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Abstract

In this paper, prediction models are proposed which allow the mineralogical char-
acterization of particle systems observed by X-ray micro tomography (XMT). The
models are calibrated using 2D image data obtained by a combination of scanning
electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) in a
planar cross-section of the XMT data. To reliably distinguish between different
minerals the models are based on multidimensional distributions of certain particle
characteristics describing, e.g., their size, shape and texture. These multidimen-
sional distributions are modeled using parametric Archimedean copulas which are
able to describe the correlation structure of complex multidimensional distribu-
tions with only a few parameters. Furthermore, dimension reduction of the multi-
dimensional vectors of particle characteristics is utilized to make non-parametric
approaches like the computation of distributions via kernel density estimation vi-
able. With the help of such distributions the proposed prediction models are able
to distinguish between different types of particles among the entire XMT image.
Keywords and Phrases: X-ray micro tomography (XMT), mineral liberation an-
alyzer (MLA), stereology, multidimensional particle characterization, parametric
copula

1 Introduction

Processes which separate mixtures of particles based on criteria like size, shape or chem-
ical composition of particles are used in many applications. Often the separation quality
can have a critical influence on subsequent processing steps. For example, in the mining
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1. INTRODUCTION Modeling of Particle Properties

industry an essential step of ore dressing deals with separation processes which remove
unwanted minerals from a system of particles with sizes smaller than 1 mm such that min-
erals of interest remain. In order to evaluate the separation success a mineralogical char-
acterization of the particles prior and after separation is necessary. Common methods to
characterize particles with respect to size, shape and composition rely on two-dimensional
(2D) techniques describing a three-dimensional (3D) reality. For example, a combination
of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)
can be used (Sunderland and Gottlieb, 1991) to achieve a mineralogical characterization
of ore samples. However, SEM-EDS is limited to 2D profiles of samples, which makes the
characterization of a whole 3D sample rather expensive or even impossible - at least in
a non-destructive manner. Another approach, namely X-ray micro tomography (XMT)
provides 3D image data depicting the morphology of particles in a sample. This allows a
quantitative analysis of particle systems without the stereological bias of 2D measurement
techniques (Wang et al., 2017; Reyes et al., 2018). Recently, Su and Yan (2018) character-
ized sand particles observed in XMT with various shape descriptors and utilized spherical
harmonic functions for both a parametric representation of single particles and a basis for
stochastic modeling, see also Feinauer et al. (2015). Besides the morphology of particles,
XMT provides information about local material specific constants. More precisely, the
grayscale values of XMT images are related to the mass density of the observed material.
When the considered minerals have distinct mass densities, the contrast-information from
XMT can be utilized to distinguish between them. However, Furat et al. (2018) showed
that grayscale values suffice only in a limited way to characterize the observed material
in XMT data.

Therefore, for achieving a 3D mineralogical characterization of a sample it is necessary
to utilize more information from the XMT data than solely the grayscale values. If we
know, for example, that particles composed from a certain type of mineral are more
spherical than others, we can utilize the additional information about their shape, which
can be obtained from XMT as well, to characterize them.

In the present paper, we consider a sample of milled greisen-type Li-ore which mainly
comprises of the minerals zinnwaldite and quartz, though these particles can have imper-
fections consisting of further components like topaz, muscovite, kaolinite and others, see
Leißner et al. (2016). Details on the sample preparation as well as on the analysis of the
epoxy block by XMT and SEM-EDS can be found in Furat et al. (2018). We propose pre-
diction models which can characterize 3D particles from XMT based on their size, shape
and grayscale values. They can reliably distinguish between consolidated particles which
are dominated by either quartz or zinnwaldite grains. The calibration of these prediction
models requires SEM-EDS data from only one planar cross-section of the sample. In order
to be able to compute size and shape characteristics of XMT image data a particle-wise
segmentation of the image data is required, such that it is possible to identify single par-
ticles in the XMT image. First, we give a short overview of the image processing steps
which were necessary to obtain such a segmentation of our image data. Furthermore, we
present several characteristics which can describe the size, shape and grayscale texture
of particles. The mineralogical characterization of 3D particles from XMT images will be
done based on these characteristics. Additionally to the XMT image, we have SEM-EDS
data of the same sample, which lies in a planar cross-section of the XMT image. By
utilizing the mineralogical characterization of SEM-EDS we know the mineralogical com-
position of the 3D particles that hit this cross-section. Therefore, we are able to link the
size, shape and grayscale characteristics of these 3D particles to different minerals. The
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prediction models, proposed in the present paper, require the probability density func-
tions of the considered particle characteristics, for each type of mineral. Since multiple
characteristics are necessary to characterize particles, because only grayscale information
of the particles does not suffice for characterization, we need multidimensional probability
densities of the considered characteristics. An easy way to determine probability densi-
ties are so-called kernel density estimators (Scott, 2015), since they do not require the
search for a suitable parametric family of distributions (e.g. normal distribution, expo-
nential distribution, etc.). However, due to the “curse of dimensionality”, kernel density
estimators require huge sample sizes for determining multidimensional densities which
can limit their practicality. Therefore, we rigorously show how to determine multidimen-
sional densities by fitting parametric families of distributions to the data. At first we
fit one-dimensional parametric densities to single characteristics and, in a second step,
we use so-called Archimedean copulas (Nelsen, 2006) to determine joint densities of the
considered particle characteristics. As an alternative, we utilize dimension reduction of
our multidimensional particle characteristics, in order to make kernel density estimation
more viable. With the help of the fitted or estimated multidimensional densities we pro-
pose prediction models which misclassify only 3 − 6% of particles either dominated by
zinnwaldite or quartz. In a further step, we validate the prediction models by compar-
ing their predictions with the characterization of SEM-EDS data at a spatially different
cross-section which was not used for the calibration of the prediction models.

The rest of this paper is organized as follows. In Section 2.1, we briefly recall some
techniques of image processing and segmentation which we recently used in Furat et al.
(2018). Then, in Section 2.2, various particle characteristics are explained, which are
stochastically modeled later on in Section 2.3. Therefore, in Sections 2.3.2 to 2.3.5, par-
ticular emphasis is put on the explanation of the copula approach to parametric modeling
of multidimensional probability densities. Section 2.3.6 deals with dimension reduction
of data and kernel density estimation, as an alternative to the copula approach. In Sec-
tion 3 the classification models utilizing either copulas or kernel density estimation are
compared and validated. Finally, Section 4 concludes.

