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ABSTRACT

The seamless combination of nowcasting and numerical weather prediction (NWP) aims to

provide a functional basis for very-short-term forecasts, that are essential e.g. for weather

warnings. In this paper we propose a statistical method for precipitation using neural net-

works (NN) that combines nowcasting data from DWD’s radar based RadVOR system with

post-processed forecasts of the high resolving NWP ensemble COSMO-DE-EPS. The post-

processing is performed by Ensemble-MOS of DWD. Whereas the quality of the nowcasting

projections of RadVOR is excellent at the beginning, it declines rapidly after about 2 hours.

The post-processed forecasts of COSMO-DE-EPS in contrast start with lower accuracy but

provide meaningful information on longer forecast ranges. The combination of the two sys-

tems is performed for probabilities that the expected precipitation amounts exceed a series

of predefined thresholds. The resulting probabilistic forecasts are calibrated and outperform

both input systems in terms of accuracy for forecast ranges from 1 to 6 hours as shown by

verification.

The proposed NN-model generalises a previous statistical model based on extended logistic

regression, which was restricted to only one threshold of 0.1 mm. The various layers of the

NN-model are related to the conventional design elements (e.g. triangular functions and

interaction terms) of the previous model for easier insight.
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1. Introduction25

Accurate and reliable forecasts of precipitation in the very-short-term range up to 6 h in26

terms of location and time are required in order to issue targeted warnings (Wang et al.27

2017). Early warnings help to increase the lead time for decision makers in hydrological and28

emergency services and can help to diminish possible damages caused by floodings or debris29

flows. Commonly used basis of these warnings in current operational weather forecasting are30

nowcasting systems and numerical weather prediction (NWP). Both approaches can provide31

valuable warning guidances, however, for different forecast lead times (Heizenreder et al.32

2015; Hess 2020).33

Methods for nowcasting of precipitation usually rely on remote-sensing observations from34

a radar network. In a processing step, the obtained radar reflectivities are transformed to35

estimates of the current rainfall rate. Based on the Lagrangian persistence approach the36

latest rainfall rates are extrapolated in space and time using a previously determined motion37

vector field (Germann and Zawadzki 2002). The dynamical evolutions of the convective cells38

are not considered. Hence, due to the spatial dependency of the lifetime of precipitation39

fields (Venugopal et al. 1999), such forecasts are skillful as long as the Lagrangian persistence40

assumption is valid (Zawadzki et al. 1994). How far ahead of time weather events can be41

predicted depends on their size and reaches from hours at scales of several hundred kilometers42

down to minutes when considering developing thunderstorms (Foresti and Seed 2014).43

In contrast, NWP models explicitly simulate the physical evolution of precipitation fields.44

Forecast errors result from initial and boundary conditions and from approximating phys-45

ical equations and their inexact solutions due to finite resolutions in time and space. The46

simulation of cloud microphysics by sub-grid parameterizations is especially important for47
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precipitation forecasting (Nicolis et al. 2009). In Stephan et al. (2008), it is shown that48

deficiencies in the simulated rainfall intensities are attributed to shortcomings in the micro-49

physics parameterization.50

In order to estimate the intrinsic uncertainties accompanying NWP forecasts, ensembles51

were introduced. These ensembles consist of multiple realizations of a model run; diversity52

among members of the ensemble may be achieved by varying factors such as initial condi-53

tions, boundary conditions, model physics, and parameterizations (Palmer 2002; Gebhardt54

et al. 2011). Ensemble forecasting provides users with information on the possible range of55

weather scenarios to be expected.56

Nevertheless, multiple runnings of a NWP model can only reduce the random errors and57

not the aforementioned structural model deficiencies. Therefore, ensemble members are not58

able to represent the whole spectrum of uncertainties (Scheuerer 2014). Hence, a statistical59

postprocessing is necessary to reduce systematic biases and an often experienced underdis-60

persive behavior of ensemble forecasts (Gneiting et al. 2005).61

Even with a bias corrected and distributional improved NWP prediction, the NWP fore-62

casts still exhibit various errors in shorter time and small spatial scales. Therefore, a statisti-63

cal combination with extrapolated nowcasting can improve the skill. The so-called seamless64

combination aims to create a unique and consistent forecast regardless of location and lead65

time (Brunet et al. 2015).66

Vannitsem et al. (2020) point out that the combination of nowcasting and NWP forecasts67

may take place in physical or probability space. NIMROD (Golding 1998) as one of the first68

combination schemes is based on a simple lead-time-dependent weighting function, where the69

weighting is based on a long-term comparative verification of both initial forecast systems.70
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In INCA (Haiden et al. 2011), the weight for NWP forecasts linearly increases from the71

beginning until it reaches 1 at a lead time of +4 h.72

The Short-Term Ensemble Prediction System (STEPS), see Bowler et al. (2006) and Seed73

et al. (2013), represents a more advanced combination method. Herein, tendencies in the74

latest observations and the NWP skill are quantified in real time and used to adjust weights75

combining the nowcast extrapolation and the NWP forecast, in dependence on lead time76

and spatial scale. Additionally, a forecast ensemble is generated due to the replacement77

of non-predictable spatial scales with correlated stochastic noise. Due to the emergence78

of nowcasting ensembles, efforts were made to not only use the forecast skill as objective79

combination metric but also the ensemble spread. Recently, Nerini et al. (2019) utilize an80

ensemble Kalman filter to iteratively combine NWP forecasts with radar-based nowcasting81

extrapolations.82

In reference to combination methods in probability space, the blending scheme of Kober83

et al. (2012) weights exceedance probabilities derived from output of the NWP model84

COSMO-DE-EPS with smoothed neighborhood probabilities computed from the determin-85

istic nowcasting algorithm Rad-TRAM. The weights are based on a long-term verification.86

Combination of multi-model ensembles are carried out in Johnson and Wang (2012) and87

Bouttier and Marchal (2020).88

In a previous study, Schaumann et al. (2020) propose the LTI-model as a modified logistic89

regression model for precipitation rates higher than 0.1 mm h−1. In addition to the logistic90

regression, triangular functions and interaction terms are introduced to take the possible91

differences in the individual initial probabilistic forecasts into account and, furthermore, to92

increase the flexibility to compensate a possible underestimation and overestimation. The93
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logistic regression model is a common tool in the area of probabilistic weather forecasting94

and has been used for the calibration of forecasts in, e.g., Hamill et al. (2008).95

The present study aims to generalize the LTI-model with the help of a neural network96

(NN). The network to be developed should not only satisfy the demands set for the LTI-97

model but should also provide consistent threshold exceedance probabilities, where con-98

sistency is understood such that the probabilities of exceeding a threshold monotonously99

decrease with increasing thresholds. This is not ensured when models are trained for each100

threshold independently. Further, the network should be able to represent forecast uncer-101

tainty with increasing lead time. For other extensions to the logistic regression model in102

order to ensure consistency, see Wilks (2009); Ben Bouallègue (2013).103

As in Schaumann et al. (2020), the training data set is based on forecasts of RadVOR104

(Winterrath et al. 2012) and Ensemble-MOS (Hess 2020). RadVOR is a nowcasting system105

that provides deterministic extrapolation forecasts of radar-based rainfall estimates. Radar106

observations are obtained by the operational German radar network operated by Deutscher107

