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Abstract

Accurately quantifying the architecture of lithium ion electrode particles
in 3D is critical to understanding sub-particle lithium transport, rate lim-
itations, and degradation mechanisms within lithium ion batteries. Most
commercial positive electrode materials consist of polycrystalline particles,
where intra-particle grains have a range of morphologies and orientations.
Here, focused ion beam slicing in sequence with electron backscatter diffrac-
tion is used to accurately quantify intra-particle grain morphologies in 3D.
The intra-particle grains are identified using convolution neural network seg-
mentation and distinctly labeled. Efficient morphological characterization of
the grain architectures is achieved. Bivariate probability density maps are
developed to show correlative relationships between morphological grain de-
scriptors. The implication of morphological features on cell performance, as
well as the extension of this dataset to guide artificial generation of realistic
particle architectures for 3D multi-physics models, is discussed.
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1. Introduction

The demand for high-performance lithium (Li) ion batteries is greater
now than ever before. Within electric vehicles, Li-ion batteries are expected
to provide the user with more than 300 miles of range on a single charge,
to charge quickly when needed, and to have a life-time commensurate with
thousands of charge and discharge cycles. To achieve these performance
metrics, in-depth understanding and control of Li transport and degradation
mechanisms within the electrodes is needed. Layered Li-ion positive electrode
materials such as LiNixMnyCozO2 (NMC) are common in commercial Li-ion
batteries used for electric vehicles. NMC particles are often polycrystalline
with intra-particle grains that guide the intercalating Li along 2D planes
with the crystal structure of NMC [1]. When the grains lithiate they expand
anisotropically in the direction of the crystal structure, which can lead to
intergranular stresses and cause the particles to crack [2, 3]. This strain-
induced cracking is considered to be one of the major causes of capacity
fade within Li-ion cells, primarily from increasing the exposed surface area
to react with electrolyte and form interphase layers, as well as degrading
the connectivity between grains [4]. It has been shown that electrodes with
less cracking have better lifetimes [5], thus ideally particle architectures that
minimize strain without sacrificing performance should be synthesized.

In-depth operando or multiphysics models are needed to understand the
spatial and temporal evolution of inter-particle strains and the formation of
cracks. Yet, despite the importance of understanding the grain properties of
particles, experimental tools to characterize electrode particle architectures
are not widely available or practiced. Some non-destructive X-ray techniques
have recently shed light into the influence of grain architectures on particle
degradation, but studies are still limited. Liu et al. [4] demonstrated a com-
bination of X-ray diffraction with transmission X-ray microscopy (TXM) to
follow the activity of particles and visualize sub-particle cracks, and Xue et al.
[1] also used TXM to follow local valence states of Ni in NMC creating a map
of charge distribution. However, TXM cannot capture the grain orientations
and thus is limited in its ability to create a link between grain properties and
the propensity of particles to degrade. X-ray diffraction computed tomogra-
phy (XRDCT) may hold promise for mapping the distinct grain orientations
and responses during operation [6], but its resolution is currently limited to
around 1µm and access to this technique is constrained due to it only being
available at a small number of synchrotron facilities.
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Electron backscatter diffraction (EBSD) can be applied to spatially re-
solve grain orientations from smooth cross-sections of materials [7] and the
image quality (IQ) maps from the imaging are a useful means to visualize
the grain architectures through changes in the contrast at grain boundaries
[8, 9]. EBSD systems are typically incorporated into lab-based scanning
electron microscope (SEM) instruments and are thus widely accessible to
many research laboratories. Sequential EBSD imaging followed by focused
ion beam (FIB) milling of the analyzed sample produces a sequence of EBSD
images, i.e., a tomographic image data set of the sample [10]. The output
images of EBSD can be segmented and distinct grains identified. More pre-
cisely, using advanced image processing techniques it is possible to compute
descriptors of the material’s microstructure. For materials which are com-
posed of two or more phases, descriptors like the porosity, tortousity and
constrictivity can efficiently characterize the microstructure [11]. When the
material is composed of grains or particles it is possible to compute size and
shape characteristics of each individual grain/particle which allows the fitting
of parametric probability distributions to the histograms of the considered
characteristics [12, 13, 14]. For correlated grain or particle characteristics
so-called copulas can be used to fit multivariate probability distributions
which are much more informative than marginal distributions [13]. Para-
metric models of uni- and multivariate probability distributions provide an
efficient way for describing a material’s microstructure which, for example,
allows for an easy quantitative comparison of different materials [15]. Fur-
thermore, probability distributions of microstructure characteristics can be
used to fit parametric stochastic models for the entire 3D microstructure
which can generate virtual microstructures. For example, models based on
mathematical tessellation models can generate random grain architectures
[16, 17]. From these microstructure models a broad spectrum of virtual but
realistic grain architectures can be drawn which can be used in numerical
simulations for investigating the influence of the microstructure’s geometry
on macroscopic physical properties [18, 19, 20, 21, 22, 23, 24].

