦C becomes less pronounced with an increasing

particle size. In future work, a variation of the parameters of the stochastic 3D nanostructure

model can be used to generate a large data basis of virtual nanostructured active materials

which allows, e.g., to efficiently study the impact of porosity on effective transport properties

by means of numerical simulation.
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For the samples considered in this study, it has been shown in [5] that coarse particles lead

to the best specific capacity. The modeling and simulation approach developed in the present

paper is a further step towards an in-deepth investigation of hierarchically structured cathode

materials using detailed morphological information on the nanometer scale. In particular,

the effective transport properties of nanostructured active material particles determined in

the present paper can be used as an input for models on the electrode scale with homogenized

properties of active material particles [54, 55], which, in turn, provides input for models on

the macro-scale as the P2D-model. With such an up-scaling, modeling and simulation can

then also be used to study relationships between parameters of the manufacturing process

and performance indicators such as the specific capacity.

Note that the original P2D-model [56] uses an effective transport coefficient at the elec-

trode level and an intrinsic transport coefficient for the active material particles, since the

latter are not considered porous. As a possible application of our approach, we consider the

extension of the P2D-model published in [57], where the active material particles themselves

are porous. This model has two effective transport coefficients, one for the electrode scale

and one for the nanostructured active material particles. The effective conductivity of the

electrodes, which can be measured while considering the particles arrangement and their

nanostructure, cannot be used to separate the effect of the internal porosity of the active

material particles. The latter affects the behavior of the nanostructured active material par-

ticles and is visible in the measurements shown in [5]. The separate quantification of the

effective conductivity at the electrode and particle scales shows that the electronic conduction

inside the nanostructured active material particles becomes the limiting transport process

and explains the influence of the manufacturing parameters, namely calcination temperature

and particle size. The additional efforts to determine the properties of the nanostructured

active material particles as made in the present paper, together with the simulations of their

behavior, can increase the identifiability and validity of P2D-models.
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Appendix A: Validation of approximation by spherical harmonics expansions

We provide a quantitative validation of the spherical harmonics approximation of the

solid phase, as described in Section 3.1. For this purpose, we compare the nanostructure

descriptors volume fraction and specific surface area (Table A1) as well as the centered

two-point coverage probability functions (Figure A1) of binarized image data with the corre-

sponding discretization of the spherical harmonics representation. For the discretization, we

use the same voxel size as in the underlying FIB-SEM data. For a definition of the respective

nanostructure descriptors, see Sections 3.2 and 3.3.

Volume fraction Surface area per unit volume / µm−1

Sample Image data Spherical harmonics Image data Spherical harmonics
F850 0.4636 0.4768 8.445 8.365
F900 0.6821 0.6970 5.754 5.976
M850 0.5241 0.5378 7.810 7.868
M900 0.6038 0.6196 5.269 5.407
C850 0.6237 0.6371 7.149 7.230
C900 0.6988 0.7143 4.737 4.579

Table A1: Comparison of volume fractions and specific surface areas, computed from binarized 3D FIB-SEM
image data and the corresponding spherical harmonics representation, respectively.
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F850 M850 C850

F900 M900 C900

Figure A1: Comparison of centered two-point coverage probability functions computed from binarized 3D
FIB-SEM image data (blue) and the corresponding spherical harmonics representation (red).

Appendix B: Proof of Proposition 1

For any λ > 0 and t ∈ R3 with |t| = h, we have

C(h) = P(o ∈ Ξ, t ∈ Ξ)

= P(Y (o) ≥ λ, Y (t) ≥ λ)

= 1− 2P(Y (o) < λ, Y (t) ≥ λ)− P(Y (o) < λ, Y (t) < λ)

= 1− 2P(Y (o) < λ, Y (t) ≥ λ)− 2P(Y (o) < λ, Y (t) < λ)

+ 2P(Y (o) < λ, Y (t) < λ)− P(Y (o) < λ, Y (t) < λ)

= 1− 2P(Y (o) < λ) + P(Y (o) < λ, Y (t) < λ).

