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1. Introduction

Voronoi tessellations are one of the most important models for subdividing the
Euclidean plane into convex and compact polygons. To each point of a set of
points called nuclei a polygon is constructed according to the nearest neighbour
principle. These polygons are then called the cells of the Voronoi tessellation.
Voronoi tessellations are widely applied in many different fields, e.g. economics,
biology and telecommunication; see [14] and references therein. Important classes
of random tessellations are Voronoi tessellations constructed from the realizations
of stationary point processes. Examples are Poisson-Voronoi tessellations (PVT)
and Cox-Voronoi tessellations, where the generating point processes are homoge-
neous Poisson processes and Cox-processes, respectively; see [2], [4], [5], [14], [18].

Interesting models for applications are points processes which are located on
the lines and curves of planar line and fibre processes, respectively. In the field of
telecommunication the lines and curves can represent roads and the points locations
of telecommunication equipment ([7]), whereas in life sciences, e.g., the lines can
represent blood arteries or filament structures in biological tissues or cells and the
points locations of vesicles ([17]).

In this paper, we consider Voronoi tessellations whose nuclei are placed as linear
Poisson processes on the edges of PVT. We call this type of tessellations Poisson-
Voronoi-Cox-Voronoi tessellations (PVCVT) since the nuclei form a Cox process.
In the context of telecommunication networks the cells of PVCVT can be consid-
ered e.g. as serving zones of network components located at the nuclei.

Many interesting characteristics of a stationary tessellation can be calculated
by characteristics of its typical cell ([18]). The typical cell can be regarded as
the cell chosen purely at random out of all possible cells of the tessellation. For
stationary and ergodic Voronoi tessellations the typical cell can be thought of
as the cell whose nucleus is located at the origin under the condition that the
generating point process has a point at the origin. In the following, we derive two
algorithms to simulate the typical cell of PVCVT. One algorithm simulates the
typical cell directly whereas the other algorithm simulates a (random) cell from
which distributional properties of the typical cell can be obtained by a subsequent
weighting.

Naturally, the implementation of these two algorithms have to be tested for
correctness. Since the output is random, tests for randomized software can be
applied, see [3], [5], [10]. An advantage of having two different algorithms is that
we can use them to compare their outputs and hence test the outputs against each
other. Note that all these software tests are based on statistical significance tests.

We use the algorithms to compute first-order and second-order moments of sev-
eral cell characteristics like the number of vertices, the perimeter and the area of
the typical cell of PVCVT. Since analytical formulae for such characteristics are
unknown simulation studies are useful to get information about their distributional
properties.

As we have two algorithms it is of interest to determine which algorithm is
preferable. Thus we compare the two algorithms with respect to runtime and
precision. Clearly an algorithm with short runtime is desired. On the other hand,
since the output of the algorithms is random, it is desired to have an algorithm
with low variances in the output to get more precise results from the simulations.

Finally, we compare the results of our simulations for the typical cell of PVCVT
to the results for the typical cell of PVT and Poisson-Line-Cox-Voronoi tessella-
tions (PLCVT). The comparison with previous simulation studies for the PLCVT
([5]) is especially interesting, since both can represent possible models for telecom-
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munication networks ([6]).
The paper is organized as follows. First we introduce the PVCVT model and

some mathematical background in Section 2. In Section 3, our simulation algo-
rithms are derived and explained in detail. Then, in Section 4, we present numerical
results. First we discuss methods for testing and validating the implementation of
these algorithms and we compare the precision of the two algorithms. Then we
estimate distributional properties of the typical cell of PVCVT and compare them
to results for other tessellation models like PVT and PLCVT.

2. Poisson-Voronoi-Cox-Voronoi tessellations

In this section, we introduce the basic notation and mathematical background used
in this paper. For more details about point processes and random tessellations see
for example [14], [16] and [18].

2.1. Point processes and random tessellations

In the following, by R2 and N we denote the Euclidean plane and the set of non–
negative integers, respectively.