In the present paper, we investigate the inner 3D grain architecture of
NMC particles by stochastically modeling the distribution of grain charac-
teristics using FIB-EBSD image data. Therefore, in a first step, we compute
a grain-wise segmentation of image data using a combination of techniques
from machine learning [25] and “conventional” image processing [26]. Note
that there are segmentation approaches for image data of polycrystalline ma-
terials which rely solely on “conventional” image processing methods. They
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often require many preprocessing steps, followed by a marker-based water-
shed segmentation with additional postprocessing steps [27, 28]. Moreover,
these approaches often require careful and tedious calibration of image pro-
cessing parameters. Therefore, in the present paper, we deploy a convo-
lutional neural network, namely a 3D U-net [29, 30], for enhancing grain
boundaries depicted in the FIB-EBSD data. This reduces the amount of
preprocessing needed prior to the application of the segmentation algorithm.
For training the network, we modify the loss function such that training can
be performed with just a few labeled slices of the 3D FIB-EBSD data [31].
This approach has the advantage of not requiring volumetric labeled data
which can be tedious to obtain, e.g., by manual labeling. After training, we
apply the network to the entire 3D image data, resulting in a new 3D image
with enhanced grain boundaries. Then, individual grains are extracted from
the latter by using a marker-based watershed algorithm [28, 32]. From the
segmented image data, we extract individual grains and compute characteris-
tics describing their size and shape like, for example, their volume-equivalent
diameter and sphericity. For each considered grain characteristic, we fit para-
metric probability distributions (e.g., log-normal, gamma, Weibull distribu-
tion) to their histograms using maximum likelihood estimation [33]. In this
manner the univariate distribution of each individual grain characteristic is
efficiently described by just a few parameters. Since grain characteristics
are, in general, correlated we also model joint distributions of pairs of grain
characteristics. More precisely, we use parametric copulas [34] for describ-
ing the bivariate probability distributions of pairs of grain characteristics,
leading to a more informative description of the NMC particle’s grain char-
acteristics than univariate distributions can provide. In a forthcoming paper,
these models for characteristics of individual grains will be used to construct
parametric stochastic models for the holistic inner 3D grain architecture of
NMC particles, based on random tessellations.

2. Materials & methods

2.1. Sample details and preparation

A calendared positive electrode was used, which consisted of TODA
LiNi0.5Mn0.2Co0.2O2 (NMC532) particles in a 70 µm thick electrode coating
of 90 wt% NMC532, 5 wt% C45 Timcal conductive carbon, and 5 wt% PVdF
binder, on a 20µm thick aluminum current collector. N-Methyl-2-pyrrolidone
(NMP) solvent was applied on the electrode to dissolve the binder, wiped
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from the electrode using a rubber spatula, smeared onto a fresh copper sheet,
and allowed to dry. The smeared electrode material facilitated identification
of single particles connected directly to the copper film in the SEM system,
and thus created an ideal condition for isolating particles that have excellent
electrical connection for FIB-EBSD. A small tab of the smeared copper sheet
was cut and applied to an SEM stub with conductive carbon adhesive.

2.2. Imaging of NMC particles using FIB-EBSD

SEM and EBSD images were acquired with an FEI Helios NanoLab 600i
equipped with an EDAX-EBSD detector. A 30 kV 2.5 nA Ga focused ion
beam was used to mill away 50 nm sections of material between each EBSD
scan. The EBSDD scans were performed with 50 nm step sizes in x- and
y-direction in a square array. EBSD data were processed with OIM Analysis
v8 (EDAX, USA). Diffraction patterns were fit to a trigonal crystal system
(space group R-3m) with a = b = 2.87 Å, and c = 14.26 Å to obtain the
orientation of the crystal at each pixel (a, b, and c are the edge lengths of the
hexagonal unit cell which contains the trigonal structure). The software pro-
duced text files containing spatially resolved confidence index, image quality,
and Bunge-Euler angle data.

2.3. Processing of image data

In order to characterize the 3D grain microstructure of NMC particles
from FIB-EBSD image data, the latter has to be segmented. More precisely,
we have to identify grains depicted in image data. This allows the extraction
of individual grains such that it becomes possible to compute their size and
shape characteristics like, for example, their volume-equivalent diameter and
sphericity. For that purpose, we utilize the IQ-channel of the EBSD image
stack. The segmentation is achieved in three steps. First, we align the
stack of EBSD image data. Then, the grain boundaries in the aligned 3D
image are enhanced using a convolutional neural network [30]. Finally, the
segmentation is completed by applying a marker-based watershed algorithm
[28, 32].

2.3.1. Stack alignment

Since the stack of EBSD images was acquired by milling the NMC particle
under consideration using a focused ion beam followed by 2D EBSD imaging,
the stack of images can be misaligned, see Figure 1a. Therefore, in a first step,
we use the IQ-channel of the EBSD data to align the image stack, applying
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(a) (b)

Figure 1: Volumetric cutout of the EBSD data prior to (a) and after stack alignment (b).

the pyStackReg package in Python [35]. The resulting aligned image stack is
visualized in Figure 1b. From here on, we denote the aligned 3D image by the
map I : W → R where W = {1, . . . , 235} × {1, . . . , 221} × {1, . . . , 91} ⊂ Z3

is the discretized sampling window, i.e., I(x) denotes the image’s value at
x ∈ W . We also say that the image I has a resolution of 235 × 221 × 91
voxels.

2.3.2. CNN-based grain boundary enhancement

In the next image processing step, similar to the method used in [30],
we enhance the grain boundaries of the 3D image I using a convolutional
neural network (CNN), namely a 3D U-net architecture, see [29]. More
precisely, we want to determine a CNN, denoted by D, which can predict,
from the aligned EBSD data I, three images Gb, Gi, B corresponding to grain
boundaries, grain interiors and the background of I, respectively. The grain
boundary image Gb of I is given by

Gb(x) =

{
1, if x corresponds to a grain boundary,

0, else,
(1)

for each x ∈ W . Analogously, the grain interior image Gi and the background
B image are defined, see Figure 2. Using this notation the CNN D has to
be able to predict Gb, Gi, B from I, i.e., we consider the regression problem
D(I) ≈ (Gb, Gi, B). Moreover, this predictive property of D should hold for
each cutout of I and the corresponding cutouts of the images Gb, Gi, B. Now
we describe how a CNN can be determined (i.e. trained) which can make
these predictions reliably.

