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Abstract

The microstructure of electrodes significantly influences the electrochemical performance of
lithium-ion batteries. Thus, a deeper understanding of the electrode microstructure provides valu-
able information for the design of optimized electrode morphologies. One promising approach is
called virtual materials testing, where stochastic microstructure models are used for generating
a large number of virtual, but realistic morphologies, which serve as input for numerical trans-
port simulations. Doing so, relationships between the microstructure and functional properties
of the electrodes can be investigated. In the present paper, we utilize a parametric stochastic
microstructure model, which is calibrated to tomographic image data of eight differently manufac-
tured cathodes, where the compaction load has been varied. Since one and the same model type
is used for all compaction loads, we can predict the model parameters for an arbitrary compaction
load. This allows us to perform predictive simulations, i.e., we are able to generate virtual mi-
crostructures that correspond to a compaction load which has not been observed experimentally.
The goodness of fit of the microstructure model is validated by comparing phase-based as well
as particle-based characteristics of model realizations and tomographic image data. In addition,
the suitability of the stochastic microstructure model for predictive simulations is pointed out by
cross-validation.

Keywords: stochastic modeling, lithium-ion batteries, cathodes, microstructure, prediction,
compaction

1. Introduction

In recent years, lithium-ion batteries have proven to be one of the major technologies for storing
energy since they combine a low self-discharge rate with an outstanding energy density. Lithium-
ion batteries are, among others, used in portable electronic devices such as laptops and smart
phones as well as in large-scale applications like electric vehicles [1].5
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It is well known that the microstructure of anodes and cathodes strongly influences their elec-
trochemical properties, see [2], [3] and [4] for the effect of particle size and shape, [5] for the impor-
tance of cracks in active material particles and [6] for the relevancy of spatially localized features.
Therefore, the development of optimized electrode morphologies by systematically structuring the
electrodes is an important task in materials science, see [7] and [8]. The cathode manufacturing5

process, which includes mixing, coating, drying and calendering, is of great interest since it sig-
nificantly influences the resulting electrode microstructure. In [9], [10], [11] and [12], the strong
influence of the calendering process on the electrochemical performance has been investigated. In
[13] it has been shown that the calendering process interacts with other processing steps such as
mixing. In addition, the amount and distribution of carbon black and binder is another important10

influencing factor [14].

In [15], an extensive statistical analysis of three-dimensional (3D) tomographic image data
has been performed in order to quantify the changes of microstructure that arise during the cal-
endering process of a cathode. In the present paper, we describe how a parametric stochastic15

microstructure model is fitted to the eight differently compacted cathodes considered in [15]. Note
that the calendering process itself is not modeled. Instead, model parameters are chosen in such
a way that the presented microstructure model generates virtual cathode microstructures that ex-
hibit similar structural properties compared to tomographic image data of differently compacted
samples. Stochastic microstructure modeling is an important part of an approach called virtual20

materials testing. The basic idea is to calibrate a parametric stochastic microstructure model
to tomographic image data by means of tools from stochastic geometry, see [16]. By generating
multiple model realizations as well as by varying the model parameters, a broad range of virtual,
but realistic morphologies can be generated. Based on a large number of virtual microstructures,
numerical simulations can be used to compute functional characteristics, which allows for inves-25

tigating microstructure-property relationships. This valuable information facilitates the design of
optimized microstructures of materials with preferable functional properties. For examples, where
virtual materials testing has been performed, we refer to [17] for a study of open-cell foams as
well as to [18, 19], where the effect of morphological characteristics on effective conductivity and
permeability has been investigated.30

The rest of this paper is organized as follows. In Section 2, the tomographic image data will be
shortly described. Afterwards, the basic ideas of the stochastic microstructure model are explained.
In Section 4, the calibration of the stochastic microstructure model for each compaction load is
described. Section 4 deals with the quantitative validation of the parametric model by comparing35

several characteristics describing the cathode morphology. Since the stochastic model is parametric,
we are finally able to predict all model parameters and hence, the complete morphology for arbitrary
compaction loads, see Section 5. In addition, we perform a leave-one-out cross-validation in order
to quantify the goodness of fit. Section 6 concludes the paper with a short summary and discussion
of the main results.40