Point processes. Let B(R2) denote the family of Borel sets of R2. Denote the
Lebesgue measure on B(R2) by ν2 and define the translation B+x for sets B ⊂ R2

and x ∈ R2 by B + x = {y + x : y ∈ B}. We use the notation N for the family of
all simple and locally finite counting measures ϕ on B(R2), where each ϕ ∈ N can
be expressed by the (countable) sum ϕ =

∑n
i=1 δxi

for n ∈ N∪{∞}. Here, δx with
δx(B) = 1IB(x) is the Dirac measure on B(R2). In the context of counting measures
we call x ∈ R2 an atom of ϕ if ϕ({x}) > 0. Sometimes we identify ϕ with its atoms
and write ϕ = {xn}n≥1. We equip N with the σ–algebra N generated by all sets
of the form {ϕ ∈ N : ϕ(B) = j} with j ∈ N and bounded B ∈ B(R2). Moreover,
by tx : N → N we denote the shift operator defined by txϕ(B) = ϕ(B + x) for all
x ∈ R2 and ϕ ∈ N .

A measurable mapping X : Ω → N from some probability space (Ω,A,P) into
the measurable space (N,N ) is called a random point process in R2. There are
different ways of looking at point processes. One possibility is to regard them
as random counting measures. Then X(B) can be interpreted as the (random)
number of atoms of X in B ∈ B(R2). Another possibility is to identify a point
process X with the random set {Xn}n≥1 of its atoms and then use the notation
X = {Xn}n≥1.

The probability measure PX defined on N by PX(A) = P(X ∈ A) for A ∈ N is
called the distribution of X. A point process X is called stationary if X and txX
have the same distribution for any x ∈ R2.

We define the intensity measure µ : B(R2) → [0,∞] of a point process X by

µ(B) = EX(B) , B ∈ B(R2) . (1)

For stationary X there exists a constant λ ≥ 0 such that µ(B) = λν2(B) for each
B ∈ B(R2), where λ is called the intensity of the point process X.

The point process X is called a Poisson process ifP(X(B) = k) = e−µ(B) µ(B)k

k!
, B ∈ B(R2) , k ∈ N (2)

for some (locally finite and diffuse) measure µ : B(R2) → [0,∞].
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Random measures. Locally finite counting measures are a special case of locally
finite measures on B(R2). We denote the set of all locally finite measures on B(R2)
by M . Let M denote the smallest σ–algebra such that the mappings η 7−→ η(B)
are measurable for all η ∈M and bounded B ∈ B(R2). Furthermore, we define the
shift operator tx : M →M in the same way as for counting measures.

We call a measurable mapping Λ : Ω →M from some probability space (Ω,A,P)
into the measurable space (M,M) a random measure on B(R2). In the same way as
for point processes we can define the distribution PΛ, stationarity and the intensity
of Λ.

Random tessellations as planar marked point processes. A tessellation in R2 is
a countable family τ = {ξn}n≥1 of compact and convex polygons fulfilling the
conditions int ξn 6= ∅ for all n, int ξn∩ int ξm = ∅ for all n 6= m,

⋃
n≥1 ξn = R2, and∑

n≥1 1I{ξn∩B 6=∅} < ∞ for any bounded set B ⊂ R2. The polygons ξn are called

the cells of the tessellation τ . If o ∈ ξn, then ξn is called the zero cell, where o ∈ R2

denotes the origin. Furthermore, we use the notation τ (1) for the edge set of τ , andT for the family of all tessellations in R2. For any compact and convex polygon
ξ 6= ∅ we can define a unique point α(ξ) ∈ ξ fulfilling α(ξ + x) = α(ξ) + x for all
x ∈ R2, where we call α(ξ) an associated point or nucleus of ξ. It can be chosen e.g.
as the centre of gravity of ξ. Let Po denote the space of all (nonempty) compact
and convex polygons in R2 with associated point at o and let B(Po) denote the
Borel–σ–algebra on Po with respect to the Hausdorff metric.