First, we choose a suitable parametric family of functions {Dξ : ξ ∈ Ξ}
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Cross section through the EBSD IQ image I (a), the image Gb depicting grain
boundaries (b), the grain interior image Gi (c) and the background image B (d). The

corresponding predictions Ĝb (e), Ĝi (f) for the grain boundaries and the grain interior,
respectively, of the trained CNN.

7



Figure 3: Architecture of the 3D U-net considered in the present paper. The scheme
is licenced under the Creative Commons Attribution 4.0 International license (https:
//creativecommons.org/licenses/by/4.0/) in [30].

from which D has to be determined, where Ξ denotes the space of parameters.
In our scenario we use as the parametric family the set of 3D U-nets [30, 31]
with three output channels and the Softmax function [25] as the activation
function of the output layer, see Figure 3. Consequently, for any 3D input
image the output of a U-net Dξ with parameter ξ (i.e., the network’s weights)

are three images Ŷ1, Ŷ2, Ŷ3. The Softmax function ensures that the voxel
values of the output images are normalized and represent probabilities, i.e.,
we have 0 ≤ Ŷ1(x), Ŷ2(x), Ŷ3(x) ≤ 1 and Ŷ1(x) + Ŷ2(x) + Ŷ3(x) = 1 for each
voxel x ∈ W . Therefore, the chosen parametric family of functions is able to
reassemble the target images Gb(x), Gi(x), B(x) which also fulfil the equation

Gb(x) +Gi(x) +B(x) = 1 (2)

for each voxel x ∈ W since it either belongs to the grain boundary, grain
interior or the background.

In order to measure how well a CNN with parameter ξ performs in the
task of predicting the grain boundaries, grain interiors and the background
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from EBSD data, we use a loss function, namely the categorical cross entropy
` given by

`
(

(Ŷk)k=1,2,3, (Yk)k=1,2,3

)
= −

∑
x∈W ′

3∑
k=1

Ŷk(x) log Yk(x), (3)

where Y1, Y2, Y3 denote cutouts from Gb, Gi, B in a cuboidal sampling window
W ′ ⊂ W . The predictions (Ŷk)k=1,2,3 in Equation (3) are given by

(Ŷk)k=1,2,3 = Dξ(J), (4)

where J is a cutout of the aligned EBSD IQ image I taken from the same
sampling window W ′. Then, an optimal parameter constellation ξ for which
the CNN makes reliable predictions is obtained by minimizing the values of
the loss function ` given in Equation (3) for randomly chosen cutout windows
W ′. The minimization of the loss function which, in this context, is referred
to as training of the CNN is often performed using a stochastic gradient
descent algorithm [25, 36].

However, in order to train a CNN we require labeled data, i.e., the images
Gb, Gi, B depicting the grain boundaries, grain interiors and the background,
respectively. Sometimes, in the field of materials science, labeled data can
be obtained by performing a different (more expensive) measurement of the
same specimen, see [12, 13, 30]. As an alternative, it is possible to manually
label the image data. However, this can be tedious, especially when one has
to label large 3D datasets. Therefore, in our scenario, we train the CNN
with sparsely labeled data [31]. More precisely, we manually label the data
I solely in four slices located at the coordinates x = (x1, x2, x3) ∈ W with
x3 ∈ {26, 37, 49, 60}. Thus, instead of having the full 3D grain boundary

information of Gb we have a sparsely labeled grain boundary image G̃b given
by

G̃b(x) =

{
1, if x3 ∈ {26, 37, 49, 60} and x corresponds to a grain boundary,

0, else,

(5)

for each x = (x1, x2, x3) ∈ W . The sparsely labeled images G̃i and B̃ are
defined analogously. Furthermore, when working with sparsely labeled data,
we have to restrict the loss function’s evaluation of the discrepancy between
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predictions (Ŷk)k=1,2,3 and target images (Yk)k=1,2,3 to labeled voxels x ∈ W
with x3 ∈ {26, 27, 49, 60}. Therefore, in the context of the present paper, we

use the modified loss function ˜̀given by

˜̀((Ŷk)k=1,2,3, (Yk)k=1,2,3

)
= − 1∑

x∈W ′ M(x)

∑
x∈W ′

3∑
k=1

M(x)Ŷk(x) log Yk(x),

(6)

where Y1, Y2, Y3 denote cutouts from G̃b, G̃i, B̃ in a cuboidal sampling window
W ′ ⊂ W and the mask of labeled voxels M : W → {0, 1} is given by

M(x1, x2, x3) =

{
1 if x3 ∈ {26, 37, 49, 60},
0 else.

(7)

Using this modified loss-function, we trained the U-net, using the Adam
algorithm with a batchsize of 1 [36]. Hereby, the batches consisted of cutouts
J taken from the aligned EBSD image I with a size of 80 × 80 × 80 voxels
and cutouts (Yk)k=1,2,3 taken from the sparsely labeled images at the same
position as cutout J . In order to increase the amount of training data and the
robustness of the trained network we used data augmentation by isometrically
transforming the training data. More precisely, we randomly rotated the
images I, G̃b, G̃i, B̃,M in the same manner prior to taking random cutouts
as described above.

