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Abstract Based on experimental 3D image data, we analyze a
highly porous silica monolith consisting of a network of rod-like
structures. Because the rods are often hard to recognize even
by visual inspection of the image data, a simple binarization
with e.g. thresholding techniques is problematic. Therefore we
extract a voxel-based skeleton directly from the filtered grayscale
image, which is then transformed into vector data, i.e., a system
of line segments describing the rod network. In a final step we
complete the extraction by estimating a radius for every line
segment, using the concept of the Hough transform applied to
the gradient image. These steps yield a structural segmentation
with advantages over global or local thresholding techniques and
allow the statistical analysis and characterization of the given
sample.

1 Introduction

Highly porous materials and the investigation of their complex pore archi-
tectures are important for many applications, e.g., drug delivery [1] and
molecular separation by adsorption or chromatographic separation [2].
Besides the porosity, the connectivity of pores as well as the distributions
of pore sizes and pore shapes are very important and not easily accessi-
ble. Using 3D imaging techniques the microstructure of porous materials
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Figure 1.1: 2D cross-section of experimental image data, 60µm × 60µm

and, in particular, their pores can be analyzed, with the limitation to the
spatial resolution implied by the chosen imaging technique. As an exam-
ple of application, we investigate the 3D morphology of a silica monolith
using synchrotron X-ray tomography, with a visible porosity of about
70 %. The porosity including mesopores of the highly porous monolith is
approximately 90 %, but we only observe the macroporous morphology.
Note that for pores on a smaller scale, different imaging techniques like
FIB-SEM tomography may be necessary, where other problems occur in
the segmentation process [3, 4].

The reconstructed grayscale image of our experimental data has a voxel
size of (215 nm)3, see Figure 1.1 for a 2D cross-section. Visual inspection
of the data suggests that a network of micrometer-sized rods might be
suitable.

The algorithmic extraction of the network itself is performed by ap-
plying the λ-leveling operator proposed in [5], which has originally
been designed for 2D images, but works analogously in 3D. The voxel-
based skeleton is converted to a network given by vector data, which
is achieved by detecting branches and representing their connections by
line segments. The connecting line segments are approximated using the
Douglas–Peucker algorithm [6,7], which is an algorithm that reduces the
number of points in a curve.

With the known locations of the rods, we use the idea of the Hough
transform to detect a radius for every line segment based on the gradient
image of the smoothed grayscale image [8, 9]. The rods themselves are
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then given by the line segments and their corresponding radii.

Note that the segmemtation result cannot be validated directly, be-
cause there is no reasonable reference segmentation. However, the quality
of the algorithm can be justified by applying it to artificially generated
test data with known structural properties.

2 Experimental Data and Preprocessing

2.1 Experimental Data

An exemplary silica monolith has been characterized by synchrotron
X-ray tomography, the resulting grayscale image has a voxel size of
(215 nm)3, where a large homogeneous cut-out of 768× 768× 768 voxels
has been processed, see Figure 1.1 for a 2D cross-section. In the following,
this observation window is denoted by W = [0, 767]× [0, 767]× [0, 767].

While the total porosity of the material is approximately 90 %, only
the macropores are visible, which account for about 70 % of the volume.
The grayscale value of a voxel at position (x, y, z) ∈W in the considered
grayscale image I is denoted by I(x, y, z) ∈ [0, 255], where higher values
indicate brighter regions, i.e., foreground.

2.2 Data Preprocessing

We applied a median filter with a box size of 3 × 3 × 3 to re-
move noise and denote the filtered image by I ′, i.e., I ′(x, y, z) =
median({I(i, j, k), (i, j, k) ∈W∩[x−1, x+1]×[y−1, y+1]×[z−1, z+1]}).

A subsequent grayscale erosion using a ball with radius
√

2 as
structuring element has the effect of highlighting the centers of
the rods that we want to extract in the following. The re-
sult is denoted by I ′′, i.e., I ′′(x, y, z) = min({I(i, j, k), (i, j, k) ∈
W with

√
(x− i)2 + (y − j)2 + (z − k)2 ≤

√
2}).

Note that due to integer coordinates, this grayscale erosion is equiv-
alent to a minimum-filtering in a 18-neighborhood in 3D. The effect of
these filters is shown in Figure 1.2.
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Figure 1.2: 2D cross-section of original image I (left), median-filtered image
I ′ (center) and eroded image I ′′ (right)

3 Grayscale Skeletonization

The extraction of the rod network itself is performed by applying the
λ-leveling operator proposed in [5], which has originally been designed
for 2D images, but works analogously in 3D. The parameter λ is a non-
negative integer that controls the tolerance against variations in grayscale
values, i.e., too small values of λ cause an over-segmentation and too large
values have the effect that structures are lost.