Wetterdienst (DWD). Exceedance probabilities from the deterministic extrapolation fore-108

casts are derived by using the neighborhood approach described by Theis et al. (2005).109

Ensemble-MOS statistically post-processes output from the ensemble of the convection-110

permitting COSMO-DE model, which was upgraded to COSMO-D2 on 15 May 2018. It111

provides probabilistic precipitation forecasts for various thresholds using logistic regression.112

The present study is organized as follows. In Section 2, a brief overview of the utilized113

training data set is given. Section 3 provides a brief summary of the LTI-model. Afterwards,114

the development of a NN architecture for the model generalization regarding the simulta-115

neous consideration of multiple thresholds is described in detail. Since NNs react sensitive116

on the chosen hyper-parameters, a hyper-parameter optimization approach is provided in117
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the appendix, see Section A1. Results are stated in Section 4. Herein, sensitivities in the118

choice of hyper-parameters are investigated and a combination example is given. Finally, in119

Section 5 conclusions are drawn and an outlook is given for possible future developments.120

2. Data121

As in Schaumann et al. (2020), we use forecasts of the DWD systems Ensemble-MOS and122

RadVOR as data sources. However, we now extend the considered training and forecast123

period by three months and have thus, altogether, 6 months of precipitation data from124

April to September 2016. Furthermore, in the previous study, we considered data for only125

one threshold (0.1mm h−1) whereas now we consider 9 precipitation thresholds t1 = 0.1,126

t2 = 0.2, t3 = 0.3, t4 = 0.5, t5 = 0.7, t6 = 1, t7 = 2, t8 = 3 and t9 = 5, with mm h−1 as127

unit of measurement. It should be noted that the considered period was chosen because it128

contains severe weather events, see Piper et al. (2016). This makes the dataset especially129

well suited for the consideration of higher precipitation thresholds.130

The data used from both sources for the results derived in the present paper span across131

Germany and parts of neighboring countries. In this section, we briefly recall the main132

properties of the forecast systems Ensemble-MOS and RadVOR as well as the calibrated133

rainfall estimates used as ground truth. For further details regarding this data set, we refer134

to our previous study.135

a. Ensemble-MOS136

The postprocessing system Ensemble-MOS of DWD is a model output statistics (MOS)137

system with the capability to statistically process ensemble forecasts resulting in hourly138

outputs of probabilistic forecasts. These forecasts are available on a regular grid with a grid139
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size of 20× 20 km2, for lead times up to +21 h, and for various weather elements to support140

weather warnings (Hess 2020). From the latter output variables, we consider the exceedance141

of nine precipitation thresholds. The Ensemble-MOS forecasts used in the present paper are142

based on ensemble forecasts of DWD’s 2016 operational convection-permitting NWP model143

COSMO-DE-EPS (Theis et al. 2012). In particular, the training of the Ensemble-MOS relies144

on COSMO-DE-EPS forecasts from 2011 to 2015.145

It should be noted that while the considered grid size in this paper is 20 × 20 km2, the146

probabilities refer to the exceedance of a given threshold at these grid points, which is a147

good estimate for the probability of exceeding the threshold within an area of size 1×1 km2.148

b. RadVOR149

Additionally to the Ensemble-MOS forecasts, we use data from the nowcasting method150

RadVOR (Weigl and Winterrath 2010; Winterrath et al. 2012). RadVOR provides every151

5 minutes deterministic precipitation forecasts for lead times up to +2 h on a regular grid152

of size 1 × 1 km2. These very-short term forecasts consist of two components. In a first153

step, estimates of the current rainfall rate are derived from radar reflectivities. Thereafter,154

these rainfall rates are then advected in 5 minute increments according to a previously esti-155

mated motion vector field. Note that the edges of the respective forecast domain are shifted156

accordingly.157

For the combination with Ensemble-MOS using the model proposed in the present paper,158

the RadVOR forecasts are interpolated to the same grid and matching time intervals. For159

this, the 5-minute precipitation amounts are added up for a one-hour sum. Next, we consider160

the grid points with precipitation rates larger than the given threshold on the grid with a161

grid size of 1 × 1 km2. Finally, to estimate the probability of threshold exceedance, we162
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compute a local weighted average for the exceedance on the 1 × 1 km2 grid for each grid163

point on the 20× 20 km2 grid.164

c. Calibrated hourly rainfall estimates165

As a ground truth for the training and validation of our models, we use calibrated rainfall166

estimates on a 1×1 km2 grid based on reflectivity measurements of DWD’s operational radar167

network. These rainfall estimates are adjusted by about 1,300 rain gauge measurements to168

reduce the error induced by the uncertainty of the relationship between radar reflectivities169

and precipitation amounts (Winterrath et al. 2012). For each grid point on the previously170

considered 20 × 20 km2 grid, we select the nearest neighbour on the 1 × 1 km2 grid as171

the corresponding ground truth. Note that, in comparison to the previous study, the filter172

algorithm proposed by Winterrath and Rosenow (2007) for removing pixel artifacts has not173

been applied.174

3. Neural Network Architectures175

In Schaumann et al. (2020) we used a modified logistic regression model for the combi-176

nation of two different probabilistic forecasts. This model is referred to as LTI-model in177

the following. Here, L stands for ”logistic” while T and I refer to “triangular functions”178

and “interaction terms”, respectively, which are the modifications of the standard logistic179

regression, where the latter one is called the L-model.180

To begin with, we briefly summarize the basic idea of the LTI-model and, later on in181

Section 3b, we propose further modifications of it for the simultaneous consideration of182

multiple thresholds.183
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a. Modified logistic regression model184

The introduction of the LTI-model aimed to develop a model for the seamless calibrated185

combination of the afore described forecast systems Ensemble-MOS and RadVOR, see Sec-186

tion 2. Here, statistical calibration refers to an ideal reliability diagram, which is a desirable187

property of probabilistic forecasts (Murphy and Winkler 1977, 1987). The combined forecast188

should outperform the individual initial forecasts for all relevant lead times regarding the189

considered validation scores. For short lead times the extrapolated nowcasting of RadVOR190

outperforms Ensemble-MOS. However, with increasing lead time, forecast scores (Figure 1)191

and reliability diagrams (Figure 2) for RadVOR drop rapidly in comparison to those for192

Ensemble-MOS. Note that the green lines in Figure 1 illustrate the notable improvements193

achieved by the NN-model introduced in Section 3b below.194

The LTI-model is based on the standard logistic regression model fL : [0, 1]n → [0, 1] for195

some n > 1, where n denotes the number of probabilistic input forecasts to be combined.196

From a mathematical point of view, the L-model estimates the conditional probability distri-197

bution of a dichotomous random variable Y : Ω→ {0, 1}, i.e. the occurrence of precipitation198

above a certain fixed threshold, conditioned on given realizations xi of a family of random199

variables Xi : Ω → [0, 1] for i ∈ {1, . . . , n}, i.e. the probabilistic input forecast models.200

The random variables Y,X1, . . . , Xn are defined on some probability space (Ω,F ,P), where201