Since the random field Y = {Y (t), t ∈ R3} is stationary, we can express P(Y (o) < λ)

by means of the volume fraction p of the excursion set {t ∈ R3 : Y (t) > λ}, namely

P(Y (o) < λ) = 1− p. Thus,

C(h) = 2p− 1 + P(Y (o) < λ, Y (t) < λ). (16)
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Moreover, since the random vector (Y (o), Y (t)) follows the law of a bivariate χ2
2-distribution,

its (joint) probability distribution function is given by Equation (4.2) of [58]. Using this

formula, we finally get that

P(Y (o) < λ, Y (t) < λ) = (1− ρ2X(h))
∞∑
j=0

ρ2jX (h)

(j!)2

(∫ λ

2(1−ρ2
X

(h))

0

tj exp(−t)dt

)2

, (17)

where ρX : [0,∞) → [−1, 1] with ρX(h) = Cov(X(o), X(t)) is the covariance function of

the underlying Gaussian random field X = {X(t), t ∈ R3}. Plugging Equation (17) into

Equation (16) completes the proof.

Appendix C: Representativity of image data and virtual structures

We provide additional information related to the representativity of the considered image

data and the sampling window, used for generating the virtual nanostructures. First, we

compute the standard deviation σp̂ of the volume fraction of the solid phase estimated from

tomographic image data by means of the estimated two-point coverage probability function.

Here we make use of Equation (6.83) in [6], which reads as

σ2
p̂ =

1

ν(W )2

∫
W

∫
W

C0(|x− y|) dx dy,

where ν(W ) denotes the volume of the observation window W ⊂ R3 and C0 denotes the

centered two-point coverage probability function. This can be simplified to

σ2
p̂ =

1

ν(W )2

∫
R3

C0(|x− y|) ν((W − z) ∩W ) dz. (18)

Plugging in the estimator Ĉ0, which is directly obtained by the estimators Ĉ and p̂, we com-

pute an estimator for σp̂ for each sample. Here the integral in Equation (18) is approximated

by a sum. The corresponding values are given in Table A2.

Table A2: Standard deviation σp̂ of the estimators for volume fractions of the solid phase computed via the
two-point coverage probability function.

Sample F850 F900 M850 M900 C850 C900
σp̂ 1.2 · 10−3 4.0 · 10−3 2.8 · 10−3 4.4 · 10−3 2.8 · 10−3 7.3 · 10−3

Moreover, Table A3 shows the standard deviations of the estimators of all geometrical

descriptors computed from 10 model realizations as discussed in Section 3.3. Note that the
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standard deviations of both estimators for the volume fraction of the solid phase, computed

from tomographic and simulated image data, are reasonably close to each other and that

the standard deviations of the estimators of all remaining descriptors are at least one order

of magnitude smaller than their mean values given in Table 2.

Table A3: Standard deviation of estimators for geometrical descriptors computed from simulated model
realizations.

Sample σp̂ σŜ/µm−1 στ̂geod (solid) στ̂geod (pores) σβ̂ (solid) σβ̂ (pores)

F850 (sim) 2.5 · 10−3 1.5 · 10−2 2.3 · 10−3 8.3 · 10−4 1.1 · 10−2 2.3 · 10−3

F900 (sim) 6.4 · 10−3 6.1 · 10−2 2.2 · 10−3 5.5 · 10−3 1.1 · 10−2 1.3 · 10−2

M850 (sim) 3.3 · 10−3 2.0 · 10−2 3.4 · 10−3 2.0 · 10−3 1.5 · 10−2 1.2 · 10−2

M900 (sim) 4.8 · 10−3 3.4 · 10−2 2.8 · 10−3 3.9 · 10−3 2.0 · 10−2 1.4 · 10−2

C850 (sim) 3.6 · 10−3 3.8 · 10−2 2.0 · 10−3 3.4 · 10−3 1.4 · 10−2 4.0 · 10−3

C900 (sim) 8.9 · 10−3 6.8 · 10−2 2.6 · 10−3 7.1 · 10−3 3.3 · 10−2 2.7 · 10−2

References

[1] R. Golombek, A. Lind, H.-K. Ringkjøb, and P. Seljom. The role of transmission and

energy storage in European decarbonization towards 2050. Energy, 239:122159, 2022.

[2] M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. S.

Whittingham, Y. S. Meng, and A. Van der Ven. Narrowing the gap between theoretical

and practical capacities in Li-ion layered oxide cathode materials. Advanced Energy

Materials, 7:1602888, 2017.

[3] Y. Zhao, X. Cao, G. Fang, Y. Wang, H. Yang, S. Liang, A. Pan, and G. Cao. Hierar-

chically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong

cycle-life sodium ion batteries. Chemical Engineering Journal, 339:162–169, 2018.