2. Data description

At this point, we shortly summarize the image preprocessing results obtained in [15], which
will be the basis for the subsequent stochastic modeling considered in the present paper. In [15],
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the microstructure of eight cathodes, each with the same loading level of 2.46 mAhcm−2, has been
considered, where for each cathode a different compaction load has been applied during the densi-
fication process. Further details regarding the uniaxial compaction procedure can be found in [20].
The uncompacted sample (0 MPa) exhibits a porosity of 49.8%, whereas the highest compaction
load (1000 MPa) leads to a porosity of 18.4%. A detailed description of the manufacturing process5

of the cathodes as well as their electrochemical performance can be found in [20]. Tomographic
3D image data has been obtained via synchrotron tomography, whereby the resulting 3D grayscale
images have been preprocessed in two major steps. In a first step, a phase-based segmentation has
been performed, which resulted in two phases, i.e., the active material phase (LiNi1/3Co1/3Mn1/3O2,
briefly called NCM in the following) and a phase consisting of binder as well as conductive ad-10

ditives and the pore space. Note that a subdivision of the second phase into pore space and a
combination of binder and conductive additives has been modeled based on the composition of the
active mass but without direct reference to tomographic image data, since binder and additives
are not visible in the synchrotron images. Afterwards, a particle-based segmentation has been
performed using a marker-based watershed algorithm with extended regional minima, which has15

been complemented with a post-processing step. Based on the preprocessed 3D image data, a large
variety of microstructural characteristics has been computed. Later on, these characteristics will
be used for quantifying the goodness of fit of the calibrated stochastic microstructure model. Note
that the subsequent sections of the present paper mainly focus on the stochastic modeling of the
active particle system, i.e., the system consisting of NCM-particles.20

3. Model description

In this paper, we make use of the stochastic microstructure modeling interface described in
[21]. The main ideas are summarized in the following.

In the first step, a non-overlapping sphere packing is generated in a cubic sampling window25

W ⊂ R3. The spheres act as placeholders for the active particles, i.e., they model their locations
and approximate sizes. To obtain such a system of non-overlapping spheres, we start with a system
of overlapping spheres, i.e., we draw the radii from a particle size distribution R and place the
midpoints uniformly distributed in W until the sum of the volumes of all spheres divided by the
volume of the sampling window reaches a certain (predefined) fraction ξ ∈ (0, 1). Note that the30

particle size is expressed by using volume-equivalent radii. Afterwards, a force-biased collective
rearrangement algorithm is applied [22, 23]. This leads to a non-overlapping sphere packing as long
as ξ is not too large, since the algorithm described above is only able to achieve packing densities
up to ≈ 65%. For ξ > 60% we make use of a so-called core-shell ratio γ ∈ (0, 1) to generate
systems of slightly overlapping spheres as described in [21]. The result of the first modeling step35

is a marked point pattern Ξ = {(Si, Ri) : i = 1, ..., N}, where N is the random number of spheres
and Si and Ri are the center and radius of the i-th sphere, respectively.

The second step is to define a suitable connectivity graph G = (V,E), where the set of vertices
V = {Si : i = 1, ..., N} is given by the sphere midpoints obtained by the force-biased algorithm40

in the first modeling step. The edge set E ⊂ V × V is a subset of pairs of points. If there is an
edge between two points Si and Sj, the particles, which will be created in the third step, have to
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touch at a certain matching point. If a vertex is not connected with other vertices, there are no
constraints that have to be fulfilled during the creation of the corresponding particle. Thus, the
creation of particles is conditioned on G, which allows to control the connectivity of the particle
system. In particular, the number of particles always equals the number of spheres.

5

Finally, at every sphere center Si an active particle is generated using spherical harmonics, see
[24] for technical details. This is a reasonable approach since the nearly spherical NCM-particles
are star-shaped, which is the only assumption for the creation of complex shaped particles via
spherical harmonics. The mean volume of the particles is approximately given by the volume
of the underlying spheres. In addition, the generation of a single particle is conditioned on the10

connectivity graph G. If there is an edge in the edge set E connecting two points S1, S2 ∈ V , then
the corresponding spherical harmonics particles have to touch each other at a certain matching
point m ∈ R3. In our case, the matching point is determined according to the following rule: Let
(Si, Ri) and (Sj, Rj) denote the underlying spheres. The resulting matching point is given by

m = Si +
(Ri + 0.5 · (‖Si − Sj‖ −Ri −Rj))

‖Si − Sj‖
· (Sj − Si), (1)

where ‖·‖ denotes the Euclidean norm. It is worth mentioning that two particles can touch each15

other even if there is no edge between those two vertices in the connectivity graph G.
The generation of spherical harmonics particles is based on a so-called angular power spectrum

(APS) A : [0,∞)→ [0,∞), where in practice the domain will be restricted to [0, L] using a certain
series expansion parameter L ∈ N, see [24]. Keep in mind that the present paper focuses on the
modeling of the system of NCM-particles, i.e., we do not distinguish between pores and the phase20

consisting of binder and conductive additives. Thus, the complementary phase corresponds to the
so-called bap-phase, i.e. the phase consisting of binder, conductive additives and pores.

