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ABSTRACT: A wealth of forecasting models is available for operational weather forecasting.

Their strengths often depend on the lead time considered, which generates the need for a seamless

combination of different forecast methods. The combined and continuous products are made in

order to retain or even enhance the forecast quality of the individual forecasts and to extend the

lead time to potentially hazardous weather events. In this study, we further improve an artificial

neural network based combination model that was recently proposed in a previous paper. This

model combines two initial precipitation ensemble forecasts and produces exceedance probabilities

for a set of thresholds for hourly precipitation amounts. Both initial forecasts perform differently

well for different lead times, whereas the combined forecast is calibrated and outperforms both

initial forecasts with respect to various validation scores and for all considered lead times (+1h to

+6h). Moreover, the robustness of the combination model is tested by applying it to a new dataset

and by evaluating the spatial and temporal consistency of its forecasts. The changes proposed

further improve the forecast quality and make it more useful for practical applications. Temporal

consistency of the combined product is evaluated using a flip-flop index. It is shown that the

combination provides a higher persistence with decreasing lead times compared to both input

systems.
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1. Introduction24

The term adaptive blending stands for the search of an optimal lead-time- and position-dependent25

weighting between two or more forecasts that cover different forecast ranges or are based on different26

forecast models, e.g., different configurations of numerical weather prediction (NWP). The term27

blending represents a part of the so-called seamless prediction, where this term was originally28

introduced by Palmer et al. (2008) to describe the combination of weather prediction and climate29

modeling as a unified topic. In the course of time, the definition of seamless prediction was30

extended to include also interactions with biogeophysical components (Hazeleger et al. 2012) and,31

more generally, to describe the interactions between weather, climate, and the Earth system (Brunet32

et al. 2010). A recent publication by Ruti et al. (2020) defines seamless prediction as a whole value33

cycle enclosing four parts: the generation of information, the dissemination to users, the perception34

and decision-making, and the outcomes and values.35

The currently ongoing project SINFONY (Seamless INtegrated FOrecastiNg sYstem) of36

Deutscher Wetterdienst (DWD) can be assigned to the topic of seamless prediction, since it focuses37

on the seamless prediction of precipitation within the short-term range up to +12 h ahead. Here,38

the term seamless is referred to as the combination of forecasts of observation-based precipitation39

nowcasting techniques with those of the NWP. The goals of SINFONY to achieve this combination40

are twofold and address two parts of the definition of seamless prediction mentioned above. First,41

the generation of information is addressed by individually improving both forecasting methods42

— nowcasting and NWP — in such a way that in terms of a verification metric the gap between43

each of them is narrowed. Based on these improvements, the development and implementation of44

tailor-made combination methods will lead to a user-oriented unique forecast including condensed45

information of both individual forecasts. Moreover, the interaction with users is addressed by using46

the feedback of hydrological services and forecasters to further improve the products.47

Nowcasting and NWP forecasts can provide valuable guidance for users on different lead time48

scales (Heizenreder et al. 2015; Hess 2020). Many common precipitation nowcasting methods49

rely on the Lagrangian persistence approach, whereby the latest field of observed reflectivities or50

estimated rain rates is extrapolated in space and time by a previously determined motion vector field51

(Germann and Zawadzki 2002). Due to this purely advective approach, the dynamic uncertainty52

induced by growth and decay of precipitation patterns is not considered. Thus, the quality of such53
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forecasts is high as long as the Lagrangian persistence assumption is valid (Zawadzki et al. 1994).54

The prediction of specific weather events depends on their spatial extent (Venugopal et al. 1999)55

and can reach from minutes when considering small-scale phenomena (e.g. single thunderstorms)56

up to hours at length scales of several hundred kilometers (Foresti and Seed 2014).57

The physical evolution of precipitation fields is, on the other hand, explicitly simulated by58

NWP models. However, one source of forecast errors of the latter can be found in initial and59

boundary conditions as well as in inexact solutions of approximated physical equations due to60

finite resolutions in time and space. Nicolis et al. (2009) showed that subgrid parameterizations of61

cloud microphysics are especially important for precipitation forecasting. However, shortcomings62

in such a parameterization lead to deficiencies in simulated rainfall intensities (Stephan et al. 2008).63

Despite these error sources, NWP forecasts are able to outperform the forecast quality of precip-64

itation nowcasting techniques 2-3 h after initialization, as it will be shown in Section 4. Therefore,65

the seamless combination aims to create a unique and consistent forecast in which the best skill is66

retained and the amount of information is condensed regardless of location and lead time (Brunet67

et al. 2015).68

Vannitsem et al. (2021) present, among others, an overview of methods to combine forecasts69

of nowcasting and NWP and further point out that this combination may take place in physical70

or probability spaces. The weighting mentioned above can be based on a long-term comparative71

verification of both initial forecast systems. This is done in physical space by Golding (1998) in72

Nimrod, one of the first combination schemes, or in a probability space by Kober et al. (2012).73

Haiden et al. (2011) utilized in INCA (Integrated Nowcasting through Comprehensive Analysis) a74

simple linear weighting function, in which the weight for NWP forecasts increases from 0 at the75

beginning to 1 at a lead time of +4 h. The Short-Term Ensemble Prediction System (STEPS; Seed76

(2003), Seed et al. (2013)) in its implementation by Bowler et al. (2006) quantifies in real time not77

only tendencies in a sequence of the latest observations, but also the skill of a NWP forecast to78

adjust weights for combining the nowcast extrapolation and the NWP forecast, depending on lead79

time and spatial length scale. A forecast ensemble is then generated by replacing nonpredictable80

scales with spatial correlated random noise. Moreover, the emergence of nowcasting ensemble81

techniques allows to use the ensemble spread as an objective combination metric. Based on this,82

e.g. Nerini et al. (2019) implemented an ensemble Kalman filter for the iterative combination of83
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NWP forecasts and precipitation nowcasting extrapolations. Johnson and Wang (2012) as well as84

Bouttier and Marchal (2020) carried out combinations of multimodel ensembles.85

With focus on nowcasting approaches based on machine-learning (ML) techniques, many studies86

use model information as an additional predictor. In Han et al. (2017), radar observations combined87

with data of the analysis system VDRAS (Variational Doppler Radar Analysis System) are utilized88

to train a support vector machine (SVM) for answering the question whether there will be reflectivity89