Ω contains the vectors (y, x1, . . . , xn) consisting of all possible forecasts x1, . . . , xn of the n202

input forecast models X1, . . . , Xn, and the precipitation occurrence indicator y. Thus,203

fL(x1, . . . , xn) ≈ P(Y = 1 | X1 = x1, . . . , Xn = xn) for all x1, . . . , xn ∈ [0, 1].
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Note that in Schaumann et al. (2020) the special case n = 2 has been considered, where204

the probabilities x1, x2 originate from RadVOR and Ensemble-MOS, respectively. Then, the205

L-model combines these two input forecasts and provides calibrated forecast probabilities.206

1) Triangular functions207

For the case n = 2 the L-model has three weights w0, w1, w2 ∈ R and is given by208

fL(X1, X2) = σ(w0 + w1X1 + w2X2), (1)

where σ(x) = ex

ex+1
is the logistic function. Note that there are individual weights for each209

forecast time step. Due to the small number of weights, the L-model is rather limited210

in how it combines the input forecast models X1 and X2. The weights merely allow for211

enough flexibility to weight each forecast based on its overall forecast bias. However, the212

bias of Xi might vary across the range of possible predictions within the interval [0, 1]. This213

variation in forecast bias is expressed by the reliability diagram of Xi (see Figure 2 for214

examples) indicating for which values xi ∈ [0, 1] the input forecast model Xi tends to over-215

or underestimate the occurrence of the event that Y = 1. Therefore, we proposed to choose216

the weights for each model X1, X2 in dependence of the forecast values x1 and x2. For this,217

a family of m + 1 triangular functions φj : [0, 1] → [0, 1] has been defined for some integer218

m > 0 and all j = 0, . . . ,m with219

φj(x) = max
{

0, 1−m
∣∣x− j

m

∣∣} for all x ∈ [0, 1] (2)

and
∑m

j=0 φj(x) = 1 for x ∈ [0, 1]. Thereby, for i = 1, 2, the input forecast model Xi can220

be encoded as a random vector φ(Xi) = (φ0(Xi), . . . , φm(Xi)) ∈ [0, 1]m+1. Thus, at most two221

consecutive triangular functions φj(Xi) and φj+1(Xi) are non-zero, which is the case when222

the value of Xi falls between j
m

and j+1
m

. Now, instead of the forecast models X1 and X2,223
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we pass the random vectors φ(X1) and φ(X2) to the L-model and call that the LT-model.224

For some weights wij ∈ R, the latter model is defined as225

fLT(X1, X2) = fL(φ(X1), φ(X2)) = σ
( 2∑
i=1

m∑
j=0

wijφj(Xi)
)
. (3)

If we now consider a reliability diagram with m + 1 bins, then each weight for a triangular226

function corresponds to one bin and, therefore, allows the model to produce a calibrated227

forecast. Note that the LT-model does not use a weight w0 like in Eq. (1), sometimes called228

“bias“ or “intercept“, because w0 is redundant as the triangular functions sum up to 1 for229

any x ∈ [0, 1].230

2) Interaction terms231

The weights in the L- and LT-models are chosen for either one of the two input fore-232

cast models X1, X2, irrespective of the other forecast model. However, it might be sensible233

to choose different weights, depending on whether both forecasts agree or disagree on the234

probability of occurrence of the event Y = 1. For this, we consider four additional pre-235

dictors γ1(X1, X2), . . . , γ4(X1, X2), called interaction terms, where γ1(X1, X2) =
√
X1X2,236

γ2(X1, X2) =
√

(1−X1)X2, γ3(X1, X2) =
√
X1(1−X2), γ4(X1, X2) =

√
(1−X1)(1−X2).237

Like in the previous section, where we have considered the vectors φ(Xi) =238

(φ0(Xi), . . . , φm(Xi)) for i = 1, 2, we now apply triangular functions to the interaction239

terms and pass the random vectors φ(γi(X1, X2)) = (φ0(γi(X1, X2), . . . , φm(γi(X1, X2))) for240

i = 1, 2, 3, 4 to the model, i.e.,241

fLTI(X1, X2) = fL(φ(X1), φ(X2), φ(γ1(X1, X2)), . . . , φ(γ4(X1, X2)))

= σ
( 2∑
i=1

m∑
j=0

wijφj(Xi) +
4∑

k=1

m∑
j=0

w′ijφj(γk(X1, X2))
)
,

where wij, w
′
ij ∈ R are some weights.242
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3) Model training243

For training the LTI-model, a rolling-origin with re-optimization scheme (Armstrong and244

Grohman 1972) is used in order to simulate the operational conditions. This updating245

scheme was chosen for several reasons: 1) The model is continuously updated on the newest246

available data, 2) The continuous updates require data from the past hour only, which makes247

the update process very fast and efficient in terms of storage space. Other schemes would248

require us to keep a backlog of old data for up to several months as training data. 3) The249

rolling-origin update works without a train/test split and therefore allows us to utilize the250

whole dataset for validation.251

In a rolling-origin with re-optimization scheme, the available data is not split up in separate252

training and test datasets, but it is split by a point in time τ , which represents the “present“,253

into “past data“ and “future data“. In each step of the rolling-origin scheme the model is254

trained on “past data“ and then validated based on predictions made for time steps ahead of255

τ , on which the model has not been trained yet. At the end of each step, τ is moved forward256

in time by one time step. This process is repeated until τ traversed the entire dataset.257

b. Generalization of the LTI-model for multiple thresholds, using neural networks258

1) Overview259

In the present paper, we propose a number of modifications of the LTI-model, which allow260

for the combination of forecasts for several thresholds by one common model. Note that the261

LTI-model, being a modified logistic regression model, can be seen as a specific type of a NN,262

whereas the softmax layer is a generalization of the logistic regression model (Shah 2020).263
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Therefore, more general variants of NNs are a natural choice to make further extensions of264

the LTI-model.265

In NNs two types of parameters are distinguished: hyper-parameters and trainable pa-266

rameters. Hyper-parameters determine the architecture of the NN-model (e.g. the numbers267

and types of layers and neurons). They have to be determined before fitting the trainable268

parameters to a data set. The trainable parameters are the weights within each layer. The269

performance of a specific architecture as defined by the hyper-parameters is highly depen-270

dent on the problem to be solved. While there are some guidelines on how to design a271

NN, it is impossible to tell how the choice of a hyper-parameter affects the performance272

before fitting and validating the model (Bergstra et al. 2011). For the optimization of the273

hyper-parameters of our NN-model, we propose an algorithm in Section A1.274

In the following sections we give a brief overview of the components of the proposed NN-275

model. Each component is either a generalization of a part of the LTI-model or a newly276

added modeling component. For each of them we introduce a number of hyper-parameters,277

which define the architecture of the NN-model and which have to be determined before278

training of the model can begin. In total there are 10 hyper-parameters. Each hyper-279

parameter has a set of possible configurations, which we denote by Hi = {c1
i , . . . , c

mi
i } for280

i = 1, . . . , 10. Thus, the architecture of the NN-models considered in this paper is defined by281

a vector h ∈ H1×. . .×H10, which contains exactly one configuration selected among the valid282

configurations for each hyper-parameter. For each h ∈ H1×. . .×H10, the NN-model consists283

of the following layers: (i) Zero to five convolutional layers, (ii) Zero or one dense layer for284

interaction terms (iii) Zero or one layer consisting of triangular functions, (iv) one softmax285

layer. For a schematic representation of the model architecture, see Figure 3. For a list of286

the considered hyper-parameters and their configurations, see Table 2. With the exception287
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of convolutional layers, each layer in this NN architecture corresponds to a component of288

the LTI-model, whereby the dense layer and softmax layer are more general than their LTI-289

counterparts. For an introduction to deep learning and explanations regarding topics like290