2 Materials and Methods

2.1 Image processing

2.1.1 3D XMT data preprocessing and segmentation

In this section, we give a short overview of the image preprocessing steps and the particle-
wise segmentation of the 3D XMT data considered in the present paper, for more details
see Furat et al. (2018). The first step consists of the reduction of noise in the XMT
data with a non-local means denoising algorithm, see Buades et al. (2005). In contrast
to the commonly used Gaussian filter, this nonlinear image filter has the advantage of
smoothing homogeneous regions while preserving edges. In order to separate the particles
from the background we use the local adaptive Sauvola thresholding algorithm, which
determines binarization thresholds for each voxel based on its local neighborhood, see
Shafait et al. (2008). Such local thresholding techniques can produce better results than
global thresholds, due to globally inconsistent grayscale values in XMT images. One
crucial and nontrivial task in image processing is the particle-wise segmentation, which
allows the extraction of single particles from the image data for quantitative analysis.
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In a first step, we use a marker-based watershed algorithm, see Spettl et al. (2015), to
get an initial segmentation. This results into some particles being wrongly separated into
multiple fragments. To remove such oversegmentations we train a neural network (Hastie
et al., 2009) to decide whether adjacent segments should be merged or not. To make this
decision the neural network is supplied with information regarding the local morphology
and grayscale values around two adjacent fragments. By applying the neural network as
a post-processing step on the initial segmentation, we receive our final segmentation, see
Figure 1b.

a) b)

Figure 1: a) Volumetric XMT data (gray) with two registrated 2D SEM-EDS planes (blue and
red). b) Cut-out of the particle-wise segmentation of the XMT data.

2.1.2 2D SEM-EDS data and registration

In addition to the 3D XMT image data, SEM-EDS data was considered by Furat et al.
(2018). The latter was obtained with a mineral liberation analyzer (MLA), from the
same sample at two spatially different planar sections. An illustration of the SEM-EDS
data can be seen in Figure 2a. It provides 2D information about the morphology of the
particles in planar sections, but in contrast to the XMT data, see Figure 2b, it also
provides information about the mineralogical composition of particles. For example, in
the false color image of Figure 2a the blue phase indicates zinnwaldite.

a) b)

Figure 2: a) 2D SEM-EDS image, the blue phase indicates zinnwaldite and pink indicates quartz.
b) The corresponding section registrated in the 3D XMT data.
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Thus, by localizing the 2D SEM-EDS data in the segmented 3D image (registration),
see Figure 1a, we have knowledge about the mineralogical composition of each 3D particle
that intersects with the planar SEM-EDS data. Due to the particle-wise segmentation
described in Section 2.1.1 we also know the 3D morphology of each of these particles.
Furthermore, we can link the particle-wise segmentation with the grayscale values of the
3D XMT image, since the grayscale values provide valuable information about the com-
position of particles, as show in Furat et al. (2018). Therefore, both the grayscale values
and the morphology of particles in the XMT image that hit the SEM-EDS plane allow
us to adjust a classifier that can predict the mineralogical composition of an arbitrary
particle solely based on information gained from the XMT image.

To be precise, let I : W ⊂ Z3 → [0, 1] be the grayscale XMT image, where W is a
cuboid observation window. The 2D SEM-EDS data can be regarded as a map L : H∩W ⊂
Z3 → {0, 1, 2, . . . }, where H is a set of voxels representing a plane and the values of
L indicate different minerals or the background, e.g., we put L(x) = 0 if background
was observed at x ∈ H ∩W , or L(x) = 1 if zinnwaldite was observed at x ∈ H ∩W .
Furthermore, let P1, . . . , Pn ⊂ W ⊂ Z3 be the sets of voxels corresponding to the particles
that are obtained by the particle-wise segmentation of the 3D XMT image and that hit
the plane H, i.e., Pk ∩ H = {x(k)

1 , . . . , x
(k)
`k
} 6= ∅ for each k = 1, . . . , n. Each particle Pk

gets the label
L(Pk) = mode

(
L(x

(k)
1 ), . . . , L(x

(k)
`k

)
)
, (1)

where the mode of the sample of labels
(
L(x

(k)
1 ), . . . , L(x

(k)
`k

)
)

is the label that appears
most often. Thus, we assign to each particle Pk the mineral that is observed most fre-
quently in the intersecting plane H. This means, for example, that a composite particle
Pk which consists of zinnwaldite, quartz and other minerals will be referred to as a zin-
nwaldite composite particle if its main component in the intersection Pk∩H is zinnwaldite.
Since we make this labeling only based on the mineralogical observation in the plane H
we assume stationarity of the mineralogical composition of the particles Pk, i.e., that the
composition of a particle Pk outside of the plane H is adequately represented by Pk ∩H.
In our data the set of particles observed in the plane H can be decomposed in three
disjoint sets

{P1, . . . , Pn} = Z ∪Q ∪O (2)

where Z = {Pk : L(Pk) = 1} are the zinnwaldite composite particles and Q =
{Pk : L(Pk) = 2} are the quartz composite particles. The set O = {Pk : L(Pk) ≥ 3}
contains the remaining particles that were observed in H. In the considered plane H con-
tains 861 particles, from which 342 belong to the set of zinnwaldite composite particles
Z and 462 to the set of quartz composite particles Q. Since the set O contains only 57
particles, we disregard these observations from now on. Note that due to the labeling
done according to (1), a particle P ∈ Z not necessarily consists solely of zinnwaldite.
Figure 3a visualizes the distribution of the zinnwaldite volume fraction for particles la-
beled as zinnwaldite composite particles in the cross-section P ∩ H. Analogously, the
quartz particles P ∈ Q are consolidated, see Figure 3b. The goal of the present paper is
to develop a method which allows us to predict the main mineralogical component L(P )
of particles when the additional planar SEM-EDS data is not available.
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Figure 3: a) Histogram of the zinnwaldite volume fractions for particles for which the majority
mineral phase is zinnwaldite. The mean zinnwaldite volume fraction is 0.925 with a variance of
0.018. b) Histogram of the quartz volume fractions for particles for which the majority mineral
phase is quartz. The mean quartz volume fraction is 0.937 with a variance of 0.013.

2.2 Particle characteristics

In Section 2.3 below, we will describe a method which allows us to determine the min-
eralogical characterization of particles solely based on XMT information. This will be
done by prediction models, which determine the mineralogical composition of a particle
based on grayscale values and shape/size characteristics obtained from XMT data and
its particle-wise segmentation. In order to adjust such a prediction model we use the
ground truth information from a given planar SEM-EDS section, i.e., the sets of particles
Z and Q, for which we know that they consist in majority of zinnwaldite and quartz, re-
spectively. After adjusting the prediction model we still used another spatially separated
SEM-EDS section to validate the prediction model. In order to make such predictions, we
first introduce some particle descriptors, by which a particle P ⊂ Z3 will be characterized.

2.2.1 Size characteristics

Relevant size descriptors of a particle P ′ ⊂ R3, which we only observe on the grid as
P ⊂ Z3, are the volume ν3(P ′) and the surface area a(P ′). It is clear that the volume
can be estimated by counting voxels belonging to the set P and the surface area can be
estimated by considering suitably defined voxel configurations, see Schladitz et al. (2006).
We denote the estimated particle volume and surface area by ν3(P ) and a(P ) respectively.