> 35 dBZ within a box in the next 30 min based on the information in the adjacent boxes. Ukkonen90

et al. (2017) utilize an artificial neural network (ANN) with lightning and reanalysis data as input91

to evaluate thunderstorm predictors for Finland. An overview about machine-learning approaches92

with focus on nowcasting is given by, e.g., Prudden et al. (2020) and Cuomo and Chandrasekar93

(2021).94

Besides accuracy, calibration and spatial consistency, also temporal consistency is desired for95

operational forecasts. Here and in the following, the notion "temporal consistency" is not to be96

understood as the time-dependent correlation structure of a single forecast. Rather, it describes97

the variability between a number of model runs for a fixed valid time that is also often referred98

to as jumpiness. Ideally, there is a large uncertainty in early forecasts that decreases with time so99

that forecasts converge towards the observations and become more and more confident. However,100

in practice, it is often observed that updated forecasts for one specific time and location exhibit101

spurious jumps due to forecast errors. This is a problem for meteorologists, who want to rely on102

the most topical numerical forecast and may need to revise their opinion accordingly, especially in103

case of weather warnings. It seems to be very unreasonable if a warning is issued, canceled soon104

thereafter, and may be even re-issued again, see e. g. Griffiths et al. (2019).105

In the present paper two forecast systems are combined (nowcasting and NWP); each one has its106

own characteristics in temporal consistency, which affect the consistency of the combined product.107

The transition from nowcasting to NWP with larger forecast lead time may likely result in additional108

inconsistencies, since the systematic errors of the two systems differ. Moreover, the method of109

combination itself may introduce additional inconsistencies, e. g. if individual architectures or110

configurations are used for the neural networks for each forecast step. Therefore, it is considered111

important to control the temporal consistency of the combined product. Ideally, spurious jumps are112

5



reduced by the combination. However, at least, it should be prevented that additional inconsistencies113

are introduced by the method of combination.114

Several metrics have been introduced to assess temporal forecast inconsistency of a sequence of115

forecasts. Zsoter et al. (2009) construct a spatial inconsistency index that consists of the differences116

of two forecast fields normalized by their variability. They then define a "flip-flop" as an oscillation117

of that index of two consecutive forecasts around its mean of the entire sequence of forecasts.118

The "Forecast Convergence Score" described by Ruth et al. (2009) comprises the count of forecast119

oscillations around a significance threshold and includes information about the convergence towards120

the following forecast as well as the magnitude of the oscillations. The "Convergence Index" of121

Ehret (2010) is a combination of counts of oscillations exceeding a significance threshold and122

counts of non-convergent forecasts. The metric introduced in Richardson et al. (2020) is based123

on the average of all ensemble differences of consecutive model initializations. To compute the124

difference, the divergence function associated with the continuous ranked probability score (CRPS)125

is utilized. Griffiths et al. (2019) add up the distances between consecutive forecasts over a forecast126

sequence and divide the sum by the range of the forecasts.127

To run and maintain a ML-based precipitation forecasting system in daily operations can be128

facilitated if the applied architecture of the ML system is simple and robust against changes in the129

training dataset. Furthermore, the training dataset should contain only few predictors which, besides130

that, are easy to maintain. Therefore, we would like to address the following issues with the present131

study. First, we want to assess the forecast quality of the set of hyper-parameter optimized ANNs132

introduced in Schaumann et al. (2021), when they are trained on an alternative high-resolution133

dataset. The dataset comprises forecasts of DWD’s ensemble-based precipitation nowcasting134

scheme STEPS-DWD (Reinoso-Rondinel et al. 2022) and ensemble forecasts of an experimental135

setup of the operational high-resolution short-term NWP model ICON-D2 (ICOsahedron Non-136

hydrostatic) for the SINFONY-project. Second, we want to explore to which extent the forecast137

inconsistency (jumpiness) can be reduced by the proposed set of ANN architectures, and whether138

it is further reduced if only one common ANN architecture is applied to all forecast lead times.139

The remainder of the paper is structured as follows. Section 2 gives a brief overview of the140

utilized datasets. In Section 3, we briefly review some of our previous work and explain which141

changes are made to the combination model in the present paper. Then, in Section 4, the new142
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combination model is validated and the effects of each change are discussed. Finally, Section 5143

summarizes our study and draws some conclusions.144

2. Data145

The present study assesses the effects on forecast quality, when the set of hyper-parameter146

optimized ANNs introduced in Schaumann et al. (2021) is trained on a dataset with higher resolution147

and input forecasts from other ensemble forecast models. For this purpose, we utilize DWD’s148

ensemble-based precipitation nowcasting scheme STEPS-DWD as well as ensemble forecasts149

of an experimental setup of the operational high-resolution short-term NWP model ICON-D2,150

both developed in the framework of SINFONY. The training dataset considered in the present151

study focuses on summertime heavy rainfall events and consists of data for three monthly time152

periods (from 05/26/2016 to 06/26/2016, from 06/01/2019 to 06/23/2019 and from 06/03/2020 to153

07/16/2020). In the following these datasets will be described in more detail.154

a. STEPS-DWD155

The probabilistic RADVOR (Radarvorhersage; engl. radar forecast) forecasts from our previous156

study are replaced by the new ensemble precipitation nowcasting method STEPS-DWD. The latter157

is based on the well-established STEPS approach (Seed 2003; Bowler et al. 2006; Seed et al.158

2013; Foresti et al. 2016) and has been adapted and improved for DWD purposes within the159

framework of SINFONY. The forecasts are based on composites of radar reflectivities obtained160

by DWD’s radar network, which is depicted in Fig. 1 by the envelope of all radar measuring161

ranges. Furthermore, rain rates are derived by a method for quantitative precipitation estimation162

(QPE) that uses individual relations between radar reflectivities and rain rates for different types163

of hydrometeors (Steinert et al. 2021). STEPS-DWD is configured for the present study to consist164

of a cascade of first-order autoregressive processes on twelve spatial scales and to apply a new165

localization approach (Pulkkinen et al. 2020; Reinoso-Rondinel et al. 2022) for the estimation of166

the autoregressive parameters on each individual scale. Individual realizations of the ensemble167

are then generated by imprinting spatially correlated fields of stochastic noise in regions with168

precipitation. The spatially recomposed fields are then extrapolated by a constant vector backward169

scheme (Germann and Zawadzki 2002) based on a predetermined motion vector field. Nowcasts are170
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computed every 30 min out to 6 hours ahead with a temporal resolution of 5 min. The original fields171

with a spatial resolution of 1×1km2 are interpolated onto the coarser NWP grid (≈ 2.2×2.2km2).172