“activation function“ or “convolutional layer“, see Chollet (2017).291

2) Convolutional layers for model input292

With increasing lead time, it becomes more difficult to make accurate predictions due293

to increased forecast uncertainty. In particular, this might cause forecast models to be294

imprecise in the prediction of the location, intensity and duration of precipitation events. For295

probabilistic forecasts, this imprecision may manifest itself in two ways: (i) The precipitation296

events are predicted at wrong locations. Note that this is especially relevant for the RadVOR297

probabilities, which are based on a simple extrapolation and therefore do not take increased298

uncertainty for longer lead times into account. This results in equally sharp predictions for all299

lead times. (ii) The probability mass spreads out spatially. In other words, the forecast model300

predicts lower precipitation probabilities for a larger area to take the increased uncertainty301

into account. If the probabilistic forecast is based on an ensemble forecast, this effect can302

be caused by a higher spatial variation between ensemble-members, which tends to increase303

with lead time and reflects the ensemble forecasts uncertainty regarding the exact location304

of the precipitation event.305

In both cases, it is advantageous for a combination model to be aware of the predictions306

made at adjacent locations in order to combine two forecasts at a given location. For this,307

we consider convolutional layers (Zhang et al. 1990), which are commonly used for analyzing308

image data or data arranged on a regular grid. A NN with convolutional layers takes the309

information from a neighborhood of adjacent grid points into account, whereas the LTI-310
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model combines forecasts point-wise, i.e., the model output for each grid cell depends only311

on the individual input forecasts at this location. The size of this neighborhood is determined312

by the sizes of the convolutional kernels, which map the neighborhood data onto a vector of313

a specified length.314

In the present paper, all kernels are square-shaped and therefore the considered sizes refer315

to both height and width, e.g., a kernel size of 3 refers to a neighborhood of 3× 3 grid cells.316

Both the size of the kernel and the length of its output are hyper-parameters of the layer.317

The input of a convolutional layer is a tensor I ∈ Rbx×by×bz , where bx and by define the size318

of the forecast grid in x- and y-direction, respectively. Furthermore, bz depicts the number319

of probabilistic predictions of Ensemble-MOS and RadVOR for 9 thresholds each. Thus,320

bz = 18.321

For technical reasons, the NN requires input data given on a rectangular grid. In cases322

where some of the grid cells are undefined (i.e. where no forecast is available), the region323

of input data used is restricted to the largest rectangular region free of missing data (i.e.324

containing no NaN values). Since the forecasts of RadVOR are based on radar measurements325

that are extrapolated according to a motion vector field, the edges of the respective forecast326

domain shift in time. Thus, the area containing data of both RadVOR and Ensemble-MOS327

depends on the magnitude of the motion vector field and may decrease with lead time.328

Another limitation is the total convolutional size, which has to fit inside the well-defined329

rectangle.330

The total convolutional size is given by the formula: c1(c2−1)+1 with c1 ∈ H1 (number of331

convolutional layers), c2 ∈ H2 (kernel size of each layer). Due to this, some combinations of332

H1 and H2 result in an oversized convolution and, therefore, only combinations with a total333
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convolutional size less than or equal to 13 are used. The latter convolution corresponds to334

a neighborhood of 260 km, since the forecasts are given on a grid of size 20× 20 km2.335

The following hyper-parameters and configurations are considered: number of convolu-336

tional layers with H1 = {0, 1, 2, 3, 4, 5}, kernel size with H2 = {1, 2, 3, 5, 6, 7, 9, 11, 13},337

length of the output vector, i.e., the number of convolution matrices used by the layer338

(Chollet 2017), with H3 = {1, 2, 4, 6, 8, 10, 12, 14, 16}, activation functions with H4 =339

{felu, fexp, flin, fsigmoid, frelu, ftanh} and L2-regularization strength with H5 = {0, 10−7, 5 ·340

10−7, 10−6, 5 · 10−6, 10−5}.341

3) Dense layer for interaction terms342

For the LTI-model, the interaction terms were chosen by hand prior to model fitting. In the343

framework of NNs, the functionality of the interaction terms can be achieved with a densely344

connected layer of neurons, see e.g. Chollet (2017). In comparison to the LTI-model, a dense345

layer has the advantage that the shapes of the interaction terms are mostly determined by346

trainable parameters. The hyper-parameters for this layer are: number of neurons with347

H6 = {0, 2, 4, 6, 8, 10, 12}, activation functions with H7 = {felu, fexp, flin, fsigmoid, frelu, ftanh}348

and L2-regularization strength with H8 = {0, 10−7, 5 · 10−7, 10−6, 5 · 10−6, 10−5}.349

4) Layer for triangular functions350

The role of this layer is the integration of triangular functions into the NN-model.351

For a definition of and the rationale behind triangular functions, see Section 3a. The352

only hyper-parameter for this layer is the number of triangular functions with H9 =353

{0, 2, 4, 6, 8, 10, 12, 14}. Thus, for each c ∈ H9 \ {0}, this layer applies the triangular func-354

tions φ0, . . . , φc to the output of each neuron of the previous dense layer. In our case, for355
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each c′ ∈ H6, the previous layer returns a vector of scalars (x1, . . . , xc′). Hence the triangular356

functions layer has the output φ0(x1), . . . , φc(x1), . . . , φ0(xc′), . . . , φc(xc′) of size (c+ 1)c′. To357

our knowledge, such functions are not used in conventional NNs (a similar concept are radial358

basis function networks (Park and Sandberg 1991)), but they can be manually constructed359

with the help of Keras backend functions (Keras 2020).360

5) Softmax layer to ensure consistent predictions for all thresholds361

To obtain exceedance probabilities for all considered thresholds t1, . . . , tm with 0 < t1 <362

. . . < tm by means of LTI-models, a separate LTI-model would have to be trained for363

each threshold. However, this does not guarantee that the probabilities are decreasing364

monotonously for increasing thresholds, since the separate LTI-models have no knowledge365

about each other. Hence, an extended model is needed, of which the output is a vector366

of monotonously decreasing probabilities for the exceedance of the considered thresholds367

t1, . . . , tm. Additionally, the data available for one threshold might be useful for the combi-368

nation of other thresholds, too, since each probability is a point on the discrete cumulative369

distribution function of the same event and, therefore, they are interlinked.370

To ensure that the components of the vector of combined forecasts are decreasing371

monotonously, we train the neural network on a multi-label classification problem with372

a Softmax layer (Bridle 1990). This can be seen as a generalization of the logistic re-373

gression model, which has been utilized in the LTI-model. While the logistic regression374

model estimates the conditional probability distribution of a dichotomous random variable375