Let NPo denote the set of all counting measures ψ : B(R2) ⊗ B(Po) → N ∪
{∞} that are simple and locally finite in the first component. Then a σ–algebra
NPo on NPo can be constructed in the same way as N on N . A measurable
mapping T : Ω → NPo from some probability space (Ω,A,P) into the measurable
space (NPo ,NPo) is called a random marked point process in R2 with mark space
(Po,B(Po)). Note that we can identify T with a random set {[Xn,Ξ

o
n]}n≥1, where

Ξo
n ∈ Po and Xn ∈ R2. A marked point process T = {[Xn,Ξ

o
n]}n≥1 is called

stationary if T and txT have the same distribution for any x ∈ R2, where txτ =
{[xn − x, ξo

n]}n≥1 for any τ = {[xn, ξ
o
n]}n≥1 ∈ NPo . If {Ξn}n≥1 ∈ T almost surely,

where Ξn = Ξo
n + Xn, then we call T a random tessellation. Thus, a random

tessellation consists of the point process X = {Xn}n≥1 of nuclei which are marked
with the cells {Ξo

n}n≥1 centred at the origin. If T is stationary, then we define the
intensity λT of the random tessellation T as the intensity of X.

Note that a random tessellation T can also be identified with the random closed
set of its edges which is denoted by T (1). For details about random closed sets see
e.g. [12].

Voronoi tessellations. For a point process X = {Xn}n≥1 in R2 we can define the
random polygons Ξn = {x ∈ R2 : |x − Xn| ≤ |x − Xm|∀m 6= n}. Note that Ξn

can be written as the intersection of (countably many) half-planes H(Xn,Xm) =
{x ∈ R2 : |x − Xn| ≤ |x − Xm|}, i.e. Ξn =

⋂
m 6=nH(Xn,Xm). If {Ξn}n≥1 ∈ T

almost surely, then we call TX = {Ξn}n≥1 the Voronoi tessellation induced by X.
If the underlying point process X is a Poisson process, then we call the Voronoi
tessellation TX a Poisson-Voronoi tessellation (PVT).

2.2. Poisson-Voronoi-Cox-Voronoi tessellations

We now introduce the notion of a Poisson-Voronoi-Cox point process Xc. This is a
Cox process, or doubly stochastic Poisson process, whose points are located on the
edges of a PVT. Let Xp be a stationary Poisson process in R2 with intensity λp,

where TXp
denotes the PVT induced by Xp and T

(1)
Xp

the random closed set of the
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(a) Poisson-Voronoi-Cox point process
(black) and the underlying PVT (grey)

(b) The PVCVT (black) together with the
generating point process (black)

Figure 1. Realization of a Poisson-Voronoi-Cox point process (left) and the generated PVCVT (right)

edges of TXp
. Then, for a given realization of TXp

, the points of the Cox process Xc

are placed on T
(1)
Xp

as linear Poisson processes with linear intensity λℓ > 0. Thus,

formally, Xc is a Cox process with random driving measure ΛXc
: B(R2) → [0,∞]

given by

ΛXc
(B) = λℓν1(B ∩ T (1)

Xp
), B ∈ B(R2) , (3)

where ν1 denotes the 1-dimensional Hausdorff measure on T
(1)
Xp

. Thus, Xc is called a

Poisson-Voronoi-Cox process. In the following, by TXc
we will denote the Voronoi

tessellation induced by the Cox process Xc and call it a Poisson-Voronoi-Cox-
Voronoi tessellation (PVCVT). Realizations of Xc and TXc

are displayed in Fig-
ures 1(a) and 1(b), respectively. Notice that Xc is a stationary point process with
intensity

λc = 2λℓ

√
λp , (4)

since 2
√
λp = Eν1([0, 1]2 ∩ T (1)

Xp
). Actually, Xc can be fully characterized by the

parameters λℓ and λp. We also remark that Xc is isotropic and ergodic due to the
isotropy and ergodicity of TXp

.