After the training procedure, the trained network, denoted by D, was
applied on the entire 3D image stack I. The results (Ĝb, Ĝi, B̂) = D(I) are
visualized in Figures 2e and 2f for a planar 2D section for which labeled
images (Gb, Gi, B) were available for training. For the purpose of visual
validation Figure 4 shows the network’s prediction for a non labeled slice.

2.3.3. Watershed-based segmentation of the image data

The trained network’s predictions Ĝb, Ĝi, B̂ of the grain boundaries, the
grain interiors and the background do not yet provide a segmentation of the
image data into individual grains. More precisely, the value Ĝb(x) can be
interpreted as the probability of x ∈ W corresponding to the grain boundary
network. Due to the “fuzzy” nature of these predictions the latter have to
be further processed. Therefore, we utilize the so-called watershed algorithm
to segment the grain boundary predictions Ĝb into individual grains [32].

Starting from each local minimum in Ĝb, the watershed algorithm performs
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(a) (b)

(c) (d)

Figure 4: Visual validation of the neural network. Planar 2D section through the aligned
EBSD IQ image I for which no labeling of grain boundaries, grain interiors and background
is available (a). The corresponding predictions Ĝb (b), Ĝi (c) and B̂ (d) of the trained
CNN.
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(a) (b) (c)

Figure 5: Segmentation result (a) of the watershed algorithm applied on the h-minima

transformed grain boundary predictions Ĝb. Each region is colored individually. Segmen-
tation (b) after setting the background to 0. Final segmentation result (c) after removing
regions outside of the considered NMC particle.

region growths, segmenting Ĝb into multiple regions. In the grain boundary
predictions the local minima tend to be located in grain interiors. However,
since the watershed algorithm assigns to each local minimum its own region,
noise or small local fluctations in Ĝb can introduce multiple local minima
in a single grain’s interior which leads to the watershed algorithm wrongly
segmenting such a grain into multiple regions. Therefore, prior to the appli-
cation of the watershed algorithm, we compute the h-minima transform of Ĝb

which is able to suppress such unnecessary local minima [32]. A planar 2D
section through the resulting segmentation is depicted in Figure 5a, where
we can see that some regions of this segmentation belong to the background.
Therefore, we remove the background in this initial segmentation by setting
the labels of voxels x ∈ W to 0 if these voxels belong to the background with
a large probability, i.e., if B̂(x) > h with some manually chosen threshold
0 < h < 1, see Figure 5b. Since this processing step does not remove all
regions outside of the NMC particle entirely, we then manually remove the
few remaining “background regions”, see Figure 5c.

2.4. Computation of grain characteristics

The grain-wise segmentation of the NMC particle achieved in Section 2.3
allows us to compute various characteristics for each individual grain depicted
in the segmented image, which we denote by G1, . . . , Gn ⊂ W from here
on. The considered characteristics efficiently describe the size and shape
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of grains, i.e., the complex voxelized image data is reduced to vectors of
grain characteristics which will then be used for modeling their (multivariate)
distributions in Sections 2.5 and 2.6. Now, we describe the characteristics of
single grains considered in the present paper, see Figure 6 for an illustration.
In order to reduce so-called edge effects we only compute the characteristics
of those grains G which are not cut off by the sampling window W , i.e.,
G ⊂ {2, . . . , 235− 1} × {2, . . . , 221− 1} × {2, . . . , 91− 1}.

The size of a grain G is characterized by its volume-equivalent diameter
d(G) given by

d(G) =
3

√
6V (G)

π
, (8)

where V (G) denotes the volume of G which is estimated by multiplying the
number of voxels associated with G with a single voxel’s volume.

For analyzing the shape of grains we consider several characeristics. First,
for each grain G we compute the sphericity factor s(G) given by

s(G) =
3
√

36πV (G)2

a(G)
, (9)

where a(G) denotes the surface area ofG which is estimated using the method
presented in [37]. Note that the sphericity factor s(G) ∈ [0, 1] of a grain G
describes how close its shape is to that of a perfect sphere, in which case we
have s(G) = 1.

Another common shape characteristic of G is the convexity c(G) given by

c(G) =
V (G)

V (q(G))
, (10)

where q(G) is the discrete convex hull of G on the lattice of W . The convexity
measures how much the shape of a grain deviates from convexity. This
is of special interest for choosing appropriate stochastic models which can
randomly generate virtual but statistically similar grain microstructures as
observed in the data. For example, in materials science so-called Voronoi and
Laguerre tessellations are widely used for modeling polycrystalline materials
[16, 38]. However, the microstructures generated by these models solely
consist of convex grains. Thus, if primarily non-convex grains are observed
in the data, i.e., if typically c(G) < 1, these models may not be appropriate.