Y : Ω → {0, 1}, the softmax layer allows for estimating the conditional probability distri-376

bution of a random variable Y ′ : Ω′ → {0, . . . ,m} where m ≥ 1. In our case, Y ′ models377

the exceedance of the considered precipitation thresholds at a given location. For this, let378
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T : Ω′ → [0,∞) be the precipitation amount and let Ci = {T ∈ [ti, ti+1)} denote the event379

that T takes values between the thresholds ti and ti+1, for i = 0, . . . ,m. For this, we formally380

introduce two further thresholds t0 and tm+1, where t0 = 0 and tm+1 = ∞. We then put381

Y ′ = i if T ∈ [ti, ti+1), i.e., Y ′ indicates which of the events C0, . . . , Cm is occurring.382

For the family of pairwise disjoint events C = {C0, . . . , Cm}, the NN learns to predict383

a conditional discrete probability distribution PC,I = {P(C0 | I), . . . ,P(Cm | I)}, where384

P(Ci | I) is the conditional probability for the occurrence of event Ci given the model input385

I. Then, for each j ∈ {1, . . . ,m}, the conditional probability of the event that T ≥ tj can be386

computed by P(T ≥ tj | I) = 1−
∑j−1

i=0 P(Ci | I). Clearly, from this it follows by definition387

that P(T ≥ tj | I) ≥ P(T ≥ tk | I) if tj < tk, and therefore the predictions of the NN are388

consistent for all thresholds.389

6) Optimizer for trainable parameters390

Another difference between the LTI-model introduced in Schaumann et al. (2020) and the391

NN-model considered in the present paper is the choice of the optimizer. Note that the392

optimizer controls how the trainable parameters change during the model training. This393

has a large influence on the model performance. For a more detailed introduction to the394

operating principle of optimizers, we refer to Chollet (2017).395

In our previous paper, a stochastic gradient descent with a constant learning rate has been396

used as optimizer for the LTI-model. While this is sufficient for the (relatively small) number397

of parameters of the LTI-model, the NN-model considered in the present paper requires a398

more sophisticated optimizer, due to weaknesses of the classical stochastic gradient descent.399

Depending on the network architecture and the training data set, gradients for some weights400

might “vanish“ at some point in training, see Glorot et al. (2011). This means that parts of401
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the NN might receive only small updates or a sparse number of updates leading to stagnation402

of the training process. More recent optimizers address this problem by various means, e.g.,403

gradient descent with momentum (Sutskever et al. 2013) or adaptive learning rates. This404

ensues, first, to scale up small gradients back to a reasonable size or, second, to compensate405

for a sparse number of updates of a weight. In the present paper, five different optimizers are406

investigated. All of them are based on adaptive learning rates, which leads to a tenth hyper-407

parameter with H10 = {Adam, Adagrad, Adadelta, Adamax, Nadam}. For more details on408

how each optimizer works, see Kingma and Ba (2015), Duchi et al. (2011), Zeiler (2012),409

and Dozat (2016).410

c. Training and Validation411

In the previous section, several modifications of the LTI-model have been discussed. Each412

of them introduces one or more hyper-parameters, needing to be determined before the NN413

can be trained. For this, a hyper-parameter optimization algorithm is employed, which is414

explained in Section A1 in more detail.415

The training process of the NN consists of several steps: (i) Training of different model416

architectures for the hyper-parameter search, using data of the period from 1 April 2016 to417

31 May 2016, (ii) performance evaluation of model architectures for the hyper-parameter418

search, using data from 1 June 2016 to 30 June 2016, (iii) pick best architecture based on419

evaluation results, (iv) training of the best architecture (without validation), using data420

from 1 April 2016 to 31 May 2016, and (v) rolling origin update and validation with best421

architecture, using data from 1 July 2016 to 30 September 2016.422

Note that the data is split such that the choice of the best performing architecture and423

its validation are based on two different time intervals. Otherwise, the validation results424
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would be biased towards better scores since they would not reflect the uncertainty about425

the optimal choice of hyper-parameters.426

4. Results427

a. Influence of hyper-parameters428

1) Optimizer429

For the hyper-parameter optimization, about 18000 model architectures have been eval-430

uated for each considered lead time. The choice of the optimizer c ∈ H10 has, by far, the431

largest impact on model performance (see Section A1a). The distribution of model per-432

formance for each optimizer is depicted in Figure 4. Since Adam, Adamax and Nadam433

outperform Adagrad and Adadelta for almost all model configurations, we will focus on434

results only with regard to Adam, Adamax and Nadam in the following discussion.435

2) Convolutional layers436

Furthermore, the model performance is highly affected by the number of convolutional lay-437

ers (selected from the set H1) and their kernel size (selected from H2), see Figure 5, where438

the results of the hyper-parameter optimization are visualized. While the difference between439

individual configurations is less pronounced for lead times +1 h, larger total convolutional440

sizes perform better for longer lead times. Thus, in situations of increased forecast uncer-441

tainty (e.g. for longer lead times), an improved forecast skill is achieved when considering442

more adjacent grid cells. This is in agreement with the ideas of Theis et al. (2005) and443

Schwartz and Sobash (2017).444

The activation functions felu, flinear, frelu and ftanh seem to perform similarly well when445

compared to each other. In contrast, the functions fexponential and fsigmoid exhibit a much446
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worse behavior, in particular for model architectures with many convolutional layers. As447

an exception, fsigmoid does not show this behavior for the lead time +6 h and even performs448

best out of all considered activation functions.449

Models with larger lengths of output vectors (selected from H3) tend to perform better,450

however, the difference is clearly pronounced only up to a vector length of 4.451

It should be noted that the number of convolutional layers (selected from H1) and their452

kernel size (selected from H2) affect the output size of the NN in two different ways: (i)453

As explained in Section 3b, input data passed to the NN needs to be rectangular-shaped454

and defined on each grid cell in order to enable the NN to learn and to make a prediction.455

Note that the passed data domain underlies a large variability, due to irregular boundaries456

of and occasionally missing data within the input forecasts. The total convolutional size457

determines the possible minimum edge length of the data domain. (ii) Furthermore, the458

total convolutional size determines the size of the input area which is mapped to an output459

value. For example, for a total convolutional size of 5, a model input I of size 15× 30× 18460

is mapped to a model output of size 11×26×9. Note that the third dimension contains the461

predictions for the 9 thresholds considered in this paper. Since the model input I contains462

data from both initial forecasts, it is of length 18 along the third axis while the model output463

contains the combined forecast only and therefore it is of half the size.464

Due to these effects, the amount of available data used for training and validation depends465

on the total convolutional size. This might be an explanation for the decreased performance466

of the four configurations (1, 13), (4, 4), (3, 5), (2, 7) of H1 × H2 with the largest total con-467

volutional size of 13, since they have much less output to be trained and validated on, see468

Figure 5.469
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For a total convolutional size of 9 (used for lead times +1 h, +2 h, +4 h and +5 h, see470