3. The typical cell of PVCVT

In this section we derive two algorithms that can be used for the estimation of
distributional properties of the typical cell of PVCVT. The first algorithm is de-
signed to directly simulate the typical cell, whereas the second algorithm simulates
a random polygon from which distributional properties of the typical cell can be
obtained by subsequent weighting. The latter algorithm has the advantage that
it can be applied to any Cox process concentrated on the edges of a stationary
tessellation, whereas the direct algorithm is specifically designed for PVCVT. But
first we define Palm probabilities and the notion of the typical cell.
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3.1. Palm probabilities and the typical cell

The Palm distribution P∗
X of a stationary point process X = {Xn}n≥1 with inten-

sity λ is a probability distribution on N , which is defined byP∗
X(A) = λ−1 E#{n ≥ 1 : Xn ∈ [0, 1)2, tXn

X ∈ A} , A ∈ N . (5)

It can be interpreted as the conditional distribution of X under the condition
that one point is located at the origin. In a similar way, considering a stationary
tessellation T as a stationary marked point process {[Xn,Ξ

o
n]}n≥1 with intensity

λT , we define the Palm distribution P∗
T on NPo ⊗ B(Po) byP∗

T (A×G) = λ−1
T E#{n ≥ 1 : Xn ∈ [0, 1)2,Ξo

n ∈ G, tXn
T ∈ A} (6)

for any A ∈ NPo and G ∈ B(Po), and the Palm mark distribution P(o)
T of T byP(o)

T (G) = λ−1
T E#{n ≥ 1 : Xn ∈ [0, 1)2 , Ξo

n ∈ G} , G ∈ B(Po) . (7)

The Palm probability P∗
T (A×G) can be interpreted as the conditional probability

that T belongs to A under the condition that T has a nucleus at the origin, where
the cell of this nucleus belongs to G. A random polygon Ξ∗ : Ω → Po that is

distributed according to P(o)
T is called the typical cell of T . It can be regarded as

the cell at the origin under the condition that the origin is a nucleus of T . Note
that the intensity λT of T is related to the expected area of Ξ∗ by λ−1

T = Eν2(Ξ∗).
For Voronoi tessellations TX the typical cell can be regarded as the cell at the
origin if X is distributed according to P∗

X . Furthermore, we can define the Palm
distribution P∗

Λ of a stationary random measure Λ with intensity λ > 0 byP∗
Λ(A) = λ−1 E(∫

[0,1]2
1IA(txΛ) Λ(dx)

)
, A ∈ M . (8)

3.2. The direct simulation algorithm

The direct algorithm uses a result recently derived in [1]. First note that the Palm
distribution P∗

Xc
of a stationary Cox process Xc with random driving measure ΛXc

is given by P∗
Xc

= δδo
∗PΛ∗

Xc
, where PΛ∗

Xc
is the distribution of a Cox process with

random driving measure Λ∗
Xc

, the conditional version of the driving measure ΛXc

under its Palm distribution P∗
ΛXc

(see e.g. [18], p. 156).
In the case of Poisson-Voronoi-Cox processes Xc with linear intensity λℓ, we first

show that Λ∗
Xc

can be regarded as the product of the linear intensity λℓ and the

1-dimensional Hausdorff measure ν1 concentrated on the edge set T̃
(1)
Xp

of the Palm

version T̃Xp
of the PVT TXp

seen from the typical point of Xc, i.e., a point chosen
at random on the edges of the PVT TXp

.

Lemma 3.1: Let ΛXc
be the stationary random measure given in (3). Then

Λ∗
Xc

(B) = λℓν1(B ∩ T̃ (1)
Xp

), B ∈ B(R2) ,

where T̃
(1)
Xp

is distributed according to P∗

T
(1)
Xp

, the Palm distribution with respect to

the 1-dimensional Hausdorff measure on T
(1)
Xp

.
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Figure 2. Line segment passing through the origin with the generating points

Proof : For a deterministic tessellation τ we can identify the measure η( · ) =
λℓν1( · ∩ τ (1)) with τ and write η(τ). Note that η(txτ) = txη(τ) for all x ∈ R2,
where tx is the shift operator introduced in Section 2. Then, by the definition of
the Palm distribution P∗

ΛXc
given in (8) and using (4), we get that for A ∈ MP∗

ΛXc
(A) =

1

λc

∫

M

∫

[0,1]2
1IA(txη) η(dx)PΛXc

(dη)

=
1

2
√
λp

∫T ∫

[0,1]2∩τ(1)

1IA(txη(τ)) ν1(dx)PTXp
(dτ)