Note that periodic boundary conditions are applied to all virtually generated microstructures.
On the one hand, this allows us to use the microstructures as input for numerical simulations re-
garding the electrochemical performance, which often require this kind of boundary conditions. On25

the other hand, no edge effects can occur when analyzing the simulated microstructures themselves,
i.e., the complete observation window can be used for the computation of image characteristics.

4. Model fitting

This section deals with the calibration of the stochastic microstructure model to tomographic
image data.30

4.1. Some technical details

The result of the stochastic modeling approach described in the previous section is a system
of particles, which are given in a parametric form. However, we want to compare the resulting
microstructures with tomographic image data to investigate the goodness of fit. Therefore, we
discretize the particle system using the same resolution as in the tomographic image data, i.e.,35

cubic voxels with a side length of 0.438 µm. The size of the sampling window W is 500 × 500
voxels in the xy-plane (219 µm× 219 µm), whereas the number of slices in z-direction depends on
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Table 1: Experimentally determined cathode thickness and the corresponding size of the sampling window in
z-direction for each compaction load.

Compaction load (MPa) 0 100 200 300 400 500 750 1000

Cathode thickness (µm) 79.8 61.0 57.2 53.7 51.9 51.0 49.8 49.1
Number of voxels in z-direction ( ) 182 139 131 123 118 116 114 112

the compaction load, since the mean cathode thickness significantly decreases with increasing com-
paction load [15]. More precisely, we choose the number of slices in z-direction in such a way that
the size of the sampling window in z-direction is equal to the experimentally determined cathode
thickness, see Table 1.

5

4.2. Volume fraction

The volume fractions of NCM-particles have been experimentally determined in [20] for all
compaction loads. They are listed in Table 2. Hence, the model parameter ξ is known for all
compaction loads. In addition, we have to use the core-shell ratio γ for all compaction loads
greater than or equal to 200 MPa, since these compaction loads exhibit volume fractions of the10

active material larger than 60%. This quantity is given by γ = 3

√
0.6
ξ

.

Table 2: Experimentally determined volume fraction of NCM-particles, mean coordination number of NCM-particles
computed from tomographic image data, distance threshold d as well as correction factor ρ as a function of the
compaction load.

Compaction load (MPa) 0 100 200 300 400 500 750 1000

Volume fraction (%) 41.6 54.2 58.1 61.9 63.9 65.1 66.7 67.7
Mean coordination number ( ) 3.50 5.91 6.67 7.51 7.66 7.92 7.99 8.42
Distance threshold d (µm) 1.19 1.41 1.55 1.73 1.91 2.05 1.96 2.32
Correction factor ρ ( ) 1.004 1.006 1.008 1.010 1.011 1.011 1.013 1.012

4.3. Particle size distribution

In [15] it has been shown that the compaction load has nearly no influence on the particle
size distribution and particle cracking is neglected. Hence, when modeling the structures, it is
reasonable to use one and the same parametric particle size distribution for each compaction load.15

To do so, we consider the volume-equivalent radii of all observed particles among the entire series
of samples, i.e., we do not distinguish between different compaction loads. The histogram of all
particle radii, shown in Figure 1, indicates that it is reasonable to introduce a lower bound s > 0
for the particle radii. In addition, it turns out that the shape of the particle size distribution can
be modeled by a Birnbaum-Saunders distribution. More precisely, let T denote a random variable20

which follows the Birnbaum-Saunders distribution with shape parameter γ > 0 and scale parameter
α > 0, see [25]. The shifting parameter s is chosen in such a way that the log-likelihood function is
maximized. For this purpose, we choose 50 equally spaced points s1, ..., s50 between 0 and 0.725 µm,
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Figure 1: Histogram of observed particle sizes (blue) together with the fitted parametric distribution (red).

where the upper bound of the interval corresponds to the minimal observed radius. For each point
si, we consider the particle sizes shifted by si to the left and fit a Birnbaum-Saunders distribution
using the maximum likelihood estimator implemented in MATLAB and calculate the resulting
log-likelihood. This procedure leads to ŝ = 0.503 µm, γ̂ = 0.5666 and α̂ = 2.2837. Furthermore, it
is meaningful to truncate the distribution of s+T at a certain level t > 0 in order to eliminate the5

unlikely case that extremely large particles occur. In our case, we choose t = 11 µm, which is in
good accordance with Figure 1. The black curve in Figure 1 is computed based on experimental
measurements of the particle size of active material particles using laser diffraction analysis (Mie
theory). Due to the high coincidence between the black curve and the histogram in Figure 1, it
can be concluded that the particle-based segmentation of tomographic image data is reasonable.10

4.4. Connectivity graph

In order to define a suitable connectivity graph G, we first have a closer look at the connectiv-
ity of NCM-particles in the preprocessed tomographic image data. For each NCM-particle, we are
able to determine the number of directly connected neighboring particles (called the coordination
number) using the particle-based segmentation considered in [15]. The mean coordination number15

for each compaction load can be found in Table 2, which exhibits a strictly monotonous behavior
as one would expect.