Table 1), the passed data domain I consists, on average, of about 292 grid cells in the471

considered time period (July, August, September 2016). This results in 636126 data points472

in total. In comparison to this, for a total convolutional size of 11 (used for lead times +3 h473

and +6 h, see Table 1), the passed data domain consists, on average, of about 160 grid cells474

with 344431 data points in total.475

3) Triangular functions and interaction terms476

In Figure 6 the effect of triangular functions and the dense layer (interaction terms) on477

the model performance is visualized. In general, one might expect that more neurons in the478

dense layer perform better than less. Thus, at first glance, it seems to be counter-intuitive479

that 2 neurons perform worse than no neurons at all. A likely explanation of this is that480

few neurons act as a bottleneck that restricts the amount of information the NN can pass481

through the dense layer, whereas for zero neurons the layer and, therefore, the bottleneck482

is removed. Regarding triangular functions, typically 3 to 9 of them perform best for all483

lead times. However, some of these configurations can perform worse for specific lead times,484

e.g., 11 triangular functions for +4 h, and 5 triangular functions for +5 h, see Figure 6.485

The results visualized in Figure 6 show that model performance for lead time +1 h behaves486

differently in comparison to the model performance for longer lead times. See also Figure 5,487

where this effect can be observed, too.488

4) Remaining hyper-parameters489

The remaining hyper-parameters are the activation functions (selected from H7) for the490

dense layer and the L2−regularization strengths for the convolutional layers (selected from491
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H5) and the dense layer (selected from H8). However, these parameters do not seem to affect492

the model performance in any significant way.493

b. Model validation and comparison494

The performances of the NN-model, LTI-model, EnsembleMOS and RadVOR have been495

evaluated on data for the months July, August and September 2016. Within this period of496

time and the passed domain I (depending the total convolutional size of the NN-model),497

the considered precipitation thresholds were exceeded as described below by the numbers of498

upcrossings (and corresponding relative frequencies in parenthesis).499

(i) For a total convolutional size of 9 we have: 39303 (6.18%) for 0.1 mm, 31284 (4.92%)500

for 0.2 mm, 26402 (4.15%) for 0.3 mm, 20300 (3.19%) for 0.5 mm, 16459 (2.59%) for501

0.7 mm, 12677 (1.99%) for 1 mm, 6264 (0.98%) for 2 mm, 3494(0.55%) for 3 mm, and502

1375 (0.22%) for 5 mm.503

(ii) For a total convolutional size of 11 we have: 20420 (5.93%) for 0.1 mm, 16195 (4.70%)504

for 0.2 mm, 13561 (3.94%) for 0.3 mm, 10330 (3.00%) for 0.5 mm, 8358 (2.43%)505

for 0.7 mm, 6386 (1.85%) for 1 mm, 3046 (0.88%)for 2mm, 1652 (0.48%) for 3 mm,506

677 (0.20%) for 5 mm.507

For each lead time, the parameter configurations are shown in Table 1, which were chosen508

by the hyper-parameter optimization algorithm explained in Section A1. For each chosen509

NN-architecture validation scores and reliability diagrams are shown in Figures 1 and 2.510

Note that for some hyper-parameters several configurations perform equally well, which511

leads to random fluctuations between the choices for different lead times.512
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While one NN-model is trained on all thresholds for each lead time, the LTI-model com-513

bines probabilities for only one threshold and, therefore, its validation scores in Figures 1 and514

2 are based on separate model specifications for each combination of lead time and thresh-515

old (6 × 5 = 30 in total). While the NN-model requires a NaN-free rectangular dataset,516

the LTI-model can be applied on any grid point without missing data. For the results in517

this paper, however, the LTI-model has been fitted on the same rectangular dataset as the518

NN-model to make the validation results of both models more comparable.519

It can be seen that both combination models generate less biased and more calibrated520

predictions with a higher Brier skill score in comparison to both initial forecasts provided521

by Ensemble-MOS and RadVOR, for all lead times and thresholds. Although the RadVOR522

forecasts are only provided up to +2 h, the forecasts of both combination models have better523

scores up to +6 h. For more details on the used validation scores, see Wilks (2006).524

Similar to the LTI-model, the NN-model has improved reliability diagrams in comparison525

to both initial forecasts, see Figure 2. As expected, the reliability of forecasting models526

decreases with increasing lead times and increasing thresholds. In order to keep the reliability527

diagrams calibrated, the combination models learn to lower their predictions accordingly528

to not overestimate the occurrence of precipitation, which leads to shorter curves in the529

reliability diagram for longer lead times and higher thresholds in comparison to both initial530

input models.531

When comparing the NN-model with the LTI-model, it can be seen that the NN-model532

achieves better or equally good results for almost all considered lead times and validation533

scores. This improvement obtained by the NN-model is likely due to its more sophisticated534

architecture, which allows the NN-model to take data for all thresholds and also adjacent535

grid points into consideration. Moreover, this improvement is especially notable because536
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in contrast to the LTI-model the NN-model produces consistent probabilities which is an537

additional constraint to be satisfied.538

To test if it is actually necessary to run the hyper-parameter optimization algorithm for539

each lead time, we trained the chosen architecture for +1 h on the other five lead times, too.540

A visual comparison between the validations scores given in Figure 1 and the results for541

the +1 h-architecture showed only slight performance differences. However, the reliability542

diagrams seem to be less calibrated, see Figure 2, We therefore decided to use a separate543

network architecture for each lead time.544

c. Combination example545

In Figure 7, forecasting results obtained by the combination of input data from Ensemble-546

MOS and RadVOR are shown, as an example, for the hour 6-7 UTC of 21 July 2016 and547

for three lead times (+1 h, +2 h, +3 h). To our knowledge, threshold probabilities have548

not been depicted in the literature with such kind of diagram before. Due to a larger total549

convolutional size of the NN-model for +3h, the size of the output is smaller. For shorter550

lead times, the forecast of the NN-model closely resembles the forecast of RadVOR, while551

for increasing lead times, the predictions become more smooth and more dependent on the552

Ensemble-MOS prediction.553

5. Conclusions554

a. Summary of results555

In this paper we presented NN architectures for the combination of two probabilistic fore-556

casts, where we consider several precipitation thresholds simultaneously. The architectures557

chosen by the hyper-parameter optimization algorithm show improvements for all consid-558
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ered validation scores across all thresholds, and calibrate the resulting probabilities. Like the559

previously developed LTI-model, the NN-model considered in the present paper improves560

forecast scores also for lead times longer than +2 h, although RadVOR forecasts were only561

provided up to +2 h.562

The proposed hyper-parameter optimization algorithm worked as intended and yielded ar-563

chitectures with improved categorical cross-entropy compared to hand-picked architectures,564

which also led to improvements in all other validation scores considered in this paper, and565

to calibrated reliability diagrams in particular.566

In a direct comparison between the LTI-model and the NN-model, the NN-model performs567

better than or equally well as the LTI-model with respect to all considered validation scores.568

This is despite the fact that the NN-model must predict consistent exceedance probabilities569

for several thresholds, which is an additional constraint to be satisfied and should be kept570

in mind when comparing both models.571

For practical purposes, it should be taken into account that while the NN-model outper-572

forms the LTI-model, the LTI-model is not constrained to a NaN-free rectangular dataset.573