The elongation e(G) of a grain G is given by the fraction of the smallest
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volume-equivalent diameter d

d

volume-equivalent
sphere

sphericity factor s

s = 1 s = 0.52 s = 0.37 s = 0.37

convexity c

c = 1 c = 1 c = 0.87 c = 0.52

elongation e and azimuthal angle ϕ

fit
ellipsoid

Figure 6: Illustration of morphological characteristics. For simplicity, the geometrical
objects (grains, particles) are depicted in 2D. First row: The volume-equivalent diameter d
of an object in 3D is the diameter of a sphere which has the same volume. Second row:
The sphericity factor s measures the deviation of the object’s shape from a sphere, by
comparing the volume and surface of the considered object. Third row: The convexity c
is computed by dividing the volume of the object (black) by the volume of its convex hull
(blue). Fourth row: For computing the elongation e of an object and the angles describing
its main orientation, the best fitting ellipsoid (blue) is determined. The elongation e is the
fraction between the smallest and largest half-axes (red) of the ellipsoid. By transforming
the vector which points into the direction of the largest half-axis into spherical coordinates
the azimuthal angle ϕ and the polar angle θ (only in 3D) are computed.
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and largest half-axes lengths of the best fitting ellipsoid determined by means
of principle component analysis (PCA) [39]. In order to compute the PCA
of G we first compute its centroid x = (x1, x2, x3) given by

xi =
1

V (G)

∑
(x1,x2,x3)∈G

xi (11)

for i = 1, 2, 3. Then, we compute the grain’s positive definite covariance
matrix A, where

A =

 1

V (G)

∑
(x1,x2,x3)∈G

(xi − xi)(xj − xj)


i,j=1,2,3

. (12)

Due to the positive definiteness of A we can compute its eigenvalues 0 ≤ λ1 ≤
λ2 ≤ λ3 with their corresponding eigenvectors v1, v2, v3 ∈ R3. Without loss
of generality, we can assume that the third component of these eigenvectors
is non-negative, since both vi and −vi are eigenvectors of the eigenvalue
λi. Note that the square roots of the eigenvalues λi are proportional to the
half axis lengths ai of the best fitting ellipsoid, i.e., ai ∝

√
λi. Thus, the

elongation e(G) of G is given by

e(G) =
a1
a3

=

√
λ1
λ3
. (13)

From the PCA we can also investigate the orientation of single grains.
Note that, in this context, the orientation of a grain does not refer to the
orientation of its crystallographic lattice. But we call the direction of the
eigenvector v3, i.e., the direction of the largest half-axis of the best fitting
ellipsoid, the orientation of the grain. We describe the eigenvector v3 by its
azimuthal angle ϕ and polar angle θ, i.e.,

v3 =

 sin θ cosϕ

sin θ sinϕ

cos θ

 , (14)

where ϕ ∈ [−π, π) and θ ∈ [0, π/2). Note that the polar angle θ cannot be
larger than π/2 since the third component of v3 is non-negative.
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2.5. Stochastic modeling of single grain characteristics

We computed the grain characteristics described in Section 2.4 for each
individual grain G1, . . . , Gn which we extracted from EBSD data. Thus, for
each grain Gi we determined the vector (d(Gi), s(Gi), c(Gi), e(Gi)) of size
and shape characteristics and the vector (θi, ϕi) of angles describing its ori-
entation. In this section, we shortly explain the procedure for parametrically
modeling the probability distributions of these grain characteristics. The
stochastic description of (vectors of) microstructure characteristics will serve
as reference for fitting parametric models of the entire 3D grain network of
NMC particles in a forthcoming study which can be used to generate virtual
but realistic 3D inner-particle microstructures.

We start by shortly describing the procedure for modeling the distribu-
tion of the volume-equivalent diameter d. For more details, we refer the
reader to [13]. The histogram of the values d(G1), . . . , d(Gn) is depicted in
Figure 7a. By means of maximum likelihood estimation [33] we are able
to fit a distribution from various parametric families of probability distri-
butions (e.g., log-normal, gamma, Weibull distribution) to the histogram.
Among these parametric fits the best candidate is chosen using the Akaike
information criterion which considers the goodness of fit while trying to re-
duce the number of parameters to avoid overfitting [33]. The resulting fit
of the volume-equivalent diameter with the inverse Gaussian distribution is
depicted in Figure 7a (red curve). Analogously, the probability distributions
of the sphericity factor s, the convexity c and elongation e are fitted, see
Figures 7b-7d and Table 1.

2.6. Stochastic modeling of pairs of grain characteristics

In the previous section we described the procedure for modeling the distri-
butions of single grain characteristics which, however, provide no information
on their correlation structure. For that purpose multivariate probability dis-
tributions are more informative since they can describe the entire correlation
structure of the considered characteristics. Thus, they are more suited than
univariate distributions for fitting and validating stochastic microstructure
models of the entire grain architecture which will be considered in a forth-
coming study.

For correlated and normally distributed characteristics the multivariate
normal distribution provides easy access to modeling the joint distribution
of vectors of characteristics. However, as it can be seen in Figure 7 the grain
characteristics considered in the present paper are not normally distributed,
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yet they are (partially) highly correlated, as seen in Table 3. Therefore, we
use so-called copulas to model joint distributions of pairs of grain character-
istics [34]. In the following, we shortly describe this modeling approach. For
more details we refer the reader to [13].

Let (x1, y1), . . . , (xn, yn) be n pairs of grain characteristics. Furthermore,
let f1, f2 : R → [0,∞) be probability densities fitted to the histograms of
the first and second characteristic, respectively. Recall that Section 2.5 deals
with the parametric modeling of such probability densities. For technical
reasons we require the cumulative distribution functions Fi to be absolutely
continuous, i.e., to be given by