For our prediction models we use the following estimator of the volume equivalent
radius

r(P ) =
3

√
3

4π
ν3(P ), (3)

which is in a one-to-one relationship with the volume. The surface area a(P ) will not be
directly regarded as a particle characteristic, but it is required for the sphericity factor
which is a shape characteristic considered in the next section.
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2.2.2 Shape characteristics

In the previous section we only considered the volume equivalent radius r as size char-
acteristic, but this is not enough to reliably distinguish between zinnwaldite and quartz
composite particles, since particles of similar sizes can have very different appearances.
Therefore we examine some further characteristics for describing the shape of particles.
One of the shape characteristics we consider is the sphericity factor

s(P ) =
3
√

36πν2
3(P )

a(P )
, (4)

which takes values in [0, 1], where s(P ′) = 1 holds if P ′ ⊂ R3 is a sphere.
Another shape characteristic of interest is the convexity factor

c(P ) =
ν3(P )

ν3(q(P ))
, (5)

where q(P ) ⊂ Z3 is the convex hull of P on the lattice Z3. Like the sphericity factor, the
convexity factor takes values in [0, 1], where c(P ) = 1 holds if and only if P is convex on
Z3. There is a causality between the sphericity factor s and the convexity factor c since
more spherically shaped particles also have higher convexity factors. Yet, a convexity
factor of 1 does not necessarily imply a large sphericity factor, since, e.g., ellipsoids have
always a convexity factor of 1, yet their sphericity factor can be arbitrary close to 0.
Since we observe a large number of flat particles in our image data, we also consider
characteristics that quantify elongation of particles. For each particle P ⊂ Z3 with the
barycenter x = (x1, x3, x3) ∈ R3, whose coordinates are given by

xi =
1

ν3(P )

∑
x∈P

xi for i = 1, 2, 3, (6)

where x = (x1, x2, x3), we consider the (positive-semidefinite) covariance matrix

C =
( 1

ν3(P )

∑
x∈P

(
xi − xi

)(
xj − xj

))
i,j=1,2,3

. (7)

The eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3 of C, where we assume that λ3 > 0, are closely related
to the axis lengths of the best fitting ellipsoid ε(P ) corresponding to the particle P , i.e.,
the axis lengths a1, a2, a3 of ε(P ) are given by ai = γ

√
λi for i = 1, 2, 3, where γ is some

scaling factor. The elongation factor e(P ) of the particle P is then given by

e(P ) =
a1

a3

=

√
λ1

λ3

. (8)

Note that, like the previously considered characteristics, the elongation factor e(P ) is
normalized and takes values in [0, 1], where values close to 0 indicate elongated particles
like rod- or plate-shaped particles. By additionally analyzing the relationship between λ2

and λ3 it is possible to distinguish between rods and plates, but since we observed no
rod-like particles in our data set, this was not necessary in the present paper.

7



2. MATERIALS AND METHODS Modeling of Particle Properties

2.2.3 Grayscale characteristics

The XMT data does not only provide information about the 3D morphology of particles.
In Furat et al. (2018) we have seen that the grayscale values of XMT images contain
substantial information about the mineralogical composition of particles. Recall that the
grayscale values of a particle P = {x1, . . . , xn} ⊂ W are given by y1 = I(x1), . . . , yn =
I(xn) ∈ [0, 1], where I is the XMT image. Furthermore, we assume without loss of
generality that the grayscale values are ordered, i.e., y1 ≤ y2 ≤ . . . ≤ yn. This allows us
to define the following grayscale characteristics.

A natural choice could be the mean

y =
1

n

n∑
k=1

yk. (9)

But, since particles often have some imperfections, like small regions of high density,
see Figure 2, the mean is not well suited for representing the dominant grayscale value.
Therefore, we used the more robust median

m(P ) = y0.5 (10)

as grayscale characteristic, where the median is defined by the empirical quantiles of the
sample

yp =

{
y[np]+1, if np ∈ N,
(y[np] + y[np]+1)/2, if np 6∈ N, (11)

for p = 0.5. A natural choice for measuring the variability of grayscale values of a particle
could be the sample standard deviation

σ =

√√√√ 1

n− 1

n∑
k=1

(yk − y)2. (12)

Similarly to the mean, the standard deviation is not a robust particle descriptor. Therefore
we use the interquartile range

iqr(P ) = y0.75 − y0.25 (13)

to characterize the variability of the grayscale values of the dominant grayscale region of
the particle. Further characteristics that describe the texture of particles (Shapiro and
Stockman, 2001) will be investigated in a forthcoming paper.

2.3 Stochastic modeling of particle characteristics

In this section we fit parametric distributions to the particle characteristics discussed
above. Moreover, we fit parametric distributions separately for zinnwaldite and quartz
composite particles, since the mineralogical composition of particles that intersect with
the SEM-EDS data is known by the labeling considered in (1). In Figure 4 the fitted one-
dimensional distributions of the median grayscale value for both zinnwaldite and quartz
are visualized.

Note that the large variance of the median grayscale values of zinnwaldite composite
particles, in comparison to the median grayscale values of quartz composite particles,
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can have multiple reasons. One reason might be the variable chemical composition of
zinnwaldite, see Rieder et al. (1970), which can lead to said increase of the variance.
Another reason for a broader median distribution are partial volume effects of XMT data
(Boas and Fleischmann, 2012). More precisely, Figure 5 indicates that zinnwaldite com-
posite particles have a smaller sphericity than quartz composite particles which in turn
implies that the former have a relatively large surface area or more surface voxels in the
XMT image. Due to partial volume effects the grayscale values of such surface voxels
are influenced by neighboring particles or the background. Nevertheless, we can see in
Figure 4 that both minerals have quite distinct distributions. Still, there are overlapping
regions which make a classification merely based on these distributions difficult. To be
more precise, let f zm, f

q
m be the fitted probability density functions of the particle-wise

median grayscale values of zinnwaldite and quartz, respectively. Using a likelihood ap-
proach for classification, we say that a particle P ⊂ Z3 with median grayscale value
x = m(P ) ∈ [0, 1] is mainly composed of zinnwaldite if

f zm(x) > f qm(x), (14)

otherwise we say that P is a quartz composite particle. The probability of misclassifying
zinnwaldite composite particles is then given by

P
(
f zm(X) ≤ f qm(X)

)
=

∫ 1

0

f zm(x)1fzm(x)≤fqm(x)dx, (15)

where X is a random median grayscale value with probability density f zm and 1fzm(x)≤fqm(x)

denotes the indicator function, i.e.,

1fzm(x)≤fqm(x) =

{
1, if f zm(x) ≤ f qm(x),
0, if f zm(x) > f qm(x).