Additionally, the LTI-model has only a few hyper-parameters, due to its simpler design,574

which makes it much easier to train the LTI-model.575

b. Outlook & possible next steps576

According to the results of the hyper-parameter search performed in the present paper,577

some hyper-parameters seem to be much more important than others. Thus, it might578

be possible to further improve the architecture by adapting the search space. Since the579

optimizer and the number and size of convolutional layers have the largest influence on580

model performance, additional optimizers and convolutional layer combinations should be581
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investigated. Thus, in a forthcoming paper, we will investigate the numerical stability of582

the hyper-parameter optimization algorithm and how the chosen architectures in Table 1583

compare ,e.g., to the second best architecture for each lead time.584

Due to the restriction that the input of the NN must be rectangular and free of missing585

values, it should be considered to generate valid values by interpolation at grid points with586

missing values, or to pass an mask to the NN as additional input in order to specify, which587

values are valid. This would allow training without cropping of the data and also increase588

the area for which predictions can be made.589

Furthermore, it would be interesting to investigate how additional information might affect590

the quality of combination, e.g., by increasing the resolution of the grid, by passing ensemble591

members directly to the NN without aggregation to probabilities, by adding an orography592

map to the input, or by including additional meteorological indicators. Given that a new593

dataset contains enough precipitation events for higher thresholds, the list of considered594

thresholds could be expanded.595
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APPENDIX596

A1. Hyper-parameter optimization597

To choose hyper-parameters by means of a systematic approach, various optimization algo-598

rithms have been developed, attempting to find correlations between the hyper-parameters599

of a model and its performance by evaluating a number of different network architectures.600

The following problems arise in such algorithms. (i) Curse of dimensionality: For each601

additional hyper-parameter, the size of the search space grows exponentially. (ii) Training602

time: Depending on the size of the model, the size of the training dataset, and the available603

hardware, the evaluation of a network architecture might take a considerable amount of604

computation time. (iii) Interactions between hyper-parameters: It is not enough to consider605

each hyper-parameter separately, because the best choice for some hyper-parameter might606

depend on the chosen configurations of other hyper-parameters. (iv) Non-deterministic607

model performance: The fitting of a NN is a non-deterministic process and the weights of608

a model might not converge to the same optimum in repeated runs. This means that a609

single evaluation of a network architecture might not reflect the actual performance of the610

architecture in general. For an introduction to hyper-parameter optimization in general and611

the concepts mentioned above in particular, see Hutter et al. (2019). To our knowledge, the612

following algorithm has not been proposed before.613

To find a satisfactory model architecture despite the problems listed above, the proposed614

algorithm works according to the principle of Exploration & Exploitation, which is also615

explained in Hutter et al. (2019): At the beginning of the search, architectures across the616

whole search space are evaluated. With an increasing number of evaluations, promising617

candidates are prioritized.618
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In the following, we consider the search space H = H1 × . . . × Hn being the Cartesian619

product of a family of domains H1, . . . , Hn of n hyper-parameters for some integer n ≥ 1.620

The set Hi consists of mi ≥ 1 available configurations of the i-th hyper-parameter, i.e.,621

Hi = {c1
i , . . . , c

mi
i } for each i = 1, . . . , n.622

a. Performance of an evaluation623

In each iteration of the hyper-parameter optimization algorithm, the performance f(h)624

of a model architecture specified by h = (c1, . . . , cn) ∈ H is evaluated, where ci ∈ Hi for625

each i = 1, . . . , n. The model architectures considered in this paper were trained for 6626

epochs on a training data set (April + May 2016) and validated after each epoch on a627

separate validation data set (June 2016). Note that an epoch refers to one pass-through of628

the training dataset in the training process. Each batch consists of data for one hour. We629

define the performance f(h) of a configuration h ∈ H as the smallest model error achieved630

in any of the 6 epochs, whereas the model error is determined by the loss function (Chollet631

2017) of the NN. Since we consider a classification problem in this paper, the loss function632

“categorical cross-entropy“ is used (Alla and Adari 2019).633

To find out which number of epochs is sufficient, the model errors for 20 epochs have been634

determined for a number of model architectures. However, for most model architectures635

the minimum model error converged within the first 5 epochs. Therefore, we considered 6636

epochs in order to derive the results obtained in this paper.637

b. Selection of new hyper-parameter configurations638

A common strategy to pick model configurations for evaluation is the so-called random639

search method, where a certain probability distribution, e.g. the uniform distribution, is640
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considered on the search space H from which new model architectures are sampled (Hutter641

et al. 2019).642

The idea of the algorithm presented in this section is to start with a random search.643

However, after having made a number of evaluations, we can already estimate how the644

configuration ci ∈ Hi of a single hyper-parameter, for some i ∈ {1, . . . , n}, affects the645

performance of the model architecture h = (c1, . . . , cn). Based on this information, the646

probability distribution on H, from which further model architectures are sampled, can647

be adapted to favor model architectures which are more likely to perform well. With an648

increasing number of evaluations, the same concept can be applied to an increasing number649

of j hyper-parameters, where j ∈ {2, . . . , n}, in order to find out which configurations650

h′ ∈ H ′J = Hi1 × . . . × Hij for some subset J = {i1, . . . , ij} ⊆ {1, . . . , n} perform well in651

combination with each other. In the following, we sometimes write H ′h′ instead of H ′J , in652

cases where we want to emphasize that a specific partial architecture h′ belongs to the set H ′J .653

Furthermore, let H∗ =
⋃
J∈P({1,...,n}) H

′
J denote the set of all (partial) model architectures.654

1) Definitions655

The (k + 1)-th choice of the model configuration hk+1 ∈ H, which is to be evaluated656

next, is made based on the set of previously evaluated configurations E = {h1, . . . , hk}, for657

which the performances f(hi), i = 1, . . . , k, have been determined as described in Section 4a.658

Let h′ ∈ H ′J be a partial model architecture for a subset of hyper-parameters with indices659

J = {i1, . . . , ij} ⊆ {1, . . . , n}. Then define660

Eh′ = {h ∈ E : h′ ⊆ h} (A1)
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as the set of all evaluated hyper-parameter configurations h that share the same configura-661

tions with the partial architecture h′. For a given integer s ∈ N = {1, 2, . . .} we define662

Es = {h′ ∈ H∗ : |Eh′ | ≥ s, |Eh′∪{ci}| < s for all ci ∈ Hi, i ∈ {1, . . . , n}} (A2)

which is the set of partial architectures h′ with at least s evaluations and for which all663

extensions h′ ∪ {ci} have less evaluations than s. In other words, Es contains the largest664

partial architectures for which a minimum number s of evaluations exist.665

When considering a partial architecture h′ ∈ H ′J for evaluation, we are not only interested666

whether E contains enough data to estimate f(h′), but also if all partial architectures in667

H ′h′ have enough evaluations. Hence we define668

Ep
s = {h′ ∈ Es : |Eh′ | ≤ min

g′∈H′
h′
|Eg′|p} (A3)

for a given value p ∈ [1,∞), i.e., Ep
s is a subset of Es containing all partial architectures669

h′ with a number of evaluations |Eh′ | below an upper bound, which depends on the partial670

architecture g′ ∈ H ′h′ with the smallest number of evaluations |Eg′ |.671

Furthermore, we define the median performance ME(h′) for a partial model architecture672

h′ as673

ME(h′) = median({f(h) : h ∈ Eh′}), (A4)

and, finally, the set ∆δ(h
′) of partial architectures g′, which share |h′| − δ configurations674

with h′ as675

∆δ(h
′) = {g′ ∈ H : |h′ ∩ g′| = |h′| − δ} for δ ∈ N. (A5)
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2) The algorithm676