In order to reflect the fact that the mean coordination number increases with increasing com-
paction load, we define the connectivity graph in dependence of this quantity. More precisely, the20

connectivity graph Gd = (V,Ed) depends on a distance threshold d > 0 where the edge set is given
by

Ed = {(Si, Sj) : ‖Si − Sj‖ −Ri −Rj ≤ d}. (2)
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The parameter d depends on the compaction load, where the values of d are chosen in such a
way that the mean coordination numbers of real and simulated electrode microstructures nicely
match. For this purpose, the bisection method is used, where we generate ten model realizations in
the sampling window W = [0, 250]3 in each step of the bisection method [26]. The corresponding
values of d are given in Table 2.5

4.5. Particle shapes

This section deals with the creation of NCM-particles using spherical harmonics. For this
purpose, the angular power spectrum A : [0,∞) → [0,∞) is estimated for each compaction load
using the particle-based segmentation considered in [15], which directly influences the shape of
the generated particles. The results are visualized in Figure 2. As it can be clearly seen, the10

compaction load has almost no influence on the angular power spectrum. Hence, we calculate the
pointwise averaged angular power spectrum Aaverage : [0,∞)→ [0,∞) (black dots in Figure 2).
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Figure 2: The estimated angular power spectrum for each compaction load, together with the pointwise averaged
angular power spectrum (black).

In addition, the series expansion parameter L = 7 has been used for all compaction loads since
this choice of L allows us to capture the shape of active material particles observed in tomographic
image data. As it has been described in [21] and [27], it is possible that during the generation of15

a spherical harmonics particle the radius function ψ : [0, π]× [0, 2π) takes negative values. If this
is the case, we reject the current radius function and draw a new one until the radius function
takes positive values only. This acceptance-rejection step is performed up to η times. If after η
trials, the radius function still has negative values, we keep the underlying sphere as a model for
the corresponding particle. Note that this usually happens for rather small particles, which will20

only consist of a few voxels in the discretized image. In the following, we use η = 50.

4.6. Post-processing

Generating virtual microstructures according to the procedure described above leads to realistic
cathode morphologies, which reflect the key features of the tomographic image data. However,
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the underlying connectivity graph only ensures that two particles touch at exactly one location,
which does not reflect the appearance of tomographic image data. A post-processing allows us
to enlarge the interface area between two particles. Moreover, this post-processing lowers the
specific surface area of the particle phase, which otherwise would be significantly too large. The
post-processing is performed as follows. A 3D Gaussian filter with the same standard deviation5

σx = σy = σz = 0.438 µm in all directions is applied to the binary image, see [28] for details. This
leads to a grayscale image. In order to again obtain a binary image, we apply a global threshold,
which is calculated with Otsu’s method [29]. Note that this procedure leads to a similar effect
as a morphological closing. However, this approach described above has been chosen since the
shape of the NCM-particles is preserved to a large extent. Figure 3 visualizes the effects of this10

post-processing step.

Figure 3: Two-dimensional in-plane cutout (65.7 µm × 65.7µm) of virtually generated cathode compacted with
500 MPa, before (left) and after (right) the post-processing step.

4.7. Correction factor

The last model parameter that has to be computed is the correction factor ρ > 0. This
parameter plays a major role in the creation of particles via spherical harmonics. The expected
volume of the i-th particle is given by the volume of a ball with radius ρRi, where Ri denotes15

the radius of the underlying sphere. The correction factor comes into play, since the initially used
packing density ξ is not exactly achieved for three reasons. The first reason is that using a core-
shell ratio ρ < 1 leads to a slightly overlapping system of spheres. The second one is that the
volume of a discretized spherical harmonics particle is not necessarily equal to the volume of the
underlying sphere due to discretization errors. The third one is that the final post processing step20

can change the volume fraction of the particle phase. In order to compensate for these deviations,
we use interpolation search in order to compute the correction factor. More precisely, we generated
ten model realizations in each step on the sampling window W = [0, 500]× [0, 500]× [0, z], where
the z vales are given in Table 1, and computed the average volume fraction. The results can be
found in Table 2.25
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5. Model validation