3.1 λ-Leveling and λ-Skeleton Operator

The idea of the λ-leveling operator is to lower the grayscale value of
voxels without changing the topology in their neighborhood. These vox-
els are called λ-deletable, where λ is a local contrast parameter. The
λ-leveling image is then obtained by iteratively choosing voxels whose
grayscale value can be lowered and decreasing it to the lowest possible
value, until stability is achieved. In 2D, the resulting image often con-
sists of areas having constant grayscale values separated by lines with
higher grayscale values. The λ-skeleton is naturally given by those lines,
i.e., it consists of all voxels adjacent to at least one voxel with a smaller
grayscale value. Note that by introducing the notion of λ-end points, we
can avoid thinning of branches that would be iteratively removed other-
wise. A detailed description including examples can be found in [5], e.g.,
how λ-deletable and λ-end points can be defined formally.
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Figure 1.3: 2D input image (left) and 2D λ-skeleton for λ = 20, λ = 40,
λ = 60 and λ = 80 (right)

3.2 Application to Experimental Data

For our data with grayscale values in [0, 255], the parameter λ = 60 is
a good choice, compare Figure 1.3 with examples of over- and under-
segmentation. The parameter λ is chosen such that (in the 2D skeleton)
only structures located clearly in the given 2D slice remain. Then, by
computing the 3D skeleton, the skeleton voxels are automatically located
in the correct slice.

We apply the skeleton operator to the eroded image I ′′, because this
image highlights the centers of rods and is therefore ideal for skele-
tonization. The resulting skeleton is a binary image S with S(x, y, z) ∈
{0, 255}. Note that λ-end points are preserved, because we do not want
to lose rods having only one contact to the network. Figure 1.4 shows a
3D visualization of the voxel-based skeleton.

4 Extraction of Rod Network

The skeleton S obtained in the previous step is based on the voxel grid,
but a network given by line segments is required. Those line segments
define the start and end points of the rods, whose radii will be detected
in a second step.

4.1 Network Extraction

The conversion of a voxel-based skeleton to a network of line segments is
achieved by detecting branches and their connections. It is clear that all
skeleton voxels having exactly two neighbors denote connections. Skele-
ton voxels with exactly one neighbor are end points, whereas skeleton
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Figure 1.4: 3D visualization of the extracted skeleton (cut-out)

voxels with more than two neighbors are branching points. End points
and branching points are therefore the vertices of the resulting network
graph. Note that adjacent branching points are converted to a single
vertex whose coordinates are given by their barycenter.

An edge connecting two vertices is represented by one or more line
segments, depending on the tortuosity of the connection. The connection
is given by voxels, i.e., their coordinates, which is a series of points.
The Douglas–Peucker algorithm [6, 7] is an algorithm that reduces the
number of points in a curve and is suitable to reduce the number of line
segments, but upholding a given precision. The algorithm is often used
in processing of vector graphics, e.g., rendering of maps. Given a series
of points, it connects the start and end point, searches for the interior
point with the maximal distance to this line segment, and replaces the
segment by two segments if the distance is above a certain threshold.
This is applied recursively until all original points are within a (small)
distance to the set of extracted line segments.

4.2 Radii Detection for Rods

The axes including start and end points of the rods are exactly the ex-
tracted line segments. With the known location of the rods, we use the
idea of the Hough transform (HT) [8]. The HT is a robust algorithm to
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detect parameterized geometric objects. Generally, it suffers from high
computing times, but in our case only one single parameter has to be
determined.

The classical HT would require a binary image of detected edges of
objects. To avoid binarization, we use the gradient image, as recently
suggested in [9]. Instead of counting edge voxels covering the surface of
a rod with the currently inspected radius, we sum up gradient values,
which show the magnitude of changes in grayscale values. The gradient
image of the smoothed grayscale image I ′ is given by |∇I ′(x, y, z)| =
|( ∂

∂xI
′(x, y, z), ∂

∂y I
′(x, y, z), ∂

∂z I
′(x, y, z))|. It is clear that for counting

edge voxels or computing sums of gradient values, larger objects have a
lot more potential for high values. To avoid over-estimation of object
sizes, the values have to be rescaled. In [9], the factor 1/r

1
2 has been

suggested, which is also a good starting point for cylinders. However,
for our experimental data, 1/r0.8 provides a better optical fit. This
difference is probably caused by relatively wide areas with significant
gradient magnitudes. For test data without this effect, the exponent 0.5
works very well.