Afterwards, the extrapolated rain rates are accumulated to hourly rainfall amounts. For lead times173

less than one hour, accumulations are computed also from radar-based QPE products, so that at174

the start of each extrapolation forecast, the hourly rainfall amount consists of the radar-based QPE175

products from the immediately preceding hour. This precipitation accumulation is used as the176

ground truth.177

b. ICON-D2-EPS178

Compared to the previous study (Schaumann et al. 2021) in which we used statistically post-179

processed NWP forecasts as input for the neural network, we now switch to raw NWP ensemble180

forecasts computed by an experimental setup of the ICON model (Zängl et al. 2015) in limited area181

mode (LAM) on a central-European domain with a horizontal grid spacing of Δ𝑥 ≈ 2.2km and 20182

forecast ensemble members. This deep-convection-allowing setup is called ICON-D2. Besides183

conventional observation data and Mode-S aircraft measurements, 3D volume radar reflectivities184

and radial winds are assimilated by DWD’s kilometre-scale ensemble data assimilation system185

KENDA, which implements a localized ensemble transform Kalman filter (Schraff et al. 2016;186

Bick et al. 2016). Note that 40 members are used for the assimilation, while the first 20 members187

serve as initial conditions for the forecasts. Lateral and upper boundary conditions are provided by188

ICON-EU ensemble forecasts (larger trans-European domain, grid spacing 6.5 km, parameterized189

deep convection). For cloud microphysics the operational conventional one-moment scheme is190

used. Ensemble forecasts are initialized every 3 hours and run up to 12 hours ahead. From these191

forecasts we use hourly precipitation sums at each forecast hour.192

3. Model & Methods193

In Schaumann et al. (2021), an ANN-based model for the combination of two probabilistic194

forecasts, which produces calibrated and consistent probabilities, has been proposed as a gener-195

alization of the so-called LTI-model (Logistic regression, Triangular functions, and Interaction196

terms; see Schaumann et al. (2020)). The notion "probabilistic forecast" refers to probabili-197

ties for the occurrence of binary events, i.e., the exceedance of precipitation thresholds. With198
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Fig. 1: DWD’s operational radar network. The positions of radar sites of the network are depicted
by white dots. The blueish circle around each site represents the range of the terrain-following
precipitation scan of the dual-polarization radars. Darker blue shades represent areas covered by
more than one radar. Additionally, the terrain height is illustrated in colors from green (low) to
white (high). Note that the radar at Borkum, at the time of the training period, has been an older
single-polarization radar with a lower data quality.

a given probability space (Ω,F ,P), a probabilistic forecast 𝑃 : Ω → [0,1] for a random event199

𝐸 : Ω → {0,1} is considered to be calibrated when 𝑝 ≈ E(𝐸 |𝑃 = 𝑝) for all 𝑝 ∈ [0,1]. This is200

a desirable property since, colloquially said, we expect the event to occur with the forecasted201

probability. The relationship between 𝑝 and E(𝐸 |𝑃 = 𝑝) of a forecast model is expressed in its202

reliability diagram. When considering a set of probabilistic forecasts 𝑃1, 𝑃2, . . . for binary events203
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𝐸1, 𝐸2, . . . with P(𝐸1 ≥ 𝐸2 ≥ . . .) = 1, we call the forecasts 𝑃1, 𝑃2, . . . consistent if it holds that204

P(𝑃1 ≥ 𝑃2 ≥ . . .) = 1. In case of the exceedance of increasing precipitation thresholds, we know205

that a higher threshold can only be exceeded, if all lower thresholds are exceeded, too, and therefore206

the forecasted probabilities should be monotonously decreasing.207

In this section, we propose a few improvements of the ANN-model and call the new version208

C3-model (where C3 means combined, calibrated, consistent).209

a. Architecture and Properties of the C3-Model210

In its current form, the C3-model consists of several feed-forward neural networks, each one for211

the combination of forecasts with respect to a specific lead time.212

All neural networks considered in the C3-model consist of 4 types of layers arranged in the213

following order: 0 to 5 convolutional layers, one dense layer, one triangular functions layer and214

one dense layer with softmax activation function, see Fig. 2.215

The triangular functions layer transforms each scalar 𝑥𝑖 of its input in such a way that each neuron 𝑗216

of the following dense layer can be interpreted as a sum of functions 𝑆 𝑗 ,1(𝑥1) + . . .+𝑆 𝑗 ,𝑛 (𝑥𝑛) where217

the functions 𝑆 𝑗 ,𝑖 : [0,1] → R are linear splines determined by the weights of the dense layer.218

Compared to the the linear combination of inputs 𝑤1𝑥1 + . . . +𝑤𝑛𝑥𝑛 without triangular functions,219

a sum of linear splines gives the network far more flexibility in how it models the relationship220

between the inputs 𝑥1, . . . , 𝑥𝑛 and the outputs of the following dense layer.221

As a loss function the categorical cross-entropy is used. The softmax layer produces a discrete222

probability distribution for the events that precipitation occurs either between two consecutive223

thresholds or below/above the lowest/highest threshold. Based on the discrete probability distri-224

bution a probability for the exceedance of each threshold is computed. The combined forecast is225

calibrated and consists of consistent probabilities for each precipitation threshold.226

The specific hyper-parameters of each neural network are determined individually by a hyper-227

parameter optimization algorithm, see Table 1. For more details about the triangular layer or the228

hyper-parameter optimization algorithm, see Schaumann et al. (2021).229
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Dense Layer

Convolutional Layers

EnsMOS Threshold Prob. NowCast Threshold Prob.

NN Threshold Prob.