[4] M. Müller, L. Schneider, N. Bohn, J. R. Binder, and W. Bauer. Effect of nanostruc-

tured and open-porous particle morphology on electrode processing and electrochemical

performance of li-ion batteries. ACS Applied Energy Materials, 4(2):1993–2003, 2021.

[5] A. Wagner, N. Bohn, H. Geßwein, M. Neumann, M. Osenberg, A. Hilger, I. Manke,

V. Schmidt, and J. R. Binder. Hierarchical structuring of NMC111-cathode materials

in lithium-ion batteries: An in-depth study of the influence of primary and secondary

particle size effects on electrochemical performance. ACS Applied Energy Materials,

3:12565–12574, 2020.

27



[6] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic Geometry and its

Applications. J. Wiley & Sons, Chichester, 3rd edition, 2013.

[7] D. Jeulin. Morphological Models of Random Structures. Springer, Cham, 2021.

[8] V. Schmidt, editor. Stochastic Geometry, Spatial Statistics and Random Fields: Models

and Algorithms. Springer, Cham, 2015.

[9] B. Tjaden, D. J. L. Brett, and P. R. Shearing. Tortuosity in electrochemical devices: a

review of calculation approaches. International Materials Reviews, 63:47–67, 2018.

[10] S. R. Kalidindi, M. Buzzy, B. L. Boyce, and R. Dingreville. Digital twins for materials.

Frontiers in Materials, 9:48, 2022.

[11] B. Prifling, D. Westhoff, V. Schmidt, H. Markötter, I. Manke, V. Knoblauch, and

V. Schmidt. Parametric microstructure modeling of compressed cathode materials for

Li-ion batteries. Computational Materials Science, 169:109083, 2019.

[12] D. Westhoff, J. Feinauer, K. Kuchler, T. Mitsch, I. Manke, S. Hein, A. Latz, and

V. Schmidt. Parametric stochastic 3D model for the microstructure of anodes in lithium-

ion power cells. Computational Materials Science, 126:453–467, 2017.

[13] D. Westhoff, I. Manke, and V. Schmidt. Generation of virtual lithium-ion battery elec-

trode microstructures based on spatial stochastic modeling. Computational Materials

Science, 151:53–64, 2018.

[14] O. Furat, L. Petrich, D. P. Finegan, D. Diercks, F. Usseglio-Viretta, K. Smith, and

V. Schmidt. Artificial generation of representative single Li-ion electrode particle archi-

tectures from microscopy data. npj Computational Materials, 7:105, 2021.

[15] A. Gayon-Lombardo, L. Mosser, N. P. Brandon, and S. J. Cooper. Pores for thought:

generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode

microstructures with periodic boundaries. npj Computational Materials, 6:82, 2020.

[16] S. Kamrava and H. Mirzaee. End-to-end three-dimensional designing of complex

disordered materials from limited data using machine learning. Physical Review E,

106:055301, 2022.

[17] H. Xu, J. Zhu, D. P. Finegan, H. Zhao, X. Lu, W. Li, N. Hoffman, A. Bertei, P. Shear-

ing, and M. Z. Bazant. Guiding the design of heterogeneous electrode microstructures

28



for Li-ion batteries: microscopic imaging, predictive modeling, and machine learning.

Advanced Energy Materials, 11:2003908, 2021.

[18] B. Prifling, M. Ademmer, F. Single, O. Benevolenski, A. Hilger, M. Osenberg, Ingo

Manke, and V. Schmidt. Stochastic 3D microstructure modeling of anodes in lithium-

ion batteries with a particular focus on local heterogeneity. Computational Materials

Science, 192:110354, 2021.

[19] B. Abdallah, F. Willot, and D. Jeulin. Morphological modelling of three-phase mi-

crostructures of anode layers using SEM images. Journal of Microscopy, 263:51–63,

2016.

[20] H. Moussaoui, J. Laurencin, Y. Gavet, G. Delette, M. Hubert, P. Cloetens, T. Le Bihan,

and J. Debayle. Stochastic geometrical modeling of solid oxide cells electrodes validated

on 3D reconstructions. Computational Materials Science, 143:262–276, 2018.

[21] H. Moussaoui, R. K. Sharma, J. Debayle, Y. Gavet, G. Delette, and J. Laurencin.

Microstructural correlations for specific surface area and triple phase boundary length

for composite electrodes of solid oxide cells. Journal of Power Sources, 412:736–748,

2019.
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