(16)

This misclassification probability corresponds to the blue area in Figure 4 and has the
size of 0.19. Furthermore, Table 1 shows a confusion matrix of the prediction rule given in
(14), where we can see that 73 out of 342 zinnwaldite composite particles in the SEM-EDS
plane were wrongly classified as quartz composite particles.
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Figure 4: One-dimensional probability densities of the median grayscale value of zinnwaldite
(blue curve) and quartz (red curve) particles. The empirical densities were fitted with Beta dis-
tributions, see Section 2.3.1. The orange area provides the probability of classifying a quartz
composite particle as zinnwaldite, whereas the blue area gives the probability of classifying zin-
nwaldite as quartz.

Table 1: Confusion matrix for predicting the particle composition based on one-dimensional
densities of the median grayscale value, where the particles observed in the SEM-EDS data have
been used for adjusting the prediction model.

zinnwaldite quartz
predicted zinnwaldite 269 26
predicted quartz 73 436

In order to reduce the misclassification probabilities we additionally consider multi-
dimensional distributions of vectors of particle characteristics. For example, in Figure 5
the joint probability density of the sphericity factor and the median grayscale value is
visualized for zinnwaldite (left) and quartz (right) particles. We can see that these two-
dimensional distributions are much more distinct, in comparison to the one-dimensional
distributions of Figure 4. In accordance with this, the consideration of bivariate proba-
bility densities leads to a remarkable drop of the zinnwaldite misclassification probability
from 0.19 to 0.06, where we used a two-dimensional analogue of the decision rule given
in (14), see also (41) for the general definition of a multidimensional decision rule. Note
that the number of wrongly classified zinnwaldite composite particles dropped from 73 to
27, see Table 2, whereas the number of wrongly classified quartz composite particles only
increased slightly. Thus, by considering multidimensional probability distributions of par-
ticle characteristics we can achieve better prediction results. In the following we describe
in detail how to construct such two- or even higher-dimensional probability distributions
and their corresponding decision rules.
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Figure 5: Joint probability density of sphericity factor and median grayscale value for zinnwaldite
(left) and quartz (right) particles.

Table 2: Confusion matrix for predicting the particle composition based on joint densities of the
sphericity factor and the median grayscale value, where the particles observed in the SEM-EDS
data have been used for adjusting the prediction model.

zinnwaldite quartz
predicted zinnwaldite 315 33
predicted quartz 27 429

2.3.1 Modeling of single particle characteristics

We now fit parametric probability distributions to the one-dimensional particle charac-
teristics described in Section 2.2. To be precise, we first fit parametric distributions to the
volume equivalent radius, sphericity factor, convexity factor, elongation factor, median
grayscale value and the interquartile range for the 3D zinnwaldite composite particles that
intersect with the SEM-EDS plane. The chosen families of parametric distributions and
the corresponding parameters that were determined to model the distributions of these
characteristics are listed in Table 3. Note that we used gamma- and beta-distributions,
whose probability density functions are given by

fgamma(x) =
1

θkΓ(k)
xk−1 exp

(
−x
θ

)
1x>0 (17)

and

fbeta(x) =
Γ(α)Γ(β)

Γ(α + β)
xα−1(1− x)β−1

1x∈[0,1], (18)

respectively, where k, θ, α, β > 0 are some model parameters and the gamma function
Γ: [0,∞)→ [0,∞) is defined by the integral

Γ(α) =

∫ ∞
0

xα−1e−xdx for each α > 0. (19)

For modeling the volume equivalent radius we used the gamma distribution. Note that
there are also other families of distributions which result in a good fit, like the log-normal
distribution. The remaining characteristics were modeled with beta distributions, since
these particle characteristics have only values in the interval [0, 1] which coincides with
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Figure 6: Histograms (blue) and fitted probability densities of zinnwaldite composite particle
characteristics for a) volume equivalent radius, b) sphericity factor, c) convexity factor, d)
elongation factor, e) median grayscale value, f) interquartile range, see also Table 3.

the support of the beta distribution. A visual comparison with the histograms of particle
characteristics is given in Figure 6. In order to determine the model parameters (k, θ
for the gamma- and α, β for the beta distribution) for these one-dimensional fits we used
maximum likelihood estimators (Held and Bové, 2014). Analogously, the one-dimensional
distributions of single particle characteristics were fitted for quartz composite particles,
see Figure 7 and Table 3.

Table 3: Parameters of fitted distributions.

characteristic distribution zinnwaldite quartz
volume equivalent radius gamma k = 7.16, θ = 6.84 k = 6.84, θ = 9.8
sphericity factor beta α = 7.17, β = 7.05 α = 10.73, β = 4.63
convexity factor beta α = 12.61, β = 2.97 α = 17.35, β = 2.73
elongation factor beta α = 2.00, β = 4.73 α = 2.90, β = 2.74
median grayscale value beta α = 14.12, β = 18.32 α = 74.95, β = 166.85
interquartile range beta α = 3.78, β = 38.54 α = 4.52, β = 112.11

2.3.2 Modeling of multidimensional particle characteristics

When modeling the joint distribution of independent random particle characteristics X, Y
with probability density functions fX and fY , respectively, the joint distribution is im-
mediately given by f(X,Y )(x, y) = fX(x)fY (y). However, this approach is not available for
correlated characteristics, as it is the case for our data, where, for example, we obtained
a correlation coefficient of 0.36 for the sphericity factor and median grayscale value of
zinnwaldite composite particles.
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Figure 7: Histograms (blue) and fitted probability densities of quartz composite particle charac-
teristics for a) volume equivalent radius, b) sphericity factor, c) convexity factor, d) elongation
factor, e) median grayscale value, f) interquartile range.

Thus, in order to describe the joint distribution of vectors of particle characteris-
tics, whose marginal distributions are given by the one-dimensional distributions we fit-
ted in Section 2.3.1, see Table 3, we consider a more general approach, using so-called
Archimedean copulas, see Nelsen (2006).

To make the paper more self-contained, we first explain some basic ideas of the copula
approach, which will be used to construct multivariate probability distributions with
non-normal marginals. Therefore, for some d ≥ 2, let f1, . . . , fd : R → [0,∞) denote
the one-dimensional probability densities of particle characteristics for which we want to
determine the d-dimensional joint probability density f : Rd → [0,∞) whose marginal
densities are given by f1, . . . , fd. In order to construct the multivariate density f we need
to consider, for technical reasons, the one-dimensional (cumulative) distribution functions
F1, . . . , Fd : R→ [0, 1] which are given by

Fi(x) =

∫ x

−∞
fi(y) dy for i = 1, . . . , d. (20)

Note that F1(x) denotes the probability that the particle characteristic described by the
density f1 does not exceed the value x ∈ R and that the density can be obtained from
the distribution function Fi by

fi(x) =
d

dx
Fi(x) for i = 1, . . . , d. (21)

Analogously, the d-dimensional density f has a cumulative distribution function F : Rd →
[0, 1] which is given by

F (x) =

∫ x1

−∞
. . .