Softmax Layer

Triangular Functions Layer

Fig. 2: The utilized network architecture (green) and the input and output data (blue) as a schematic
representation adapted from Schaumann et al. (2021). The arrows depict the flow of information.
Note that the input data in this study are forecasts from STEPS-DWD and ICON-D2.

b. Training and Validation230

The first 3 weeks of the available dataset are used as a warm-up period on which the model is231

trained only. For the remaining dataset, a rolling-origin scheme (Armstrong and Grohman 1972) is232

applied. This is an iterative approach that simulates how new information becomes incrementally233

available for training over time in an operational setting. The available dataset is divided by a234

point in time 𝑡 into two parts, where 𝑡 represents the presence. The part of the dataset before 𝑡 is235

considered to be in the past and therefore available for training, while the data after 𝑡 is considered to236

be future and is used for the validation of the model. Over the course of the training and validation237

process, 𝑡 is iteratively moved from the beginning to the end of the dataset, where in each step of238

the rolling-origin scheme the model is trained on the past data and validated on the future data.239

c. Increase in Spatial Resolution240

In the present paper, in order to increase the resolution of the combined forecast, two new241

initial forecasts are considered: STEPS-DWD and ICON-D2. Both have a spatial resolution of242

11



Lead time No. of conv. layers Kernel size Conv. activation Conv. reg. Conv. output length

+1ℎ 4 3 elu 5e-07 14

+2ℎ 4 3 elu 5e-06 6

+3ℎ 4 3 relu 0 8

+4ℎ 1 9 elu 0 4

+5ℎ 1 9 elu 5e-06 12

+6ℎ 2 6 sigmoid 0 4

Lead time No. of neurons in dense layer Dense activation Dense reg. No. of triangular func. Optimizer

+1ℎ 12 sigmoid 0 9 Nadam

+2ℎ 12 tanh 0 5 Nadam

+3ℎ 12 exponential 1e-06 3 Adamax

+4ℎ 6 tanh 0 5 Adamax

+5ℎ 10 sigmoid 0 3 Adamax

+6ℎ 10 relu 1e-05 5 Adamax

Table 1: Selected configurations of hyper-parameters for different lead times based on the results
of Schaumann et al. (2021).

2.2×2.2km2, whereas the datasets previously used in Schaumann et al. (2021) have a resolution of243

20×20km2. As the input of the ANN consists of data for a fixed number of grid points determined244

by the convolutional layers, the spatial range of the input data shrinks when the resolution of the245

datasets is increased. To compensate for the finer grid, one could increase the size or dilution246

of the convolutional layers. Here, dilution refers to a method, where only every 𝑁-th row and247

column of the input data is passed on to the network, i.e., a dilution of 2 doubles the spatial248

range of convolutional layers along the x- and y-axis without increasing the number of data points.249

However, it turned out that adapting the size of the convolutions to the finer grid did not result250

in better validation scores. Similarly, diluting the convolutions did not lead to better validation251

scores and additionally introduced artifacts to the combined forecast. Due to the gaps introduced252

by a dilution of 𝑁 > 0, smaller structures in the input forecast influence every 𝑁-th grid point in253

the output, while neighbouring grid points are unaffected. This leads to repeating patterns in the254

combined forecast. Therefore we did not change the convolutions for the results obtained in the255

present paper.256
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d. Full Utilization of the Sampling Window with an NaN-Mask257

Due to technical reasons, the neural network in Schaumann et al. (2021) requires its input to258

have a rectangular shape and no missing data. Since the precipitation nowcasting forecasts are259

based on radar composites, which are shifted according to a motion vector field, parts may be260

shifted outside of the sampling window. Temporary radar outages further reduce the available261

data. Depending on shape and location of the area with available data, the largest usable rectangle262

might be considerably smaller than the area with available data itself. To utilize the whole dataset263

for the present paper, all NaNs are replaced by the value −1 and a Boolean field which flags grid264

points with missing data is used as an additional input to the neural network. Instead of discarding265

part of the dataset, this approach allows the model to learn to ignore the values of −1.266

e. Forecast Persistence and Consistency267

Repeated runs of a forecast model at different starting times produce a sequence of forecasts268

with different lead times for the same valid date. In general, these forecasts become increasingly269

accurate with decreasing lead time and the ideal evolution would be a trend from inaccurate or270

climatological values to a more accurate forecast with decreasing lead times. However, due to271

random (non-systematic) forecast errors, the trend is often not monotonous for the individual272

cases. Sometimes, older forecasts are more accurate than newer updates and spurious jumps in the273

forecasts appear. These inconsistencies or jumps are especially harmful for warning management.274

A weather warning that is issued for a specific date and time, canceled later on (based on a new275

forecast run), and then possibly issued again with the next forecast, is not considered trustworthy276

and can hardly be communicated to the public.277

In the present study, we consider the flip-flop index FFI introduced by Griffiths et al. (2019) as a278

metric for temporal forecast consistency and investigate how the input forecasts and the combined279

product behave with decreasing lead time. This index is defined by280

FFI(𝑉𝑖, 𝑗 ) =

∑
𝑙∈{1,...,𝐿−1} |𝑣𝑙+1 − 𝑣𝑙 | − (max

𝑙
(𝑉𝑖, 𝑗 ) −min

𝑙
(𝑉𝑖, 𝑗 ))

𝐿−2
, (1)

where 𝑉𝑖, 𝑗 = (𝑣1, . . . , 𝑣𝐿) ∈ R𝐿 is a vector of predictions for grid point 𝑖, 𝑗 and for the same valid281

time, with 𝐿 > 2 lead times. The FFI is normalized by 𝐿−2, which is the length of the vector minus282
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first and last point and thus the maximum number of predictions that can be not monotonous with283

respect to their respective predecessor and successor. Note that FFI(𝑉𝑖, 𝑗 ) = 0 indicates a perfect284

flip-flop index and is achieved by forecasts that converge monotonously in time. Forecasts with an285

oscillating pattern 𝑉 are penalized resulting in a flip-flop index FFI(𝑉𝑖, 𝑗 ) > 0.286

The FFI is evaluated for each grid point 𝑖, 𝑗 individually and averaged over the whole evaluation287

period as mentioned in Section 4c .288

4. Results289

a. Lead-Time Dependent Investigation on Model Performance290

We want to assess whether the C3-model with its new implementations and the high-resolution291

input datasets is still able to produce high-quality forecasts, where we want to emphasize the core292

features of its forecasts: combination, calibration, and consistency. For this, we computed the bias,293

Brier skill score, reliability, sharpness, and the area under ROC (relative operating characteristic)294

curve (AUC) over the whole evaluation period for the C3-model with two different hyper-parameter295

settings to assess the importance of lead time dependent hyper-parameters (C3: lead-time depen-296

dent, and C3
LT1: only from lead time +1 h) as well as for both individual input forecast systems297