In this section we explain how we determine an initial partial architecture h′0 and how we677

pick subsequent partial architectures h′1, . . . , h
′
k until their union is a full architecture that678

can be evaluated next and added to the set E.679

For given values of s and p, we sample from the set of partial architectures Ep
s . Initially,680

the set Ep
s is empty, because E is empty since no architectures have been evaluated, yet.681

Note that Ep
s can also be empty due to the upper bound determined by the parameter p.682

In these cases, a partial architecture h′0 = {ci} with a random configuration ci ∈ Hi for683

a random hyper-parameter Hi is chosen. Otherwise, we sample h′0 from the set Ep
s with684

probability PEps , where PF is defined as685

PF (h′) =
2−ME(h′)/d∑
g′∈F 2−ME(g′)/d

(A6)

for any partial architecture h′ ∈ F , a given set F of partial architectures and some d > 0,686

which is another parameter of the algorithm, along with s and p. Note that PF is defined such687

that a partial architecture h′ is twice as likely to be chosen than g′ if ME(h′) = ME(g′) + d.688

Furthermore, once enough evaluations have been made such that Ep
s is non-empty, the689

algorithm will always pick a partial architecture from Ep
s . Without the upper bound, the690

first few partial architectures in Es would be sampled ad infinitum, while other partial691

architectures, which have not been sampled often enough yet, would not be sampled at all.692

Therefore it is necessary to include the upper bound in Ep
s for the number of evaluations.693

We now have the first part h′0 of the architecture h, which we want to evaluate. Next,694

we successively determine more parts h′1, . . . , h
′
k until their union is a complete architecture695

h = h′0∪ . . .∪h′k ∈ H. For this, let h̄′j = h′0∪ . . .∪h′j be the union of all partial architectures696

up to h′j.697
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For j ∈ {1, . . . , k} we iteratively sample h′j from Ep
s ∩ ∆δ(h̄

′
j−1) with probability698

PEps∩∆δ(h̄
′
j−1)(h

′
j) with the smallest δ ∈ N for which Ep

s ∩ ∆δ(h
′) is not empty. In other699

words, we choose h′j such that it has at least one new configuration and also the largest700

possible overlap with h̄′j−1, and that the new configurations are likely to perform well in701

combination with the previously chosen configurations. If Ep
s ∩ ∆δ(h̄

′
j−1) is empty for all702

δ ∈ N, the partial configuration h′j = {ci} consists of a single randomly chosen configuration703

ci ∈ Hi, where Hi is a random hyper-parameter, for which it holds that Hi ∩ h̄′j−1 = ∅.704

Once enough architectures have been evaluated and we want to pick the best architecture705

based on E, we follow the same steps as described above, but instead of sampling partial706

architectures from Ep
s with probability PEps , we pick the partial architectures h′ ∈ Es with707

the lowest ME(h′) instead.708
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Lead time No. of conv. layers Kernel size Conv. activation Conv. reg. Conv. output length

+1h 4 3 elu 5e-07 14

+2h 4 3 elu 5e-06 6

+3h 5 3 relu 0 8

+4h 1 9 elu 0 4

+5h 1 9 elu 5e-06 12

+6h 2 6 sigmoid 0 4

Lead time No. of neurons in dense layer Dense activation Dense reg. No. of triangular func. Optimizer

+1h 12 sigmoid 0 9 Nadam

+2h 12 tanh 0 5 Nadam

+3h 12 exponential 1e-06 3 Adamax

+4h 6 tanh 0 5 Adamax

+5h 10 sigmoid 0 3 Adamax

+6h 10 relu 1e-05 5 Adamax

Table 1. Selected configurations of hyper-parameters for different lead times
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Layers Param. Description Configurations

Conv. H1 Number of convolutional layers 0, 1, 2, 3, 4, 5

Conv. H2 Kernel size 1, 2, 3, 5, 6, 7, 9, 11, 13

Conv. H3 Number of convolutional matrices 1, 2, 4, 6, 8, 10, 12, 14, 16

Conv. H4 Activation functions felu, fexp, flin, fsigmoid, frelu, ftanh

Conv. H5 L2−Regularization 0, 10−7, 5 · 10−7, 10−6, 5 · 10−6, 10−5

Dense H6 Number of neurons 0, 2, 4, 6, 8, 10, 12

Dense H7 Activation functions felu, fexp, flin, fsigmoid, frelu, ftanh

Dense H8 L2−Regularization 0, 10−7, 5 · 10−7, 10−6, 5 · 10−6, 10−5

Triangular H9 Number of triangular functions 0, 2, 4, 6, 8, 10, 12, 14

- H10 Optimizer Adam, Adagrad, Adadelta, Adamax, Nadam

Table 2. Configurations of hyper-parameters considered in this paper.
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Fig. 1. Validation scores for 5 of the 9 considered thresholds for the NN-model (green), LTI-

models (gray), Ensemble-MOS (yellow) and RadVOR (blue). Left: bias, middle: Brier skill score,

right: reliability. Note, that only one NN-model is trained on all thresholds, while separate LTI-

models are trained for each threshold. In both cases modelling is performed for each lead time

individually.
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(rows). Bins with less than 100 exceedance probabilities are omitted. Note, that only one NN-

model is trained on all thresholds, while separate LTI-models are trained for each threshold. In

both cases modelling is performed for each lead time individually.
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Fig. 5. Median model performance (categorical cross-entropy, lower values are better) for differ-

ent hyper-parameter settings regarding the convolutional layers, and for several lead times: +1 h,

+3 h, +5 h, +6 h (top to bottom). The color of each tile depicts the median model performance in

dependence on number and kernel size of the convolutional layers (x-axis) and activation function

(y-axis). Whereby the x-axis labels correspond to the kernel size of each layer, e.g., 5− 5− 5

stands for three layers with a kernel size of five each. The number in each tile indicates the number

of evaluations made by the hyper-parameter optimization algorithm.
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Fig. 6. Median model performance (categorical cross-entropy, lower values are better) for differ-

ent hyper-parameter settings regarding triangular functions (x-axis) and interaction terms (y-axis),

and for the lead times +1 h (top-left), +2 h (top-right), +3 h (middle-left), +4 h (middle-right),

+5 h (bottom-left) and +6 h (bottom-right). The color depicts the median model performance.

The number in each tile indicates the number of evaluations made by the hyper-parameter opti-

mization algorithm.
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Fig. 7. Combination example in a NaN-free rectangle for +1 h (first row), +2 h (second row) and +3 h (third
row), for the hour 6-7 UTC of 21 July 2016. The columns correspond to the forecast models and the ground truth:
EnsembleMOS (first column), RadVOR (second column), Neural Net (third column) and Radar measurement (fourth
column). At each grid point (marked by a gray circle) several colored circles are stacked on top of each other. In the
first three columns, the size of each colored circle corresponds to the exceedance probability for a given threshold
which is indicated by the color of the circle (see legend). In the fourth column, depicting the ground truth, the circle
color indicates the highest threshold that has been exceeded. The maximum circle size corresponds to probability
one while circles corresponding to probability zero vanish since they are of size zero. The corresponding probability is
proportional to the circle area, not the radius. The gray solid lines indicate the borders of federal states of Germany
with Hesse and Saxony-Anhalt in the center.
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