After having calibrated the stochastic microstructure model to eight different data sets, we
will now quantify the goodness of fit. For this purpose, we generate ten model realizations for
each compaction load, using the model parameters described in Section 4. For them, we calculate
several microstructural characteristics, which we compare with the corresponding characteristics5

estimated from tomographic image data. All results presented in this section are averaged over ten
model realizations or over twelve tomography cutouts, respectively. Figure 4 allows for a first visual
comparison between a cutout from the tomography data and a simulated cathode microstructure.

5.1. Phase-based image characteristics10

To begin with, we consider the volume fraction of NCM-particles, which is shown in the left
plot of Figure 5. One can observe that there is an almost perfect match between tomography and
simulation, which is not surprising since the correction factor has been computed in such a way
that the correct volume fraction is matched.

15

The next geometric characteristic considered is the specific surface area of the active particle
system, which is given by the surface area of the NCM phase divided by the volume of the sam-
pling window. The surface area is computed based on local voxel configurations using the weights
proposed in [30]. The right plot in Figure 5 shows that the calibrated stochastic model slightly
underestimates the specific surface area for compaction loads up to 300 MPa, in contrast to a small20

overestimation for 750 MPa and 1000 MPa.
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Figure 5: Comparison of volume fraction of active material (left) and its specific surface area (right) for tomography
(blue) and the virtually generated microstructures (red).

As it has been shown in [31], geodesic tortuosity essentially influences transport phenomena in
porous materials, such as the electrodes of batteries and fuel cells. The distribution of geodesic
tortuosity is estimated from image data as described in [15]. The results are shown in Figure 6.25

It can be observed that the distribution of local geodesic tortuosity is narrower for the simulated
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Figure 4: 2D in-plane cutouts (219 µm× 219 µm) and 3D renderings of tomographic image data (left) and virtually
generated microstructures (right) for 0 MPa (top) and 750 MPa (bottom).
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microstructures. Nevertheless, the calibrated stochastic model is able to represent the fact that
the mean geodesic tortuosity is monotonously increasing for increasing compaction loads. How-
ever, it turns out that the mean geodesic tortuosity is slightly underestimated by the stochastic
microstructure model, see Figure 7.
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Figure 6: Distribution of local geodesic tortuosity of the bap-phase based on tomography data (left) and model
realizations (right).
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Figure 7: Comparison of mean geodesic tortuosity of the bap-phase for tomography (blue) and the virtually gener-
ated microstructures (red).

Another widely used quantity is the continuous phase size distribution (CPSD), which char-5

acterizes the morphology of the considered phase, see [32, 33]. Note that for tomographic image
data the evolution of the CPSD with increasing compaction load has been analyzed already in
[15], where the spatial distribution of binder and conductive additives has been modeled in order
to consider the “real” pore space. In the present paper, we calculate the CPSD with respect to the
bap-phase, since we do not explicitly distinguish between binder, conductive additives and pore10

space. Note that we consider the normalized CPSD for better comparability, i.e., we divide the
CPSD by the volume of the bap-phase. Figure 8 shows that the stochastic model nicely reflects
the behavior of this characteristic.
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Figure 8: Normalized continuous phase size distribution of the bap-phase based on tomography data (left) and
model realizations (right).

Next, we discuss the results of simulated mercury intrusion porosimetry (MIP), see [32]. This
direction-dependent characteristic is computed in through-plane direction from“separator” to“cur-
rent collector” and allows to characterize the strength of bottlenecks. Analogously to the CPSD
considered above, we normalize this characteristic. Figure 9 shows a high accordance between to-
mography and simulation. Furthermore, both plots indicate that (especially for higher compaction5

loads) there is a characteristics bottleneck radius, i.e., a radius at which a significant decrease of
the MIP curve can be observed.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Radius (µm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 M
IP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Radius (µm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 M
IP

Figure 9: Results for (normalized) simulated mercury intrusion porosimetry of the bap-phase based on tomography
data (left) and model realizations (right).