= P∗

T
(1)
Xp

({τ ∈ T : η(τ) ∈ A}) ,

where the last equality is obtained from the definition of the Palm distributionP∗

T
(1)
Xp

given in (8). Thus η(T̃Xp
)( · ) = λℓν1( · ∩ T̃ (1)

Xp
) has the same distribution as

Λ∗
Xc

. �

In particular, under P∗
ΛXc

, a line segment of the underlying Voronoi tessellation
passes through the origin. Then, it is obvious that those two points X1 and X2

with the smallest distance from the origin of the point process X̃p = {Xn}n≥1

which generates this Voronoi tessellation, have to be on a circle around the origin.
The positions of these two points can be described by the random variables R,R1

and Φ. Here, Φ is the angle of the line segment, R = |X1| is the distance of the
points X1 and X2 to the origin and R1 = |X1 −X2|/2 is half the distance between
the points, see Figure 2.

We now state a result which is a special case of Theorem 1.1 in [1]. It will be
essentially used in our direct simulation algorithm.

Lemma 3.2: Under P∗
ΛXc

the following holds.

(i) The random variables ({Xn : |Xn| > R}, R), R2
1/R

2 and Φ are indepen-
dent.
(ii) R2 is gamma distributed with shape parameter 1.5 and scale parameter
1/(λpπ).

(iii) The conditional distribution of {Xn : |Xn| > R} given R = r is the distri-
bution of a stationary Poisson process in R2\B(o, r) with intensity λp.

(iv) R2
1/R

2 is beta distributed with parameters 1 and 1/2.
(v) Φ is uniformly distributed on [0, 2π).

Lemma 3.1 and Lemma 3.2 yield the following simulation algorithm for the typ-
ical cell Ξ∗

c of TXc
. We first give an overview of the algorithm, technical details are

explained later.
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1. Simulate two random variables R2 ∼ Γ(1.5, 1/(λpπ)) and R̃2 ∼ B(1, 1/2).

2. Construct X1 = (
√
R2 − R̃2R2, R̃R) and X2 = (

√
R2 − R̃2R2,−R̃R).

3. Simulate a Poisson process Xp,R = {Xn}n≥3 radially outside B(o,R) and

add X1 and X2 to obtain X̃p = {Xn}n≥1.

4. Construct cells of the Voronoi tessellation T̃Xp
induced by X̃p.

5. Simulate points {Xn,c}n≥2 on T̃
(1)
Xp

according to linear Poisson processes.

6. Add the originX1,c = o to {Xn,c}n≥2 and construct the Voronoi cell around
o with respect to X∗

c = {Xn,c}n≥1.

In order to get a realization of the typical cell Ξ∗
c we still have to apply an isotropic

rotation, but since all characteristics we are considering in this paper are rotation
invariant we can in general omit this final rotation step. A sketch of the different
steps of the simulation algorithm is shown in Figure 3.

(a) Start: X1, X2 (grey) generating the line seg-
ment through o (grey with black boundary). The
cell around X1 is already constructed.

(b) Initial cell: The initial cell around o is con-
structed using the previously simulated points
(grey) of X∗

c
.

(c) Further points of X∗

c
are simulated (grey)

and the initial cell is intersected by the bisectors.
(d) A realization of the typical cell of the
PVCVT is constructed and the algorithm stops.

Figure 3. Direct simulation of the typical PVCV cell

Of course, some technical details have to be taken into account. The simulation
of points of X̃p and construction of cells of T̃Xp

on the one hand and points of X∗
c on

the other hand have to be done in an alternating fashion. First X1 and X2 have to
be simulated and given R = |X1| the points of Xp,R have to be simulated radially
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(a) Stopping criterion: If the circle (grey) is
contained in the polygon of the outer vertices
(dashed segments) the algorithm stops.

(b) A realization of the typical cell.