Fi(x) =

∫ x

−∞
fi(y) dy, (15)

for i = 1, 2 and all x ∈ R. Then, using a so-called copula density c : R2 →
[0,∞) we can construct a bivariate probability density f : R2 → [0,∞) via

f(x, y) = f1(x)f2(y)c(F1(x), F2(y)), (16)

the marginal probability densities of which are f1 and f2. Simply speak-
ing, a copula density c is a “normalized” bivariate probability density, whose
marginal probability densities are the probability density of the uniform dis-
tribution on the interval [0, 1]. Note that, similar to there being families
of univariate probability densities, such as the normal, log-normal, gamma
or beta distribution, there are various parametric families of copula densi-
ties [40]. Consequently, by considering different parametric copula densities
c in Equation (16) we have various parametric families of bivariate prob-
ability densities whose marginal densities coincide with f1 and f2. Then,
analogously to Section 2.5, bivariate fits from these families of probability
distributions can be determined using maximum likelihood estimation and
among these fits the best is chosen according to the Aikaike information cri-
terion. In the present paper, we considered the following parametric families
of copulas: Ali-Mikhail-Haq, Clayton, Frank, Gumbel, Joe, Clayton-Gumbel,
Joe-Frank, BB3, BB5 copula [40]. Furthermore, by rotating copulas from a
parametric copula family in 90◦ steps we obtain further parametric families.
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Figure 7: Histograms (blue) of the volume-equivalent diameter (a), sphericity factor (b),
convexity (c), elongation (d) and of the orientation angles (e, f) with bin widths of 36 nm,
0.01, 0.015, 0.014, 0.21, 0.1, respectively. Parametrically fitted probability densities are vi-
sualized in red. Note that the probability densities f are normalized, i.e.,

∫∞
−∞ f(x) dx = 1.
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3. Results

3.1. Fitted univariate probability densities

In Section 2.5 we described the procedure for fitting univariate probability
densities to histograms of grain characteristics. Recall that for the volume-
equivalent diameter the inverse Gaussian distribution provided the best fit,
the probability density of which is given by

f(x) =


√

λ
2πx3

exp
(
−λ(x−µ)2

2µ2x

)
, if x > 0,

0, else,
(17)

where µ, λ > 0 are model parameters. Furthermore, we fitted the distribution
of the sphericity factor using the beta distribution which has the probability
density

f(x) =

{
1

B(a,b)
xa−1(1− x)b−1, if x ∈ [0, 1],

0 else,
(18)

where a, b > 0 are model parameters and B denotes the Beta function. The
probability density of the generalized extreme value distribution which was
used to fit the distributions of the convexity and the elongation is given by

f(x) =


1
σ

exp(−(1 + k x−µ
σ

)−
1
k )(1 + k x−µ

σ
)−1−

1
k , if k 6= 0 and 1 + k x−µ

σ
> 0

1
σ

exp
(
− exp(−x−µ

σ
)− x−µ

σ

)
, if k = 0,

0, else,

(19)
where k, µ ∈ R and σ > 0 are model parameters. The parametric fits for
the probability densities of d, s, c, e are depicted in Figures 7a-7d. Their
corresponding parameters are listed in Table 1.

For modeling the distribution of the azimuthal orientation angle ϕ we
chose a special parametric family of distributions. More precisely, the shape
of the histogram of the angles ϕ1, . . . , ϕn indicates that a bimodal probability
density might provide a good fit, see Figure 7e. Furthermore, due to the
fact that the angles belong to the interval [−π, π), the support of the fitted
density should be equal to or a subset of [−π, π). Therefore, we chose a
mixture of two normal distributions truncated on the interval [−π, π) as a
parametric family of distributions whose probability density is given by the
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Table 1: Parameters of fitted univariate probability densities depicted in Figure 7. For-
mulas for the probability densities of the parametric families of distributions are given in
Equations (17), (18), (19), (20) and (21).

characteristic family of distributions parameter values

volume-equivalent
diameter d

inverse Gaussian µ = 513.8, λ = 4600

sphericity factor s beta a = 40.1, b = 7.2

convexity c generalized extreme value∗ k = 0, µ = 0.82, σ = 0.048

elongation e generalized extreme value∗ k = −0.42, µ = 0.72, σ = 0.086

azimuthal angle ϕ
Gaussian mixture
according to (20)

µ1 = −1.7, µ2 = 1.6, σ1 = 1,
σ2 = 0.8, λ = 0.4

polar angle θ sin(·) -

∗Distribution was truncated on the interval [0, 1].

proportionality

f(ϕ) ∝

{
λf(µ1,σ2

1)
(ϕ) + (1− λ)f(µ2,σ2

2)
(ϕ), if ϕ ∈ [−π, π),

0, else,
(20)

where λ ∈ [0, 1] and f(µ1,σ2
1)
, f(µ2,σ2

2)
are the probability densities of normal dis-

tributions with mean values µ1, µ2 and variances σ2
1, σ

2
2, respectively. Then,

we determined an optimal fit from this model with five parameters using a
maximum likelihood approach, see Figure 7f and Table 1.

Finally, note that in the case of the orientation vectors v3 being uniformly
distributed on the upper hemi-sphere their polar angle’s distribution has the
probability density

f(θ) =

{
sin(θ), if θ ∈ [0, π/2),

0, else.
(21)

Figure 7f indicates that the probability density given in (21) fits the his-
togram of the angles θ1, . . . , θn computed from the image data quite well.

20



Table 2: Comparison of aggregated quantities (mean values, standard deviations) com-
puted for samples of grain characteristics extracted from tomographic image data, and for
the fitted parametric probability densities, respectively.

characteristic
empirical
mean value

mean value
fitted of the
distribution

empirical
std

std of the fitted
distribution

volume-equivalent
diameter d

513.81 513.81 172.56 171.99

sphericity factor s 0.85 0.85 0.053 0.052

convexity c 0.79 0.79 0.062 0.062

elongation e 0.75 0.75 0.081 0.081

azimuthal angle ϕ 0.39 0.43 1.70 1.30

polar angle θ 1.03 1 0.382 0.376

Looking at Figure 7 we get an impression of the goodness of fit by visual
inspection. A more quantitative analysis of the goodness of fit is given in
Table 2, where we compare empirical mean values and empirical standard
deviations computed for samples of grain characteristics extracted from to-
mographic image data, with the mean values and standard deviations (std)
of the fitted parametric probability densities.