Finally, we investigate the constrictivity of the bap-phase. Note that the constrictivity β is
defined as β = ( rmin

rmax
)2 ∈ [0, 1], where rmin and rmax are given by the radii for which the nor-

malized MIP and the normalized CPSD take the value 0.5, respectively [33]. Values of β close10

to one indicate that there are almost no constrictions, whereas the presence of strong bottlenecks
is indicated in the case when β is close to zero. As it can be seen in Figure 10, there is only a
minor deviation between tomography and simulation with regard to rmin. On the other hand, the
stochastic microstructure model tends to slightly overestimate rmax, which leads to an underesti-
mation of constrictivity. The comparatively large relative errors regarding constrictivity for higher15
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compaction loads are caused by the definition of β. However, the monotonous behavior of rmin,
rmax as well as β for increasing compaction load is nicely reflected by the calibrated model.
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Figure 10: Comparison of rmin, rmax and β of the bap-phase for tomography (blue) and the virtually generated
microstructures (red).

5.2. Particle-based image characteristics

After having focused on phase-based characteristics, we now concentrate on particle-based char-5

acteristics. The particle-based segmentation of the virtual microstructures can be easily computed
since the analytical description of each particle is known. Hence, each center of mass serves as a
marker for a marker-based watershed algorithm [34]. The image used for the flooding process is
given by the negative Euclidean distance transform of the binary image.

10

At first, we consider the sphericity of the NCM-particles. This quantity has been introduced
by Wadell in 1932 in order to measure the roundness of rock particles [35]. For a particle with
surface area S and volume V , the sphericity ψ ∈ [0, 1] is defined as

ψ =
3
√
π

S
(6V )

2
3 . (3)

Figure 11 provides a comparison of the sphericity distribution of particles obtained from tomo-
graphic image data and model realizations. The shape of the distribution is nicely resembled for 015

and 100 MPa, whereas the shift of the sphericity distribution to the left observed in tomographic
image data for higher compaction loads is not captured by the stochastic microstructure model.
This might be caused by the fact that the contact area between active material particles in the
tomographic image data is larger than for the simulated microstructures, which leads to more pro-
nounced watershed lines that potentially decrease the sphericity. Nevertheless, both tomography20

as well as simulation exhibit almost spherically shaped particles.
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Figure 11: Distribution of sphericity of NCM-particles based on tomography data (left) and simulation (right).

Another particle-based characteristic, which has been investigated in [15] is the particle size
distribution, where we average over all compaction loads since the particle size distribution does
not depend on the compaction load. Figure 12, left, shows that the particle sizes are slightly smaller
for images drawn from the stochastic microstructure model compared to those in the tomographic
images. In particular, the virtually generated cathodes contain particles with a radius smaller than5

the lower bound ŝ = 0.503 µm. This effect comes from the discretization of the particles on a voxel
grid. Furthermore, the particles may overlap slightly, but the overlapping part is evenly assigned
to both particles in the watershed algorithm. To show this, we consider the sizes of each particle,
computed not from the voxel grid, but directly from its analytical representation. The blue curve
in Figure 12 clearly shows that in this case the particle size distribution is in high accordance to10

the predetermined shifted and truncated Birnbaum-Saunders distribution (red curve).

Last but not least, we consider the mean connectivity number, i.e. the mean number of parti-
cles that touch a given particle. The results obtained for this quantity are visualized in Figure 12,
right, which exhibits an almost perfect coincidence of the results for between tomography and simu-15

lation, which is attributed to the computation of the distance threshold d via the bisection method.

To briefly summarize this section, we obtained a high accordance between tomography and
simulation for several characteristics, as for example volume fraction of active material, mean
geodesic tortuosity of the bap-phase and mean connectivity number. With regard to other quanti-20

ties, slight deviations occur which is attributed to the fact that our goal is not to perfectly match
all characteristics but to develop a parametric stochastic microstructure model, which allows for
interpolation between the compaction loads, see Section 6.

6. Prediction and interpolation

This section combines the result stated in the previous sections with regression analysis to25

predict the model parameters and hence the morphology for an arbitrary compaction load between
0 MPa and 1000 MPa. In the following, we only consider model parameters, which depend on the
compaction load, whereas the particle size distribution, the angular power spectrum and the series
expansion parameter L are chosen as described in Section 4.
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Figure 12: Left: Kernel density estimation of particle size distribution using volume-equivalent radii based on
the theoretical volume of spherical harmonics particles (blue), the simulated microstructures including the post-
processing step (black) and the fitted Birnbaum-Saunders distribution (red). Right: Comparison of mean coordi-
nation number for tomography (blue) and the simulated microstructures (red).

6.1. Interpolation between experimentally analyzed compaction loads

In this section, we present suitable analytic functions for fitting the four model parameters that
depend on the compaction load. To begin with, we consider the volume fraction of NCM-particles,
which is preset in the first modeling step by the volume fraction of the sphere packing. In order
to predict this quantity for arbitrary compaction loads, we use the rational function given by5

f(x) =
ax+ b

x+ c
for all x ≥ 0. (4)

Using the parameters for the eight scenarios to which the model has been fitted in Section 4,
by least-squares regression, we obtain â = 0.7171, b̂ = 61.51 and ĉ = 147.7. The predicted re-
sults compared to the volume fractions observed in tomographic image data are shown in Figure 13.