Note that we have to restrict the gradient image to the relevant parts
for each rod. This is important because otherwise the gradient values
caused by other (adjacent) rods could have an influence on the detection
of the currently processed rod. This is implemented by applying the
watershed algorithm [10, 11] to the inverted smoothed grayscale image
255 − I ′( · ). The result is a partition of the window W into basins
B1, . . . , Bn, where bright areas of the original image are in the center of
basins and so-called watersheds correspond to borders between brighter
regions. The complete relevant region for a single rod is then given by
all basins intersecting with the currently processed line segment.

4.3 Results

Recall that the rods themselves are now given by the line segments and
the detected radii, as described above. The result of the extraction looks
quite promising, compare Figures 1.5 and 1.6. Objects clearly visible are
detected, their dimensions seem plausible and the general structure is not
lost. Therefore, the porosity of the extracted data is also as anticipated:
it is about 0.66, where approximately 0.7 is expected.
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Figure 1.5: 2D cross-section of experimental image data (left) and extracted
rod network (right)

Figure 1.6: 3D visualization of a thin cut-out of extracted rod network

5 Validation

The segmentation result derived in Sections 3 and 4 cannot be validated
directly, because there is no reasonable reference segmentation. However,
the quality of the algorithm can be justified by applying it to artificially
generated test data with known structural properties.

A very simple example based on a cube-shaped network illustrates
the procedure, compare Figure 1.7. Note that the vertices are slightly
shifted, which is caused by the skeletonization algorithm. Nevertheless,
the resulting extracted rods reproduce the input image very well. In
the following, we will look at a random rod network and compare its
structural characteristics.
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Figure 1.7: Simple example in 3D: cube-shaped network (left), extracted
skeleton (center), extracted rod network (right)

5.1 Test Data

Artificial test data of mutually overlapping cylinders has been generated
by realizing a random geometric graph, including random radii for all
line segments and plotting all resulting cylinders into a binary image.
Furthermore, the binary image has been blurred and noise has been
added, see Figure 1.8.

We use a simple stochastic model for the random geometric graph,
with numeric marks for all edges. The vertices of the graph are given
by a random point process that enforces a minimum distance between
points, i.e., it is a Matérn hard-core point process [12]. Then, for the two
nearest neighbors of every vertex, an edge is generated with a certain
probability p, in our case p = 0.8. Finally, the marks for all edges are
modeled by independent Gamma-distributed random variables.

5.2 Extraction of Rod Network

The rod network has been extracted as described in Section 4, with
preprocessing and skeletonization as in Sections 2 and 3.

5.3 Results

While the optical fit is not perfect, see Figures 1.8 and 1.9, the general
structure is clearly represented. By looking closely it can be suspected
that radii are often overestimated, especially in the case of overlapping
rods. This is not surprising, because the Hough transform cannot dif-
ferentiate between edges caused by the considered rod and another over-
lapping rod. The histogram of rod radii supports this theory: there is a
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Figure 1.8: Exemplary 2D cross-section of artificial test data (left), blurred
and noisy test data (center), and extracted rod network (right)

Figure 1.9: 3D visualization of a thin cut-out of artificial test data (left) and
extracted rod network (right)

clear tendency towards larger radii, compare Figure 1.10. Nevertheless,
the histograms of coordination numbers, i.e., the numbers of edges per
vertex of the network graph, are nearly the same, compare Figure 1.11.

6 Summary and Conclusion

In this paper, we have introduced a technique suitable to extract rod
networks from 3D grayscale images, based on the combination of several
well-known algorithms. Binarization of the 3D image is avoided in all
steps. After smoothing of experimental image data, we extract a 3D
skeleton using a grayscale skeletonization, which takes one parameter to
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Figure 1.10: Histogram of radii of artificial test data (left) and extracted rod
network (right)
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Figure 1.11: Histogram of coordination number of artificial test data (left)
and extracted rod network (right)

control the local contrast necessary for skeleton voxels to appear. After
conversion from skeleton voxels to a network of line segments, only the
radii of the rods have to be detected. The Hough transform is used to
detect the missing object parameter, but it is applied to the gradient
image instead of a binary image of object edges.

While it is not known whether this type of silica monolith consists
exclusively of rods, the segmentation describes the grayscale image very
well and obtained characteristics like porosity are as expected. The pro-
posed algorithm has been validated using artificial test data. A perfect
fit is not achieved, but this is clearly not a realistic goal – information
is lost by blurring the image, but in particular, overlapping rods are a
problem for every technique trying to detect the optimal radii or even
positions of rods.
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