Table 3: Correlation coefficients for pairs of the considered grain characteristics computed
for samples of grain characteristics extracted from tomographic image data, and for the
fitted bivariate probability densities, respectively.

pairs of
characteristics

empirical
correlation coefficient

correlation coefficient
of the parametric fit

(d, s) -0.4680 -0.4612

(d, c) -0.3418 -0.3632

(s, c) 0.9209 0.9115

(s, e) 0.6757 0.6570

(c, e) 0.5100 0.4827

(θ, ϕ) -0.0473 -0.0525
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3.2. Fitted bivariate probability densities

In Section 2.6 the procedure for modeling bivariate probability distribu-
tions of two-dimensional vectors of grain characteristics using copulas has
been described. For pairs of the grain characteristics d, s, c, e which have
an empirical correlation coefficient with an absolute value larger than 0.1
(see Table 3) we have applied this method to fit the corresponding bivariate
probability densities, which are visualized in Figures 8a-f.

The family of parametric copulas which provided the best fit and their
corresponding parameters are listed in Table 4. Note that the copula density
c of the parametric family of Joe-Frank copulas, which was used for fitting the
bivariate distribution of the volume-equivalent diameter and the sphericity
factor, is given by

c(u, v) =
∂2

∂u∂v

1

κ

(
1−

[
1− 1

1− (1− δ)κ
(1− (1− δu)κ)(1− δv)κ)

] 1
δ

)
(22)

for each u, v ∈ [0, 1] with model parameters κ ≥ 1 and δ ∈ (0, 1]. For fitting
the bivariate distribution of the sphericity factor and convexity we used a
Clayton-Gumbel copula, the copula density of which is given by

c(u, v) =

(((
u−κ − 1

)δ
+
(
v−κ − 1

)δ)1/δ
+ 1

)−1/κ
(23)

for each u, v ∈ [0, 1], where κ > 0 and δ > 1 are model parameters.
Furthermore, we used the method for fitting bivariate probability densi-

ties described above to fit the bivariate probability density of the orientation
angles of grains, see Figure 8f and Table 4. Recall that in Table 2 we quan-
titatively compared quantities (mean value, std) computed empirically from
data and derived from the fitted univariate probability densities. Similarly,
we validate the fitted bivariate probability densities by comparing their cor-
relation coefficient with the empirically computed correlation coefficient, see
Table 3. Note that the correlation coefficient ρ of a bivariate probability
density f is given by

ρ =
1

σ1σ2

∫ ∞
−∞

∫ ∞
−∞

(xy − µ1µ2)f(x, y) dxdy, (24)

where µ1, µ2 denote the mean values and σ1, σ2 the stds of the marginals.
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Figure 8: Bivariate probability densities of the pairs (d, s), (d, c), (s, c), (s, e), (c, e), (θ, ϕ)
(a-f, respectively) of grain characteristics fitted using parametric copulas. Note that bi-
variate probability densities f are normalized, i.e.,

∫∞
−∞

∫∞
−∞ f(x, y) dydx = 1.
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Table 4: Copula parameters of the bivariate probability densities depicted in Figure 8.
Formulas for the copula densities of the parametric families of copulas are given in Equa-
tions (22) and (23).

pairs of
characteristics

copula family parameter values
copula
rotation

(d, s) Joe-Frank κ = 4.24, δ = 0.6 270◦

(d, c) Joe-Frank κ = 2.7, δ = 0.7 270◦

(s, c) Clayton-Gumbel κ = 0.36, δ = 3.13 180◦

(s, e) Clayton-Gumbel κ = 0.47, δ = 1.47 0◦

(c, e) Joe-Frank κ = 5.6, δ = 0.52 180◦

(θ, ϕ) Joe-Frank κ = 1.1, δ = 0.82 270◦

3.3. Specific surface area of the grain boundary network

Recall that in Tables 2 and 3 we investigated aggregated quantities com-
puted for samples of (univariate and bivariate) grain characteristics extracted
from tomographic image data. Similarly, in the present section we estimate
the specific surface area of the entire grain boundary network within a NMC
particle which is another kind of an aggregated quantity. Therefore, for each
pair (Gi, Gj) of grains in the segmented image data we compute the quantity

aGi,Gj =
1

2
(a(Gi) + a(Gj)− a(Gi ∪Gj)) , (25)

which can be considered as an estimate of the surface area of the shared
interface between Gi and Gj.

By summing up the surface areas aGi,Gj for all pairs Gi, Gj of grains we
determine the surface area of the grain boundary network in the sampling
window W to be 491.5 µm2. Dividing this quantity by the volume of the
observed part of the particle in the sampling window W we obtain the specific
surface area of 4.98µm−1.