In addition, we predict the mean cathode thickness for arbitrary compaction loads using the10

rational function given in Equation (4) again, which leads to the following values: â = 46.5068, b̂ =
6950.8 and ĉ = 82.6356. Figure 13 shows a nearly perfect fit for this model parameter.

The third parameter is the distance threshold d for the construction of the connectivity graph.
Once again, it turns out that the rational function given in Equation (4) is a meaningful choice,
which in this case leads to â = 2.931, b̂ = 745.7 and ĉ = 632.8, see Figure 13.15

Since the angular power spectrum does not depend on the compaction load, the creation of
particles involves only one model parameter that depends on the compaction load, i.e., the correc-
tion factor ρ. For this regression problem, a polynomial of second degree provides a good fit, see
Figure 13. More precisely, we obtain the regression parameters p̂2 = −1.402 ·10−8, p̂1 = 2.175 ·10−5

and p̂0 = 1.004 for the regression model given by20

g(x) = p2x
2 + p1x+ p0 for all x ≥ 0. (5)

15
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Figure 13: Prediction of mean cathode thickness (top left), volume fraction of NCM-particles (top right), distance
threshold d (bottom left) and correction factor ρ (bottom right) by fitting the functions given in Equations (4) and
(5), respectively.

6.2. Leave-one-out cross-validation

Remember that the regression analysis described above allows us to predict the volume frac-
tion of NCM-particles, the mean cathode thickness, the distance threshold as well as the correc-
tion factor for arbitrary compaction loads. Hence, we are able to generate virtual, but realistic
microstructures of cathodes for arbitrary compaction loads. In order to validate this approach,5

we use leave-one-out cross-validation (LOOCV), see [36], i.e., for model fitting we do not use any
information concerning a certain experimentally analyzed compaction load, and predict all model
parameters based on the remaining seven compaction loads. The resulting simulated microstruc-
tures can then be compared to the tomographic image data, which has not been used for the fitting
procedure. In the following, we will only present the results for two different compaction loads10

exemplarily. Additional results for the other compaction loads can be found in the supplementary
information.

In order to verify that the previously presented model allows to interpolate between compaction
loads, we will leave out the 400 MPa sample for model fitting and compare morphological charac-
teristics of the resulting microstructures with those of tomographic image data as well as model15

realizations of the calibrated model as described in Section 4. Figure 14 shows that there is nearly
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no difference between the cathode morphologies generated by the calibrated microstructure model
and the simulated microstructures generated by using the cross-validation model parameters.

By leaving out the 1000 MPa case for model fitting we can check if the model allows for extrap-
olation. Both plots in Figure 14 show an almost perfect match between the calibrated model and
the model which uses the cross-validation model parameters. This indicates that extrapolation5

leads to meaningful results. Hence, it can be concluded that the presented model is capable of
generating a broad range of virtual, but still realistic cathode morphologies. It should be men-
tioned that the extrapolation is limited to compaction loads that do not cause fundamental changes
of the compaction mechanisms. In the supplementary information, several scalar microstructure
characteristics are given, where each of the eight compaction loads has been left out for model10

fitting.
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Figure 14: Continuous phase size distribution (left) and the distribution of local geodesic tortuosity (right) for
400 MPa (blue) and 1000 MPa (red). Both characteristics have been computed for the bap-phase.

6.3. Prediction of microstructure for arbitrary compaction loads

Since we obtained parametric fits for all compaction load dependent quantities in Sections 6.1
and 6.2, we are now able to predict the model parameters for arbitrary compaction loads. In15

particular, we present virtually generated microstructures for compaction loads of 50 MPa, 600 MPa
and 1100 MPa, respectively. The cutouts of virtually generated microstructures shown in Figure 15
seem to be plausible. In order to characterize these microstructures more formally, we generated ten
model realizations for each compaction load and computed various morphological characteristics.
The averaged values obtained for them are summarized in Table 3. In particular, Table 3 contains20

the predicted compaction-load-dependent model parameters.
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Figure 15: Virtually generated microstructures for 50 MPa (left), 600 MPa (center) and 1100 MPa (right). Top:
Two-dimensional in-plane cutouts (219 µm × 219 µm). Bottom: Three-dimensional visualization of simulated mi-
crostructures.