∫ xd

−∞
f(y1, . . . , yd) dyd . . . dy1 for x = (x1, . . . , xd) ∈ Rd. (22)

13
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The joint density f is then obtained by the d-fold partial derivative

f(x) =
∂d

∂x1 · · · ∂xd
F (x) for x = (x1, . . . , xd) ∈ Rd. (23)

In order to show the connection between the multivariate distribution function F and
the notion of copulas we begin with the definition of the latter. A d-dimensional copula
is a multivariate cumulative distribution function K : Rd → [0, 1], whose one-dimensional
marginal distributions are uniform distributions on the interval [0, 1]. For example the
marginal cumulative distribution function K1 : R→ [0, 1] of the first component is given
by

K1(x1) = lim
x2,...,xd→∞

K(x1, x2, . . . , xd) =


0, if x1 < 0,
x1, if x1 ∈ [0, 1],
1, if x1 > 1.

(24)

Copulas are of special interest because of Sklar’s theorem (Nelsen, 2006). It states
that F is a d-dimensional cumulative distribution function with marginal distribution
functions F1, . . . , Fd if and only if there is a copula function K such that

F (x) = K(F1(x1), . . . , Fd(xd)) for x = (x1, . . . , xd) ∈ Rd. (25)

This means that every multivariate distribution function F can be represented by its
marginals F1, . . . , Fd and a copula function K. Thus, when modeling the joint distribution
function F of random vectors whose marginal distributions are given by F1, . . . , Fd it
suffices to model the copula K. Note that there are numerous classes of copula functions,
for which many of them do not have an analytical representation. In the present paper
we limit the search for an appropriate copula function to so-called Archimedean copulas.

2.3.3 Archimedean copulas and differential variant of Sklar’s theorem

For that purpose, let ϕ : [0, 1] → [0,∞] be a continuous, strictly decreasing and convex
function with ϕ(1) = 0 and ϕ(0) =∞. Note that ϕ is called an Archimedean generator.
Then, it can be shown that the function K : [0, 1]d → [0, 1] given by

K(u) = ϕ−1(ϕ(u1) + · · ·+ ϕ(ud)) for u = (u1, . . . , ud) ∈ [0, 1]d (26)

can be uniquely extended to a copula on Rd, i.e., a function possessing the properties
mentioned in Section 2.3.2. It is called an Archimedean copula (Nelsen, 2006). With the
copula function K given in (26) which still depends on some abstract function ϕ we
can construct a d-dimensional distribution function F by means of (25) which has the
marginal distribution functions F1, . . . , Fd. Since, finally, we are interested in the joint
density f of particle characteristics, applying (23) to (25) we get that

f(x) = f1(x1) . . . fd(xd)k(F1(x1), . . . , Fd(xd)) for x = (x1, . . . , xd) ∈ Rd, (27)

which can be seen as a differential variant of Sklar’s theorem given in (25), where the
function k : Rd → [0,∞) is the d-fold derivative

k(u) =
∂d

∂u1 . . . ∂ud
K(u) for u = (u1, . . . , ud) ∈ Rd. (28)

Recall that the d-dimensional probability density f given by (27) has the marginal densi-
ties f1, . . . , fd and, besides this, depends on the choice of a suitable copula function K or,
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equivalently, the choice of its derivative k. Thus, the task in modeling multidimensional
probability distributions for given (one-dimensional) marginal densities is the determi-
nation of a suitable copula function K which describes the correlation structure of the
one-dimensional marginals. Since in the present paper we only consider Archimedean cop-
ulas, which are defined by their generator ϕ, this task is equivalent to finding a suitable
Archimedean generator.

2.3.4 Parametric families of Archimedian generators

Instead of analyzing single generator functions ϕ one by one, we can instead consider
parametric families {ϕθ : θ ∈ Θ} of generators. For such families the function ϕθ is an
Archimedean generator for each parameter θ ∈ Θ, where Θ is some set of admissible
parameters. This has the advantage that we can consider a whole range of generators for
which it is rather easy to determine an optimal choice of a generator among the family
{ϕθ : θ ∈ Θ} for modeling the joint density f .

An example of a one-parametric family of generators is the Ali-Mikhail-Haq generator,
see Nelsen (2006), which is given by

ϕθ(u) = log
(1− θ(1− u)

u

)
, (29)

for each u ∈ [0, 1] and some θ ∈ Θ = (−1, 1). Note that the parameter θ regulates the
correlation between the uniformly distributed marginals of the corresponding copula Kθ.
The relationship between the copula parameter θ and the common correlation coefficients,
namely, the Pearson, Kendall and Spearman correlation coefficients (Nelsen, 2006) is
visualized in Figure 8 for two-dimensional Ali-Mikhail-Haq copulas. Note that in the

-1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

0.6
Pearson
Kendall
Spearman

Figure 8: Relationship between the copula parameter θ and the Pearson, Kendall and Spearman
correlation coefficients of the uniformly distributed marginals of two-dimensional Ali-Mikhail-
Haq copulas.

present paper other one-parametric families of copulas are considered as well, e.g., the
Frank copula whose generator is given by

ϕθ(u) = − log

(
e−θu − 1

e−θ − 1

)
, (30)
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for θ 6= 0. An extensive list on even further copulas, like the Clayton, Gumbel, Joe and
Plackett copula, can be found in Joe (1997). Beyond that, it is possible to obtain further
copulas by rotating a given two-dimensional copula by a multiple of 90°. Thus, there
are four rotated versions of the aforementioned parametric families of copulas, which
increases the list of considered parametric copula families even further.

Fitting a model from a parametric family of generators {ϕθ : θ ∈ Θ} is equivalent to
determining an optimal parameter θ̂. This problem can be described as an optimization
problem using maximum-likelihood methods in the following way.

The family of generators {ϕθ : θ ∈ Θ} induces a family of copulas {Kθ : θ ∈ Θ} given
by

Kθ(u) = ϕ−1
θ (ϕθ(u1) + · · ·+ ϕθ(ud)) for u = (u1, . . . , ud) ∈ [0, 1]d, (31)

for which the optimal parameter θ̂ has to be determined. Assuming that Kθ is differen-
tiable we can consider the d-fold derivative

kθ(u) =
∂d

∂u1 . . . ∂ud
Kθ(u), (32)

and the corresponding d-dimensional distribution function Fθ which is given by (25) has
the probability density function

fθ(x) = f1(x1) . . . fd(xd)kθ(F1(x1), . . . , Fd(xd)) for x = (x1, . . . , xd) ∈ Rd, (33)

where f1, . . . , fd and F1, . . . , Fd are the one-dimensional densities and distribution func-
tions fitted in Section 2.3.1 to the image data considered in the present paper.