4. Discussion

The 3D reconstruction and segmentation of grains within an NMC par-
ticle facilitated quantification of the microstructural features of sub-particle
grains. Grain properties, including the distribution of their volume-equivalent
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diameters, as well as morphological descriptors like their sphericity, convex-
ity, and elongation. Until now, much focus has been on quantifying par-
ticle size distributions via X-ray CT [41] which empowers researchers and
manufactures to quantify particle size distributions for quality control, for
example by determining how narrow a particle size distribution they can
achieve for a batch of electrode. Here, we demonstrate how the distribu-
tions of sub-particle grain properties can be quantified. The distributions
of volume-equivalent diameters and sphericity factors show that most grains
are around 400 nm in diameter and have a sphericity factor of about 0.85.
These properties are likely to influence the rate capability and propensity
of the particle to crack as grains expand and propagate mechanical stress
throughout the particle during lithiation. Synthesis methods could be tuned
to selectively change the size, shape, and orientation of grains for higher rate
and reduced degradation, for example by designing more radially oriented
grains [42]. With the benchmark characterized particle presented here, this
architecture could be used for multiphysics modeling, elucidating strain and
lithiation heterogeneities during operation. The characterization using multi-
variate probability densities, see Figure 8, has the advantage of capturing the
correlation structure between the considered grain characteristics. Moreover,
it is possible to derive even further distributions of grain characteristics from
these multivariate fits if the characteristic under consideration is in a deter-
ministic functional relationship with the grain characteristics for which the
multivariate distribution is given. For example, the specific surface area of
grains can be directly computed from the volume-equivalent diameter d and
the sphericity factor s—thus, the probability density of the specific surface
area can be computed from their bivariate probability density depicted in
Figure 8a. Furthermore, the probability densities presented in Figures 7 and
8 could be used to artificially generate particles with realistic architectures;
in a forthcoming study, we will use a parametric stochastic model for the en-
tire 3D grain microstructure of NMC particles based on random tessellations
to generate virtual grain architectures. First, we will determine parameter
constellations for the stochastic microstructure model for which the distri-
butions of the considered grain characteristics reassemble the distributions
derived from the experimental image data considered in the present paper.
Then, by systematical variation of the model parameters, we will generate a
broad spectrum of different virtual microstructures which will serve as input
for numerical simulations, allowing us to correlate geometry descriptors of
the microstructure with its macroscopic properties [20, 21, 22, 23, 24]. This
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is expected to enable fast analysis of different single particle architectures
and provide a roadmap for synthesizing optimal architectures for specific
operating conditions.

Furthermore, the characteristics considered in the present paper for de-
scribing NMC particles could be extended to describe even further aspects of
their architecture. More precisely, in this work, the uncycled NMC532 par-
ticles consisted of solid structures without any signs of sub-particle voids or
evidence of cracks. However, cathode particles come in a variety of designs in-
cluding some with hollow cores [41] and sub-particle voids between grains [6].
Furthermore, NMC particles are known to crack along grain boundaries upon
being exposed to certain cycling conditions [3] creating further sub-particle
features that are important to segment and distinctly label. Distinctly la-
beling sub-particle features like cracks and estimating the additional surface
area of the cathode that becomes exposed to the electrolyte was recently
achieved in [43] for X-ray CT images. This technique of identifying and la-
beling sub-particle features, like cracks and voids, could also be applied to
this data to facilitate linking added exposed surface area upon mechanical
degradation of the particles.

5. Conclusion

A fast method to conduct FIB-EBSD of single Li-ion electrode particles
for achieving a full 3D reconstruction of particle grain architectures is pre-
sented. The experimental technique of FIB-EBSD can be applied to cathode
particles with layered structures including all types of NMC materials ir-
respective of stoichiometry and morphology of grains. The main challenge
that may arise is if the particle of interest has grain sizes that are close to
the effective resolution of the FIB-EBSD imaging technique, in which case it
may not be possible to accurately segment grain boundaries and distinctly
label grains. However, if the grain sizes are suitable for the resolution of
the used imaging technique, the methodology for processing and quantifying
features from the data can be applied. In the present paper, the image qual-
ity map from EBSD gave excellent contrast of grain boundaries throughout
consecutive FIB slices of an NMC532 particle. Between EBSD imaging and
FIB slicing, the sample stage was rotated and tilted and sometimes did not
perfectly re-center, necessitating postprocessing image realignment. Follow-
ing image alignment, machine learning segmentation facilitated identification
and labeling of distinct grains in 3D within the particle. The 3D segmented
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image was used for quantification of sub-particle grain architectures. For
example, the grain size distribution within a single particle was quantified,
as well as the distributions of morphological descriptors like sphericity, con-
vexity, elongation, and orientations. In this case, the grains were found to
be close to spherical and have a distribution of volume-equivalent diameters
with a mean around 500 nm, but as observed from other works in litera-
ture, these grain properties are expected to vary between differently syn-
thesized electrode blends. This technique is expected to equip researchers
with a tool to quantify the sub-particle architectures of their synthesized
electrode blends, provided that the electrode particles are crystalline. There
is substantial scope for building on this work to understand through further
advanced microstructural characterization and image-based multiscale mod-
eling. Future work will utilize the derived bivariate probability densities of
pairs of grain characteristics for fitting and validating parametric stochastic
geometry models for the holistic 3D grain architecture of NMC particles. In
particular, these models will be used to generate random grain architectures
for which the bivariate probability densities of pairs of grain characteristics
will be computed analogously, and fitted/compared to the bivariate proba-
bility densities reported in the present paper. Then, a broad spectrum of
statistically different grain architectures, i.e., with different specifications for
the distribution of vectors of grain characteristics, will be generated. Even
though it might not always be possible to synthesize NMC particles with sta-
tistically similar grain architectures as the virtual ones, they still allow for a
systematic quantitative investigation of structure-property relationships.
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