Figure 4. Stopping criterion and simulated cell for the direct algorithm

([15]) under the condition that B(o,R)∩Xp = ∅ until the Voronoi cell Ξ1 aroundX1

with respect to X̃p = Xp,R ∪ {X1,X2} can be constructed. Then, simulate points
of X∗

c as linear Poisson processes on the edges of Ξ1 and add X1,c = o to X∗
c . This

is done by first simulating the number of points N ∼ Poi(λℓν1(∂Ξ1)) on ∂Ξ1 and
then, given N = n, by placing n points independently and uniformly distributed
on ∂Ξ1. Then new points of X̃p are simulated and cells Ξn are constructed. On the
new line segments further points of X∗

c are placed as linear Poisson processes. If it
is possible, an initial cell is constructed around o from the points of X∗

c simulated
so far. In order to check for the possibility of constructing an initial cell a cone
criterion can be used, see [4], [15] and [19]. In case that this is not yet possible,

further cells of T̃Xp
are simulated and points from X∗

c are placed on the new edges.
If the initial cell is constructed, then we know that only points of X∗

c in B(o, rmax)
with rmax = 2 maxi=1,...,n |vi| can influence the initial cell. Here, vi, i = 1 . . . , n
are the vertices of the initial cell. Since we know that the points of X∗

c are located

on T̃
(1)
Xp

, we can stop if all edges of T̃Xp
which can intersect B(o, rmax) are already

constructed. So we use the following stopping criterion. The vertices of T̃Xp
which

are on the boundary of only one constructed cell are connected in clockwise order.
If the resulting (not necessarily convex) polygon contains B(o, rmax), then all edges
are constructed and we can stop. This follows from the convexity of the cells and
the property of PVT that with probability one three edges meet at one vertex. Of
course, if the initial cell is intersected by the bisector between o and the new point
Xn the maximal radius rmax can be updated in order to reduce runtime. The
stopping criterion is illustrated in Figure 4, together with a simulated zero cell of
X∗

c .
Except of a missing isotropic rotation around the origin, the resulting cell is then

a realization of the typical cell of PVCVT.

3.3. Neveu’s exchange formula and an indirect simulation algorithm

In this section we derive an alternative, indirect simulation algorithm. With this
algorithm it is possible to simulate cells from which all distributional properties of
the typical cell of Cox-Voronoi tessellations TXc

can be obtained for Cox processes
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Xc concentrated on the edges of a more general class of stationary random tessel-
lations T . It is merely required that the tessellation T ∗ distributed according to
the Palm distribution P∗

T of T can be simulated. If we consider T to be a PVT
this simulation is easily achieved since in this case we only have to construct the
Voronoi tessellation generated by a stationary Poisson process with an additional
point at the origin. But there are also other stationary point processes where a
similar technique could be used. Examples are Voronoi tessellations based on Cox
processes concentrated on PLT ([5]), PVCVT (preceding section), PLCVT ([5]),
Poisson-Laguerre tessellations ([8]) or on Voronoi tessellations based on Cox pro-
cesses ([4]) whose random driving measures depend on Boolean models ([11]). In
[9] a related technique is used in order to obtain distributional properties of the
typical cell of iterated tessellations. There the typical cell is also not simulated
directly, but cells are simulated from which the distribution of characteristics of
the typical cell can be obtained.

In the following we focus on Cox processes Xc concentrated on the set of edges
T (1) of a stationary random tessellation T with linear intensity λℓ, i.e. Cox pro-
cesses with driving measure ΛXc

(B) = λℓν1(B ∩ T (1)), and the corresponding
Voronoi tessellation TXc

. The simulation algorithm is based on a representation
formula for the typical cell of TXc

which is stated in Theorem 3.5 below. In order
to prove this theorem we need the following auxiliary results.

First note that the Cox-Voronoi tessellation TXc
together with the underlying

tessellation T can be regarded as a random variable Y = (TXc
, T ) in N2

Po . We

then use the notation TXc
= {[X(1)

n ,Ξ
(1)
n ]}n≥1 and T = {[X(2)

n ,Ξ
(2)
n ]}n≥1 and

denote the distribution of Y by PY . Let λ(1) = λc and λ(2) = λT denote the
intensities of TXc

and T , respectively, seen as marked point processes. We define

the Palm distributions P(i)
Y , i = 1, 2 on NPo ⊗NPo ⊗B(Po) with respect to the i-th

component of Y byP(i)
Y (A×G) =

1

λ(i)
E#{n : X(i)

n ∈ [0, 1)2,Ξ(i)
n ∈ G, t

X
(i)
n
Y ∈ A} (9)

for any A ∈ NPo ⊗ NPo and G ∈ B(Po). Note that for A ∈ NPo , G ∈ B(Po) we
getP(1)

Y (A×NPo ×G) = P∗
TXc

(A×G) and P(2)
Y (NPo × A×G) = P∗

T (A×G) ,

where P∗
TXc

and P∗
T is the ordinary Palm distribution of the random tessellation

TXc
and T , respectively.