Note that, for a sample of ` ∈ N observations x(1), . . . , x(`) ∈ Rd of the considered
d-dimensional vector of particle characteristics, the so-called log-likelihood function is
given by

logL(θ|x(1), . . . , x(`)) =
∑̀
k=1

log
(
fθ(x

(k))
)

for θ ∈ (−1, 1). (34)

This leads to the maximum-likelihood estimator

θ̂ = argmax
θ∈Θ

logL(θ|x(1), . . . , x(`)), (35)

which can be considered as the optimal choice for the parameter θ when the sample
x(1), . . . , x(`) was observed. The fitted joint density f is then given by f = fθ̂.

Until now, the procedure discussed above solely explains how to estimate the copula
parameter θ for a given parametric family of copulas. In order to select an adequate
model type among several parametric copula families, one can use the so-called Akaike
information criterion (AIC) which utilizes the log-likelihood function considered in (34)
to compare parametric families of copulas and select the best performing model. Note
that, besides utilizing the log-likelihood function considered in (34), the AIC additionally
takes into consideration the number of model parameters to avoid overfitting models. For
more details regarding the AIC and model selection, see e.g. Held and Bové (2014).

2.3.5 Application to particle characteristics

In the context considered in the present paper, the estimation procedure described above
can be applied in the following way.
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In order to obtain the (two-dimensional) joint density of the sphericity and me-
dian grayscale value of zinnwaldite composite particles, see Figure 5, we utilize the 2-
dimensional vectors of particle characteristics x(j) = (s(Pj),m(Pj)) which have been
computed in Section 2.2 for each zinnwaldite composite particle P1, . . . , P` ∈ Z that hits
the SEM-EDS plane. For both characteristics the parameters of the corresponding one-
dimensional probability densities f zs , f

z
m for zinnwaldite composite particles are given in

Table 3. Now we consider, for example, the family of Frank copulas, assuming that it is
able to describe the two-dimensional density of the sphericity and median grayscale value.
Then, we utilize the formula given in (33) and the previously determined one-dimensional
probability densities f zs , f

z
m to obtain a parametric family of possible candidates for the

two-dimensional joint density of the considered particle characteristics. By inserting the
computed vectors of particle characteristics x(j) into (34), we obtain the log-likelihood
function logL, see Figure 9, which after maximization provides us the copula parameter
θ̂ = 2.45. Thus, by means of (33) we obtain the two-dimensional probability density of
zinnwaldite composite particle characteristics

f zs,m(x1, x2) = f zs (x1)f zm(x2)kθ̂(F
z
s (x1), F z

m(x2)), (36)

where F z
s and F z

m are the distribution functions corresponding to the densities f zs and f zm,
respectively. Note that we found out that the family of Frank copulas indeed provides a
good fit, in comparison to other parametric families, by comparing the AIC of various
families of copulas mentioned in Section 2.3.4. Analogously, we showed that the Frank
copula rotated by 90° provides a good fit for the two-dimensional probability density f qs,m
of the sphericity and median grayscale value of quartz composite particles with the copula
parameter θ̂ = −1.14, see Figure 5.

Recall that the quality of the decision, whether a particle is comprised mainly of
zinnwaldite or quartz, improved significantly once we considered the two-dimensional
probability densities f zs,m, f

q
s,m over one-dimensional densities, compare Tables 1 and 2.

Furthermore, recall that the estimation procedure described in Section 2.3.4 is not limited
to the simultaneous consideration of two particle characteristics. But, in the same way, it
can be applied for general d-dimensional vectors of particle characteristics. For example,
we can investigate the six particle charactistics introduced in Section 2.2, thus considering
the case d = 6.

For simplicity, we first fit one-parametric copulas to the six-dimensional data, which
leads to better prediction results than just considering two-dimensional particle char-
acteristics, see Table 4. However, we are aware of the fact that one-parametric copu-
las do not entirely capture the correlation structure of the six-dimensional data, be-
cause the empirical (pairwise) correlations coefficients can vary distinctly for each in-
dividual pair of particle characteristics. It turned out that, among the one-parametric
copula families mentioned in Section 2.3.4, the Ali-Mikhail-Haq copula yielded the
best fit. In particular, using both the six-dimensional vectors of characteristics x(j) =
(r(Pj), s(Pj), c(Pj), e(Pj),m(Pj), iqr(Pj)) of zinnwaldite paticles P1, . . . , P` ∈ Z and
the corresponding one-dimensional probability densities f zr , f

z
s , f

z
c , f

z
e , f

z
m, f

z
iqr, see Sec-

tion 2.3.1, by means of (31)-(34) we obtain the copula parameter θ̂ = 0.69, and thus a
parametric fit for the six-dimensional density fz of zinnwaldite composite particle char-
acteristics.

Analogously, we obtained the Ali-Mikhail-Haq copula with parameter θ̂ = 0.47 and
thus the multidimensional density function fq for the characteristics of quartz particles.
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Figure 9: Log-likelihood functions for fitting two-dimensional copulas to the sphericity and me-
dian grayscale value of zinnwaldite composite particles using a Frank copula (left) and of quartz
composite particles using a Frank copulua rotated by 90° (right).

One way to achieve even better prediction results would be to utilize multi-parametric
copula families to fully capture the correlation structure of the six-dimensional data,
like, e.g., vine copulas, see Bedford and Cooke (2002). However, in the following, we
consider yet another approach to achieve this goal, which uses the six-dimensional data,
but projects it to a suitably chosen two-dimensional subspace. In this way, we still exploit
information of the 6-dimensional vector of particle characteristics while being able to
consider two-dimensional copulas, or even two-dimensional kernel density estimators.

2.3.6 Kernel density estimation and dimension reduction

Recall that for describing multivariate probability densities of particle characteristics,
which are necessary for improving the decision rule of the one-dimensional case consid-
ered in (14), we used a parametric copula approach in Section 2.3.5. Alternatively, such
densities could be estimated in a nonparametric way, using so-called kernel density esti-
mators (Scott, 2015). To be precise, from a sample x(1), . . . , x(`) ∈ R of a one-dimensional
characteristic of zinnwaldite composite particles a non-parametric density f̂z, can be es-
timated by

f̂z(x) =
1

`

∑̀
j=1

κ
(x− x(j)

h

)
for x ∈ R, (37)

where h > 0 is called the bandwith and κ : R→ [0,∞) is a kernel function, e.g.,

κ(x) =
1√
2π

exp
(
−x

2

2

)
for x ∈ R. (38)

Analogously, it would be possible to estimate non-parametric multivariate densities for
vectors of particle characteristics. However, note that due to the “curse of dimensionality”
the required sample size for adequate kernel density estimation increases exponentially
with the considered dimension, see Scott (2015). Thus, it is difficult to utilize kernel
density estimators for computing accurate six-dimensional densities representing our six-
dimensional data.