Table 3: Model parameters (first four rows), together with averaged characteristics of virtually generated microstruc-
tures for compaction loads of 50 MPa, 600 MPa and 1100 MPa.

Compaction load (MPa) 50 600 1100

Correction factor ρ ( ) 1.005 1.012 1.011
Size in z-direction ( ) 152 114 111
Packing density ξ (%) 49.2 65.8 68.2
Distance threshold d (µm) 1.306 2.031 2.291
Volume fraction (%) 49.3 65.8 67.9
Specific surface area (µm−1) 0.291 0.345 0.350
Mean connectivity number ( ) 5.25 8.15 8.53
Mean geodesic tortuosity ( ) 1.055 1.09 1.10

7. Conclusion

In this paper, we calibrated one and the same parametric microstructure model type to eight
differently compacted cathodes. The virtually generated cathodes nicely reflect the morphological
properties of the 3D tomographic image data, like, for example, the volume fraction of the active
material, its specific surface area, the geodesic tortuosity of the bap-phase and the connectedness5

of particles. In addition, all model parameters can be predicted for arbitrary compaction loads.
This allows us to generate a broad range of virtual, but realistic cathode morphologies for arbitrary

18



compaction loads, reducing the cost of manufacturing and imaging. The simulated microstructures
can be used in numerical simulation of electrochemical properties in order to better understand
and quantify the influence of the cathode morphology on cell performance.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as5

the data also forms part of an ongoing study.
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Supplementary information

This supplement contains the cross-validation results for those compaction loads, which have
not been discussed in Section 6.2. The first row contains the compaction load, which has been
left out during cross-validation. The microstructural characteristics are averaged over ten model
realizations.5

Table A: Predicted values of the compaction-load-dependent model parameters for different compaction loads.

Compaction load (MPa) 0 100 200 300 400 500 750 1000

Correction factor ρ ( ) 1.0044 1.0065 1.0083 1.0095 1.0108 1.0121 1.0128 1.0119
Voxels in z-direction ( ) 168 142 128 123 119 117 114 112
Packing density ξ (%) 43.3 53.4 59.3 61.8 63.5 64.8 66.8 68.0
Distance threshold d (µm) 1.107 1.420 1.617 1.746 1.840 1.926 2.197 2.150

Table B: Averaged microstructure characteristics for different compaction loads, which have been left out during
cross-validation.

Compaction load (MPa) 0 100 200 300 400 500 750 1000

Volume fraction (%) 43.4 53.6 59.2 61.7 63.5 64.8 66.9 67.7
Rel. error w.r.t. tomography (%) 4.24 1.09 1.94 0.37 0.64 0.40 0.31 0.07
Rel. error w.r.t. simulation (%) 0.37 0.11 0.03 0.03 0.08 0.02 0.02 0.07

Specific surface area (µm−1) 0.265 0.309 0.330 0.337 0.341 0.343 0.347 0.350
Rel. error w.r.t. tomography (%) 2.77 4.20 4.89 4.44 0.76 1.78 1.62 3.88
Rel. error w.r.t. simulation (%) 5.81 3.95 6.08 4.55 0.57 0.48 0.85 3.71

Mean connectivity number ( ) 3.72 6.10 7.19 7.57 7.78 7.97 8.36 8.39
Rel. error w.r.t. tomography (%) 6.27 3.29 7.72 0.79 1.62 0.68 4.66 0.32
Rel. error w.r.t. simulation (%) 2.29 4.87 4.18 0.30 2.89 3.03 1.16 1.29

Mean geodesic tortuosity ( ) 1.046 1.063 1.074 1.080 1.085 1.088 1.095 1.097
Rel. error w.r.t. tomography (%) 0.24 0.67 0.53 0.56 1.04 0.97 0.74 1.14
Rel. error w.r.t. simulation (%) 0.46 0.53 0.75 0.50 0.95 0.86 0.88 1.09

rmin (µm) 2.24 1.80 1.49 1.30 1.19 1.13 1.01 1.00
Rel. error w.r.t. tomography (%) 0.52 12.46 12.26 9.07 2.52 1.77 7.61 4.38
Rel. error w.r.t. simulation (%) 5.20 11.80 17.93 9.48 4.90 1.81 3.40 6.02

rmax (µm) 2.72 2.22 1.96 1.85 1.77 1.70 1.58 1.51
Rel. error w.r.t. tomography (%) 1.51 15.62 15.19 18.07 15.93 19.96 11.34 12.23
Rel. error w.r.t simulation (%) 6.76 14.72 18.29 16.65 15.90 16.87 12.45 10.93
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