STEPS-DWD and ICON-D2. We chose these metrics to get some easily interpretable indicators298

regarding the299

1. systematic model error300

2. forecast quality in terms of systematic model errors and random forecast errors301

3. conditional frequency bias302

4. forecast resolution303

5. discrimination ability304

If we call the exceedance of an arbitrary threshold an event, all of these metrics are based on the305

grid-box-wise actually observed event occurrence and/or the forecasted event probability. Thus,306

the bias describes the mean error (ME) of the forecasted event probabilities and indicates the307

unconditional systematic model error. The Brier skill score (BSS) consists of the mean squared308

error (MSE), representing the Brier score (BS) itself, divided by a reference BS that is based on the309
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sample climatology. The values of BSS reach from −∞ up to 1, whereas values of 1 and 0 depict a310

perfect forecast and the climatologic forecast, respectively. Further, the reliability indicates how far311

the reliability diagram of a forecast deviates from the ideal line, i.e., the reliability is the weighted312

mean of the squared differences between the reliability diagram and the ideal line for each bin,313

where the weights are the number of forecasts within each bin. Ideally, the predicted probability is314

equal to the observed relative frequency in which case the reliability diagram is equal to the ideal315

line and the reliability is equal to zero. Therefore, the reliability provides information about the316

frequency bias of the forecasted event probabilities and represents a measure for the calibration of317

an ensemble forecast. The sharpness characterizes the unconditional distribution of the probability318

forecasts and provides information about the forecast resolution, i.e. the ability to predict extreme319

values close to 0 or 1. It is represented by the variance of the forecasts. The last metric considered320

is the AUC, which provides information about a forecast’s ability to discriminate between events321

and non-events.322

The results obtained for the bias are depicted in the first column of Fig. 3 for both configurations323

of the C3-model, STEPS-DWD, and ICON-D2, as a green, red, yellow, and blue line, respectively.324

All four forecast techniques exhibit a nearly lead-time independent systematic error. However,325

the event probability for the lowest threshold of 0.1 mm hourly rainfall amount is overestimated326

by ICON-D2 forecasts by 1 percentage point, whereas the extrapolations of STEPS-DWD reveal327

a slight underestimation by 1 percentage point. For higher thresholds these systematic errors of328

STEPS-DWD and ICON-D2 diminish as the frequency of event occurrences within the evaluation329

period decreases. The forecasts of both configurations of C3 are bias-free in the first two hours.330

Afterwards, they exhibit only a small difference from zero, whereas C3 tends towards ICON-D2,331

and C3
LT1 towards STEPS-DWD. These results imply that the model is able to reduce systematic332

errors caused by the input forecasts with respect to the ground truth. This bias correction can be333

seen as one part of a forecast calibration.334

To assess the forecast quality in due consideration of the combination aspect, the results obtained335

for the BSS are illustrated in the second column of Fig. 3, in the same way as the bias. Here, the336

BSS of the precipitation nowcast extrapolations of STEPS-DWD starts with a high skill, since they337

start from the observation, but decrease rapidly since growth and decay processes of precipitation338

are not represented. Errors in initial and boundary conditions cause that the NWP forecasts of339
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ICON-D2 start with a lower skill. However, the decrease with increasing lead time is not that340

pronounced due to the explicit simulation of the dynamical evolution. The intersection of both341

curves denotes the point when the quality of nowcast extrapolations sinks below those of the NWP342

forecasts and occurs around 2.5 h after initialization. The forecast quality in terms of BSS of both343

C3-models outperforms each individual input forecast technique at all lead times. Furthermore, the344

different hyper-parameter settings only have a small effect on forecast quality, so that an optimal345

combination of the two input forecasts is achieved with both C3-models at all lead times. However,346

the approximately 0.1-higher BSS values should be treated with caution, since convolution-induced347

spatial smoothing of the forecasts (as discussed by, e.g. Cuomo and Chandrasekar (2021)) leads to348

better scores of continuous verification metrics.349

If such smoothing effects decisively affect the forecasts of our C3-models, it should be visible350

in the reliability, since the frequency of predicted high probabilities is decreased, whereas the351

frequency of observed events for forecasted intermediate probabilities increases. At first, the area352

enclosed by the reliability curves and the aforementioned ideal course is depicted for each of the353

forecast systems in the third column of Fig. 3, again in the same manner as the bias. For STEPS-354

DWD, this area size reveals an increase with lead time, whereas that of the ICON-D2 forecasts355

is nearly constant. Note that we utilize raw NWP output data that is uncalibrated. The area size356

of both C3-models is smaller than those of the two input forecasts indicating that the curves are357

closer to the ideal course and, therefore, the combined forecasts are more reliable than the forecasts358

of the input systems. However, the size of the area fluctuates for the two C3-models at later lead359

times. This may be an indicator for shortcomings in the calibration due to the choice of triangular360

functions. The forecast calibration depends on the number of these triangular functions, which is361

equal to 9 for +1 h and only 5 and 3 for +4 h/+6 h and +5 h, respectively (cf. Tab. 1).362

Nevertheless, the forecast sharpness of both C3-models is reduced compared to the forecasts of363

ICON and STEPS-DWD for all exceedance thresholds and lead times, as shown in the fourth column364

of Fig. 3. This may have several reasons. On one hand, the raw input forecast ensembles reveal a365

wider range of probabilities even for hourly rainfall amounts above 5 mm. Thus, the sharpness is366

increased, but at the expense of reliability. On the other hand, the increasing forecast uncertainty367

for higher lead times and the training on less frequent events lead to a loss of probabilities close to368

1, which reduces the sharpness. However, the C3-models exhibit a higher AUC compared to ICON369

16



and STEPS-DWD forecasts, which is shown in the fifth column of Fig. 3. This may indicate an370

improved discriminating ability between events and non-events, albeit this result should be treated371

with caution. Not only the missing high probability values, but also the low event base rate may be372

misleading. A further investigation on the discrimination ability of the C3 forecasts based on an373

improved AUC as described by Ben Bouallègue and Richardson (2022) may provide more reliable374

results.375

To get a more detailed insight at the conditional bias, the reliability diagrams of the four forecast376

systems are depicted in Fig. 4 for the lead times +1 h, +3 h, and +6 h and five thresholds from377