Nevertheless, the issue concerning the sample size of the six-dimensional vectors of
particle characteristics, caused by the “curse of dimensionality”, can be remedied by
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dimension reduction. Common techniques like the principle component analysis (PCA)
project the data to a lower dimensional subspace which maximizes the variance of the
data (Hastie et al., 2009). However, PCA does not ensure a good separability of the two
classes, namely zinnwaldite and quartz composite particles, after projection of the data.
Other methods, like the linear discriminant analysis (LDA) can reduce the dimension of
the data such that classification can still be performed reliably. Note that LDA always
projects data on a c − 1 dimensional subspace, where c is the number of classes. In the
setting of the present paper, LDA would project the six-dimensional vectors of zinnwaldite
and quartz composite particle characteristics on a one-dimensional subspace such that
the normalized discrepancy measure

∆1 =
(µz − µq)2

σ2
z + σ2

q

(39)

is maximized, where µz, µq ∈ R are the means of the projected characteristics vectors of
zinnwaldite and quartz, respectively. Analogously, the values σ2

z , σ
2
q ∈ R are their vari-

ances. Heuristically speaking, the LDA maximizes the distance between clusters, while
minimizing their variances. In order to fit multidimensional probability densities or to
perform multidimensional kernel density estimation on the data after dimension reduc-
tion we modified the expression considered in (39) such that we reduce the data to two
dimensions. More precisely, we project the six-dimensional data on a two-dimensional
subspace such that the normalized discrepancy measure

∆2 =
‖µ̃z − µ̃q‖2

σ2
z,1 + σ2

z,2 + σ2
q,1 + σ2

q,2

(40)

is maximized, where ‖ · ‖ denotes the Euclidean norm in R2 and µ̃z, µ̃q ∈ R2 are the
means of the clusters corresponding to zinnwaldite and quartz composite particles after
projection. The values σ2

z,1, σ
2
z,2 are the respective variances of the first and second com-

ponent for vectors of characteristics of zinnwaldite after projection. Analogously, σ2
q,1, σ

2
q,2

denote the variances of the components for the quartz case. By maximizing the expres-
sion given in (40) we obtain the dimension reduction by projecting for each particle P
the corresponding vectors of characteristics x = (r(P ), s(P ), c(P ), e(P ),m(P ), iqr(P ))
onto the plane with span vectors v1 = (0.0014, 0.3189, 0.0189, 0.0562,−0.9455,−0.0285)
and v2 = (0.0001,−0.0944, 0.1410,−0.0193,−0.0598, 0.9835). Figure 10 indicates that
the vectors of characteristics for zinnwaldite and quartz composite particles after pro-
jection are relatively distinct. Furthermore, this reduction of dimension makes kernel
density estimation more viable again. Note that the “ragged” probability densities in
Figures 11a and 11b still indicate too small sample sizes for adequate kernel density
estimation. However, the methods discussed in Sections 2.3.1 and 2.3.4 can be used to
fit parametric copulas to the two-dimensional data after dimension reduction, see Fig-
ures 11c and 11d.

3 Results and Discussion

At the beginning of Section 2.3 we showed a way how the mineralogical composition of
particles could be predicted on the basis of one-dimensional probability distributions of
single particle characteristics introduced in Section 2.2. However, in Figure 4 and Ta-
ble 1 we have seen that one-dimensional distributions do not suffice for making reliable
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Figure 10: Six-dimensional data after dimension reduction obtained by maximizing cluster dis-
tance, while minimizing cluster variances.
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Figure 11: Kernel density estimation of vectors of characteristics after dimension reduction
for a) zinnwaldite and b) quartz composite particles. The correpsonding probability densities
obtained by fitting parametric copulas for c) zinnwaldite and d) quartz composite particles.

decisions, whereas Figure 5 and Table 2 indicate that the predictive power of our deci-
sion rule can increase when we consider bivariate vectors of characteristics. Moreover, in
Section 2.3.5 we showed how multidimensional density functions fz and fq for 6 character-
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istics of zinnwaldite and quartz composite particles can be determined. Then, analogously
to the one-dimensional case, it is possible to predict the composition of a particle P ⊂ Z3

observed in the XMT image data, using the following decision rule: If

fz(r(P ), s(P ), c(P ), e(P ),m(P ), iqr(P )) > fq(r(P ), s(P ), c(P ), e(P ),m(P ), iqr(P )),
(41)

then we assume that P is mainly composed of zinnwaldite, otherwise of quartz. In other
words, the decision rule given in (41) states that a particle P with the vector of character-
istics x =

(
r(P ), s(P ), c(P ), e(P ),m(P ), iqr(P )

)
is classified as a zinnwaldite composite

particle if the configuration of characteristics x is more likely to occur according to the
distribution of characteristics of zinnwaldite composite particles given by fz.

Table 4: Confusion matrices of the copula-based decision rule given in (41) for particles observed
in the SEM-EDS section which has been used for adjusting the prediction model and for the
particles observed in the SEM-EDS section which was withheld for validation.

calibration section validation section
zinnwaldite quartz zinnwaldite quartz

predicted zinnwaldite 333 25 204 19
predicted quartz 9 437 12 244

Table 4 shows that the decision rule given in (41) is rather accurate, i.e., only 2.7% of
zinnwaldite composite particles are wrongly classified as quartz composite particles and
5.7% of the quartz composite particles are wrongly classified as zinnwaldite composite
particles. In comparison to the decision rule which only used the sphericity factor and the
median grayscale value, see Table 2, the number of wrongly classified zinnwaldite compos-
ite particles dropped from 27 to 9, see also Figure 12. This is a significant improvement
compared to the prediction based on two characteristics shown in Table 2. We suppose
that the prediction results can become even better when we consider multi-parametric
copulas.

Alternatively, we can use the dimension reduction considered in Section 2.3.6,
where the six-dimensional vectors of particle characteristics were projected onto a two-
dimensional subspace and the corresponding probability densities required for classifi-
cation were determined using either kernel density estimation (Figures 11a and 11b)
or Archimedean copulas (Figures 11c and 11d). The classification results using the lat-
ter procedure are listed in Table 5, where the errors for the particles used from the
SEM-EDS section used for calibration are similar to the errors occurring by the usage
of six-dimensional copulas. The approach using kernel density estimation performs best
on the calibration data, see Table 6. This was to be expected, since the entire sample
information is encoded in the estimated densities.

Table 5: Confusion matrix of the copula-based decision rule utilizing dimension reduction. The
corresponding fitted probability densities are visualized in Figures 11c and 11d.

calibration section validation section
zinnwaldite quartz zinnwaldite quartz

predicted zinnwaldite 323 17 207 8
predicted quartz 19 445 9 255

21



3. RESULTS AND DISCUSSION Modeling of Particle Properties

a) b)

Figure 12: a) Cutout of the SEM-EDS section used for the calibration of the prediction model,
where the blue phase indicates zinnwaldite and pink indicates quartz. b) The corresponding
XMT section. Blue ellipses mark zinnwaldite composite particles which were wrongly classified
as quartz composite particles by the decision rule given in (41). Analogously, red ellipses indicate
wrongly classified quartz composite particles.

Table 6: Confusion matrix of the decision rule utilizing dimension reduction followed by kernel
density estimation. The corresponding probability densities are visualized in Figures 11a and 11b.

calibration section validation section
zinnwaldite quartz zinnwaldite quartz

predicted zinnwaldite 331 12 205 8
predicted quartz 11 450 11 255

To validate the predictive capability of the presented models, we used an additional
planar SEM-EDS data set measured at a spatially different location of the 3D sample,
see red plane in Figure 1a. For particles that hit this second plane we determined the
particle characteristics and predicted the composition of the particles using the method
based on six-dimensional copulas described in Section 2.3.5 and the classification method
based on dimension reduction followed by fitting parametric copulas or kernel density
estimation. Due to the SEM-EDS data the true composition of these particles is known.
A comparison between the ground truth and the predictions can be seen in Tables 4 to 6,
where the predictions were again rather good.

Since in the latter case the mineralogical information of particles that hit the second
SEM-EDS plane was not used for calibrating the prediction models, we can assume,
based on the results of Tables 4 to 6, that the predictions will remain accurate for each
particle of the entire 3D XMT image. Furthermore, the validation results show that the
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prediction models based on dimension reduction followed by fitting parametric copulas
or kernel density estimation perform best on the validation section, which indicates that
the approach based on six-dimensional copulas can be improved by using more general,
higher-parametric copula models.

Note that, even though the prediction method using multidimensional probability
densities was presented for a classification problem with two classes, it is not limited to
such binary cases. In general, for a prediction problem with n ∈ N classes, the proba-
bility density fk of the considered d-dimensional feature vector is required for each class
k = 1, · · · , n. Furthermore, it is necessary to have a priori knowledge on the occurrence
probability pk of each class k. Then a vector of characteristics x ∈ Rd is assigned to class
i if

fi(x)pi > fk(x)pk (42)

for each k 6= i. Note that we omitted the a priori occurrence probabilities pk in the
present paper, since we had roughly the same amount of zinnwaldite and quartz composite
particles. For more details regarding such classification methods we refer the reader to
Duda et al. (2001).

4 Conclusions & Outlook

We presented methods for the mineralogical characterization of particles observed in 3D
XMT image data which mainly consists of the minerals zinnwaldite and quartz. The
grayscale value I(x) of a voxel x ∈ W ⊂ Z3 in the 3D XMT image already provides
some information about the mass density of the observed mineral at the location x.
However, this information does not suffice for reliably distinguishing between zinnwaldite
and quartz composite particles. Therefore, we additionally considered the morphology
of particles to characterize them. The proposed prediction models can then characterize
particles based on their 3D morphology and grayscale values extracted solely from XMT
data.

For the calibration of the prediction models we had to localize a 2D SEM-EDS data
set in the 3D XMT image. The SEM-EDS data provided a mineralogical characterization
of particles in a planar cross-section of the sample, such that we know the 3D morphol-
ogy and the composition of particles that intersect with this cross-section. In order to
extract single 3D particles that hit the planar cross-section, we computed a particle-wise
segmentation of the 3D image data. This allowed us to determine for each particle its
vector of characteristics which is relevant to distinguish between zinnwaldite and quartz
composite particles. Among the considered characteristics are the median grayscale value
of particles, but also particle size and shape characteristics like the volume equivalent
radius and the sphericity factor.

This resulted in vectors of characteristics for each particle. Since the mineralogical
composition of particles that hit the SEM-EDS plane is known, we assigned the corre-
sponding vectors of characteristics to the mineral the particle is mostly composed of.
Therefore, we had a set of vectors of characteristics which corresponded to particles
dominated by zinnwaldite and analogously another set of such vectors corresponding to
particles dominated by quartz. The proposed prediction models require joint densities fz
and fq of these characteristics for particles composed of zinnwaldite and quartz, respec-
tively. Therefore, we fitted parametric copulas to each of the two data sets. This entailed
fitting one-dimensional parametric families of distributions to each considered character-
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istic (separately for zinnwaldite and quartz composite particles). In a second step these
one-dimensional densities were combined to obtain multidimensional densities. Since the
considered characteristics were correlated, the multidimensional densities had to reflect
the correlation structure. We achieved this for two-dimensional densities with the help of
parametric Archimedean copulas. Furthermore, we projected our six-dimensional particle
characteristics onto a two-dimensional subspace, such that after this dimension reduction
the vectors of particle characteristics corresponding to zinnwaldite or quartz composite
particles show a good separability. This approach made kernel density estimation more
viable again, such that it was possible to utilize the corresponding densities for a further
prediction model.

The resulting decision rules characterize a particle with a vector of characteristics
x ∈ Rd as zinnwaldite composite particle if fz(x) > fq(x), whereby the densities fz, fq
were either fitted using a copula approach or kernel density estimation. We observed that
this decision rule became more accurate when higher dimensional vectors of characteristics
were considered. However, there was already a significant drop of the misclassification
percentage when we considered two-dimensional characteristics instead of just considering
single (i.e. one-dimensional) particle characteristics. This error was reduced even further
when we considered vectors of six characteristics. However, for simplicity we used only
one-parametric copulas when considering six characteristics. We suppose that higher-
parametric models for fitting six-dimensional copulas can lead to even better results.
As an alternative to higher-parametric copula models, we fitted two-dimensional copulas
and also used kernel density estimators to the data after dimension reduction – which
led to the best predictive results. To validate the prediction models we used additional
SEM-EDS data at a spatially different location than the SEM-EDS data set that was
used to adjust the models. This allowed us to compare the predictions of the models with
the ground truth obtained by SEM-EDS. Since we observed that the prediction models
discussed in Section 3 were quite accurate in this validation step, we can assume that
they can reliably distinguish between zinnwaldite and quartz composite particles in the
entire XMT image – even for areas where no SEM-EDS data is available.

In a forthcoming study we will use the copula-based modeling considered in the present
paper to quantify the success of particle separation processes. To be precise, assume that
the multidimensional density f of characteristics of a mixture of zinnwaldite and quartz
composite particles is given by the convex-combination

f = (1− p)fz + pfq, (43)

for some p ∈ [0, 1]. When the p value drops to 0 after a separation process we can say
that the zinnwaldite composite particles are separated from quartz composite particles.
However, it is possible that the distribution of zinnwaldite composite particle character-
istics itself changes significantly during separation. For example, if the separation process
only extracts small zinnwaldite composite particles, the multidimensional density of zin-
nwaldite characteristics after separation would differ from the original density fz, prior
to separation. In order to track and compare these changes in the densities, it is useful
to represent the multidimensional densities fz prior and after separation with parametric
copulas since they are described by only a few parameters. This complexity reduction is
an advantage of parametric copulas, since it allows us to compare complicated multidi-
mensional distributions by simply comparing the parameters of the distributions.
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