0.1 mm up to 5 mm. In addition, below each reliability diagram, the frequency histograms for each378

of the forecasts are depicted to give an evaluation of the forecast sharpness. Both the extrapolation379

nowcasts of STEPS-DWD and the forecasts of ICON-D2 are overconfident over the entire range of380

thresholds and lead times. The overconfidence of ICON-D2 forecasts increases especially with the381

threshold since the frequency of observed events is not only lower due to the higher threshold but382

may also be reduced due to errors in location. Besides the missing representation of the dynamics383

of precipitation in STEPS-DWD forecasts, their spread is small leading to that overconfidence.384

The results obtained for both combination models are well calibrated for all depicted thresholds385

at a lead time of +1 h. With increasing lead time, the C3
LT1 forecasts remain calibrated, though,386

high probabilities are no longer forecasted. However, at a lead time of +3 h, the forecasts of the387

C3-model exhibit structures that can be connected with the spatial smoothing. For the C3
LT1 model,388

such a structure is only visible for a threshold of 2 mm at a lead time of +6 h.389

These results show that even with the new dataset forecasts of both models C3 and C3
LT1 are390

well-calibrated in terms of bias correction and reliability, consistent for the range of thresholds,391

and that they are composed of the optimal combination of the two input forecast systems STEPS-392

DWD and ICON-D2. Furthermore, the forecast calibration may be able to reduce the impact of393

convolution-induced spatial smoothing.394

b. Investigation of Spatial Patterns in Systematic Model Error and Forecast Quality395

We want to investigate possible reasons for systematic model errors in the forecasts of STEPS-396

DWD and ICON-D2 and how the combined forecasts reduce these errors. Further, we want to397

explore whether spatial patterns are visible in the forecast quality. For this, the spatially resolved398
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Fig. 3: Bias (in %) (first column), Brier skill score (second column), reliability (third column),
sharpness (fourth column), and area under the ROC (relative operating characteristic) curve (AUC;
fifth column) averaged over the evaluation period as validation scores for three of the nine considered
thresholds for the combfination model with lead-time-dependent hyper-parameters (C3; green), the
combination model with hyper-parameters for a lead time of +1 h (C3

LT1; red), STEPS-DWD
(STEPS; yellow), and ICON-D2 (ICON; blue).

biases for lead times of +1 h and +3 h are illustrated in Figs. 5a and 5b, respectively. The spatially399

resolved BSS is depicted in Figs. 6a and 6b for identical lead times.400

The results for STEPS-DWD are shown in the left columns of Figures 5 and 6. The nowcast401

extrapolations exhibit at a lead time of +1 h that the slight underestimation discussed in the previous402

section occurs almost over the entire domain. Only in regions close to radar sites which are covered403

by a single radar (cf. Fig. 1) an overestimation is visible. The underestimation may be caused by404

a loss of power induced by the way the spatially correlated stochastic noise fields are generated,405

see e.g. Atencia and Zawadzki (2014). The overestimation may be due to rain rates estimated in406

different heights, e.g., when rain rates estimated at maximum range of a given site are advected407

and compared to near-surface estimates of the respective radar site. A further reason could be408

attenuation caused by heavy precipitation directly at the radar site. With increasing lead time,409

errors due to the forecast field shifting lead to an underestimation in the western and southern410
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Fig. 4: Reliability diagrams for the C3-model with different architectures (C3; green), the C3-model
with one architecture (C3

LT1; red), STEPS-DWD (STEPS; yellow), and ICON-D2 (ICON; blue).
Here, the 𝑥-axes indicate the forecast probability and the 𝑦-axes indicate the observed frequency
of the event. Below each reliability diagram, the frequency histograms for each of the forecasts are
depicted.

part of the domain, whereas the missing of dynamical evolution increases the systematic error in411

the entire domain. The BSS reveals no distinct spatial pattern. However, some of the radar sites412

and also the Alps are visible, which is caused by a lower event occurrence due to radar outages,413

attenuation effects and/or beam blocking. With increasing lead time, the aforementioned strong414

decrease in the BSS is visible.415
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The spatially resolved results for ICON-D2 forecasts are shown in the second columns from416

the left of Figures 5 and 6. Here, the bias not only depicts systematic model errors but also417

systematic errors between the simulated surface precipitation sum and the QPE used as ground418

truth. Therefore, the overestimation mentioned above can be attributed to typical radar and419

compositing shortcomings. First, the strong overestimation over the Alps is caused by beam420

blocking. Second, range attenuation and ground clutter can be seen at Borkum radar site in the421

north-west due to a positive bias at long ranges and a local negative bias close to the radar site.422

For the radar site located at the Feldberg in the south-west a height difference where rain rates are423

simulated/estimated may be a reason for the underestimation of hourly precipitation sums. This424

underestimation is more distinct for a threshold of 1 mm. Nevertheless, the overestimation in the425

western part of the domain, which is noticeable especially for the threshold of 0.1 mm, could be426

attributed to meteorological phenomena. For a higher lead time the main patterns remain the same,427

however, with a higher magnitude. In addition to the aspects mentioned above for the spatially428

resolved BSS of STEPS-DWD, the range attenuation is more distinct for the BSS of ICON-D2,429

especially at a threshold of 1 mm. For later lead times, the decrease is not that pronounced as for430

STEPS-DWD.431

The spatially resolved results for the C3-models are shown in the right columns of Figures 5 and432

6. One the one hand, it can be seen that the biases are reduced in terms of magnitude compared to433

both input forecast systems for +1 h lead time and both thresholds of 0.1 mm and 1 mm. However,434

the spatial patterns induced by the shortcomings of the radar-based QPE composite are still visible435

in the bias. On the other hand, even at this lead time some spatial patterns are comparable to436

those of ICON-D2. For example, the overestimation induced by beam blocking at the Alps and437

the range attenuation of the Borkum radar. This means that the deficits of the composite used438

as ground truth, e.g., lower estimated rainfall amounts in regions covered just due to one radar439

and deviations due to ground clutter, are not learned by the C3-model. In addition, the C3-model440

forecasts are constrained by both input forecasts so that they are the result of the best possible441

combination. For a lead time of +3 h, the spatial bias patterns are closer to that of ICON-D2-EPS,442

although the overestimation in the western part of the domain is reduced and the underestimation443

in the range of the Feldberg radar is even more pronounced for the threshold of 0.1 mm. Therefore,444

even with a higher weighting towards ICON-D2-EPS, the systematic overestimation in the western445
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part is reduced by the C3-model. However, the differences in hourly rainfall amount caused by the446

aforementioned height difference of the Feldberg radar is not reduced since STEPS-DWD forecasts447

exhibit an underestimation as well. The systematic error of the C3
LT1-model is only slightly below448

that of the C3-model, which is shown in the right column of Fig. 5. The spatially resolved values of449

BSS of the C3-forecasts are above the BSS of each input forecast systems for both thresholds and450

lead times in the entire domain. The spatial structures caused by the QPE composite are also visible451

in the results of the C3-model, additionally indicating that those shortcomings are not learned by452

the C3-model.453
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Fig. 5: Spatial distribution of the bias (in %) averaged over the considered period for (a) +1 h,
and (b) +3 h lead time. Depicted are STEPS-DWD (left column), ICON-D2 (center column), and
the combination model (C3) with different architectures (center right columns). The right column
shows the difference between C3 and C3

LT1.
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Fig. 6: The same as Fig. 5 but for the Brier skill score.

c. Temporal Consistency of the Combined Forecasts454

Another question is how the temporal consistency of the combined forecasts compares to those455

of both initial forecasts, and how it is affected by the hyper-parameter choice of the C3-model. The456

flip-flop index (FFI) given in Eq. (1) is averaged over the evaluation period and visualized in Fig. 7457

for both initial forecast systems STEPS-DWD (STEPS) and ICON-D2 (ICON), the combination458

model (C3), as well as the modified combination model (C3
LT1). The C3-model has lead-time459

dependent hyper-parameters in order to provide maximal adaptation. To control whether lead-time460

dependent architectures affect temporal consistency for a sequence of forecast updates that are valid461
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for the same date, the C3
LT1-model uses the hyper-parameters of the lead time +1 h of the C3-model462

for all lead times +1 h, . . . , +6 h.463

The FFI of the probabilities for the events that hourly precipitation exceeds the thresholds 0.1 mm464

and 1 mm is presented in Fig. 7a as average over the evaluation period. To better understand what the465

FFI values mean in our case, a brief example is given. A sequence of forecasts is optimal in terms466

of temporal consistency if it follows the shortest distance between its minimum and its maximum.467

This distance is scaled by the maximum number of possible flip-flops within the sequence and468

is used as a reference value. A FFI of 0.03 indicates that the difference in event probabilities469

between two consecutive forecasts at a given grid box is on average 3 percentage points larger470

than the reference value. Many cases with no precipitation in forecast and observation reduce the471

average FFI. To account for this effect, Fig. 7b depicts the average FFI under the condition that the472

observed hourly precipitation is at least 0.1 mm, which leads to much larger values compared to473

the unconditional FFI in Fig. 7b.474

The technique of STEPS-DWD consists of two main components which may affect the temporal475

consistency in different ways. First, a set of first-order autoregressive processes is considered which476

replace signals on spatial scales that are no longer predictable by spatially correlated noise. Second,477

an advection scheme is used which extrapolates the forecast fields based on a predetermined motion478

vector field. As can be observed in Fig. 4, STEPS-DWD forecasts are overconfident especially479

for longer lead times and higher thresholds, a convergence from climatological event probabilities480

towards observed event frequencies seems to appear less likely. Moreover, differences between481

estimated motion vector fields (e.g., lower magnitude, errors in direction) for different lead times482

may lead to spatial shifts of the predicted precipitation pattern. These spatial shifts may lead to a483

double penalty problem, when the precipitation patterns of two consecutive forecasts do not align,484

i.e., both predict precipitation at two different locations, which results in high absolute differences485

between both locations. Additionally, the temporal evolution of precipitation is not covered by such486

an extrapolation forecast, i.e., the observed stage of precipitation is extrapolated in time ignoring487

growth and decay processes. Therefore, any difference in observed precipitation frequency between488

two consecutive hours leads to an increase in FFI. Furthermore, due to the most common westerly489

winds and the advection of precipitation, values at the west border of the domain fade out with490

constant advection, since the precipitation data covers only Germany. At a threshold of 1 mm,491
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effects of beam blocking and range attenuation, as discussed above for bias and BSS, are more492

apparent.493

The temporal consistency of NWP precipitation forecasts in convective situations may be affected494

by the time of convective initiation, the simulated dynamical evolution of precipitation, and also by495

the location of airmass boundaries or convergence lines. When we consider the unconditional FFI496

for the ICON-D2 (ICON) forecasts in Fig. 7a, they reveal two regions in which the unconditional497

FFI is elevated. First, this is a region in Northwestern Germany which can be attributed to498

uncertainties in the location of airmass boundaries or convergence lines. This can also be seen in499

the conditional FFI in Fig. 7b. Second, this concerns the upland regions and the Alps which could500

be an indicator for the prediction uncertainty of orographically induced precipitation. However,501

this is less pronounced in the conditional FFI, where the largest values can be found in Bavaria.502

One reason for the reduction of the conditional FFI compared to the unconditional FFI over the503

Alps may be the frequency bias in observed events due to the previously discussed beam blocking.504

Both combination models significantly improve the FFI for both thresholds and with respect to505

unconditional and conditional averaging. The C3-model has slightly higher FFI values than the506

C3
LT1-model, reflecting that the lead-time dependent architecture contributes to the FFI. Compared507

to the much larger FFI values of both input systems, however, this contribution can be assumed508

to be insignificant. Moreover, temporary radar outages affect the unconditional FFI, which can be509

seen in the eastern part of the domain for the radar sites Dresden and Eisberg, cf. Fig. 1.510

d. Forecast Animations511

The supplementary material includes animations showing +3 h probabilistic forecasts of the512

input techniques STEPS-DWD (STEPS; second column from the left) and ICON-D2 (ICON; third513

column) as well as the combination model (C3; fourth column) and the modified combination514

model (C3
LT1; fifth column). Fig. 8 illustrates an example of these animations. Depicted are the515

exceedance probabilities for hourly precipitation of at least 0.1 mm (upper row) and 1 mm (lower516

row). The forecasts were initiated at 1400 UTC of June 4, 2020, and the corresponding observed517

threshold exceedances are shown in the first column of Fig. 8.518

The STEPS-DWD forecasts exhibit less spread at a threshold of 0.1 mm compared to those of519

ICON-D2. This corresponds to the results shown in the reliability diagrams of Fig. 4, where520
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Fig. 7: Flip-flop index (FFI) averaged (a) over the whole evaluation period and (b) over the
evaluation period under the condition that the observed hourly precipitation is at least 0.1 mm.
Note that the color scales of each subplot cover different value ranges. The FFI is depicted for both
initial forecast systems STEPS-DWD (STEPS) and ICON-D2 (ICON), the combination model (C3)
as well as the modified combination model (C3

LT1) using the hyper-parameters determined for +1 h
for all lead times. The right column shows the difference between C3 and C3

LT1. For the sake of
clarity, only the flip-flop indices for the thresholds of 0.1 mm and 1 mm are shown.

STEPS-DWD is overconfident. However, the area covered by probabilities is close to that of the521

observation, showing that the dynamical evolution of the precipitation field in this case barely522

affects the extrapolation forecast. Solely, the precipitation band from Switzerland to Bavaria is less523

covered by STEPS-DWD. In contrast, this precipitation band is more pronounced in the ICON-D2524
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Fig. 8: Exemplary +3 h probabilistic forecasts of STEPS-DWD (STEPS; second column), ICON-
D2 (ICON; third column), the combination model (C3; fourth column), and the modified combi-
nation model (C3

LT1; fifth column) for hourly precipitation thresholds of 0.1 mm (upper row) and
1 mm (lower row) initiated at 1400 UTC of June 4, 2020. The corresponding observed threshold
exceedances are depicted in blue in the left column. The right column shows the differences
between C3 and C3

LT1. Missing data is marked grey.

forecast. However, the observed precipitation in the center of Germany is not predicted by the525

ICON-D2 forecast.526

Both combination models, C3 and C3
LT1, exhibit a robust mixture of both input forecasts and527

provide rather similar results for a threshold of 0.1 mm. Artifacts at the edges of the radar network528

and also small-scale NWP features (e.g. over the Vosges) are more pronounced in the C3-forecast.529

However, the probabilities of the C3
LT1-forecast are higher for both thresholds. Especially for the530

1 mm threshold one can see a maximum of about 0.5 for the C3-model. This corresponds to the531

results shown in the reliability diagrams of Fig. 4 and can be attributed to the low number of532

triangular functions, cf. Tab. 1.533

5. Conclusions534

a. Summary of results535

Considering forecasts of hourly rainfall of an advection-based precipitation nowcasting ensemble536

and of a NWP ensemble system, one can have on the one hand radar outages or relocations of radar537
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sites and on the other hand updates of the NWP model. A simple architecture in combination with538

a rolling-origin training scheme can made a ML-based seamless precipitation forecasting system539

robust against those changes in the training dataset and is thus able to support the operational540

running of a forecasting system. In addition, the training dataset should contain only few and541

easy maintainable predictors. To reinforce these demands, we extended the combination model542

presented in Schaumann et al. (2021) in order to improve its forecast quality and to make it more543

suitable for an operational setting. Furthermore, we evaluated the forecast quality of the hyper-544

parameter optimized combination model, when trained on a new high-resolution dataset. This545

dataset consists, on the one hand, of forecasts of DWD’s ensemble-based precipitation nowcasting546

algorithm STEPS-DWD (Reinoso-Rondinel et al. 2022) and, on the other hand, of ensemble547

forecasts produced by an experimental setup of the operational high-resolution short-term NWP548

model ICON-D2.549

The validation results for the new dataset show that the combination model and its modification550

achieve similar scores as for the previously considered dataset (Schaumann et al. 2021). More551

precisely, we were able to show that our C3-models are indeed consistent over the whole range of552

threshold exceedances considered in this study. The forecasts represent an optimal combination553

of the input forecasts of STEPS-DWD and ICON-D2, which is indicated by a higher Brier skill554

score over all thresholds and lead times. The impact of spatial smoothing caused by convolutions555

is reduced by the C3-models. That is effected, first, due to the utilization of probabilities based on556

hourly rainfall amount and, second, due to the forecast calibration. The reliability diagrams of the557

combination models are well-calibrated for all lead times and at least for the two lowest thresholds.558

The only diagrams affected by the smoothing mentioned above are those of the thresholds of 1 mm559

and 2 mm, for the C3-model at +3 h and for the C3
LT1-model at +6 h. However, in case of the560

C3-model, this may be attributed to the low number of triangular functions.561

In an operational setting robust and interpretable forecasts are important, i.e., a forecast model562

should not only achieve high aggregate validation scores, but also produce spatially and temporally563

consistent forecasts. For this, we investigated the performance of both initial models and the564

combination models by considering spatially resolved validation scores, to see how well each565

model performs at single grid points. The spatially resolved scores of bias and BSS reveal typical566

shortcomings of radar measurements and radar compositing, e.g., range attenuation that was not567
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corrected due to the operation of a single-polarization radar, beam blocking, and temporary radar568

outages. However, the resulting spatial patterns are also visible in those results of the C3-models,569

indicating that these deficits are not learned by the latter models, since these deficits are also present570

in the ground truth.571

Finally, we considered the flip-flop index as a measure of temporal consistency. The obtained572

results show that both combination models produce forecasts with spatially more homogeneous573

validation scores and an improved flip-flop score. However, some spatial artifacts remain along574

the boundaries of radar coverage areas, which is likely due to the radar composite being used as575

ground truth. A possible alternative ground truth for verification could be station measurements.576

Moreover, we tested a modification (C3
LT1) of the C3-model which led to increased sharpness and577

a slight improvement of the flip-flop score over the C3-model.578

b. Outlook579

The current combination model produces probabilities for the exceedance of thresholds at single580

grid points. However, for weather warnings it would be useful to predict probabilities for the581

exceedance of thresholds within predefined areas (e.g. river basins or municipal territories). As582

a next step we will investigate how the current combination model can be modified in order to583

predict such area-dependent exceedance probabilities.584

Additionally, we will extend the underlying dataset by the winter months 2021/2022 to inves-585

tigate the performance of the combination model for different seasons, and whether additional586

predictors like orography, wind information, local forecast variance or ensemble spread improves587

the combined forecast.588
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