Now we are interested in the distribution of Y (more precisely of TXc
) under P(2)

Y .
Let Y ∗ = (T

X̃c
, T ∗) denote a vector of random tessellations distributed according

to P(2)
Y ( · × Po), where X̃c denotes the point process consisting of the nuclei of

Voronoi tessellation T
X̃c

, and T ∗ is distributed according to P∗
T ( · × Po).

Lemma 3.3: The point process X̃c is a (non-stationary) Cox process in R2 with
driving measure Λ

X̃c
(B) = λℓν1(B ∩ T ∗(1)) for B ∈ B(R2), where T ∗(1) denotes

the edge set of T ∗.

Proof : For any n ≥ 1, for arbitrary bounded and pairwise disjoint sets
B1, . . . , Bn ∈ B(R2) and for any k1, . . . , kn ∈ N consider the set

A = {ψ ∈ NPo : ψ(B1 × Po) = k1, . . . , ψ(Bn ×Po) = kn} .
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It is sufficient to show thatP(2)
Y (A×NPo × Po) = E( n∏

i=1

(λℓν1(Bi ∩ T ∗(1)))ki

ki!
e−λℓν1(Bi∩T∗(1))

)
. (10)

Using the definition of Cox processes we can decompose the expectation in (9), i.e.
the integration with respect to PY , into an outer integral with respect to PT (in
order to realize the random driving measure) and, given T = τ , an inner integration
with respect to the distribution PXc|T=τ of a Poisson process with intensity measure

λℓν1( · ∩ τ (1)). Note that we can identify Xc with the Voronoi tessellation TXc
.

Then, with the notation A′ = {ϕ ∈ N : ϕ(B1) = k1, . . . , ϕ(Bn) = kn}, we getP(2)
Y (A ×NPo ×Po)

=
1

λ(2)

∫

NPo

∫

N

∫

[0,1)2×Po

1IA′(txϕ) τ(d(x, ξ)) PXc|T=τ (dϕ)PT (dτ)

=
1

λ(2)

∫

NPo

∫

[0,1)2×Po

∫

N

1IA′(txϕ)PXc|T=τ (dϕ) τ(d(x, ξ))PT (dτ)

=
1

λ(2)

∫

NPo

∫

[0,1)2×Po

∫

N

1IA′(ϕ)PXc|T=txτ (dϕ) τ(d(x, ξ)) PT (dτ)

=
1

λ(2)

∫

NPo

∫

[0,1)2×Po

n∏

i=1

(λℓν1(Bi ∩ (txτ)
(1)))ki

ki! eλℓν1(Bi∩(txτ)(1))
τ(d(x, ξ)) PT (dτ) .

Now the refined Campbell theorem for stationary marked point processes (see e.g.
Satz 3.4.3 of [16]) can be applied to getP(2)

Y (A ×NPo ×Po) =

∫

[0,1)2

∫

NPo×Po

n∏

i=1

(λℓν1(Bi ∩ τ (1)))ki

ki! eλℓν1(Bi∩τ(1))
P∗

T (d(τ, ξ)) dx

= E( n∏

i=1

(λℓν1(Bi ∩ T ∗(1)))ki

ki!
e−λℓν1(Bi∩T∗(1))

)
.

Thus, (10) is shown. �

Furthermore, in the proof of Theorem 3.5, we utilize Neveu’s exchange formula
([13]). This formula allows to represent the expectation of functionals of Y =

(TXc
, T ) with respect to P(1)

Y by the expectation with respect to P(2)
Y . Using the

notation introduced above, Neveu’s exchange formula takes the following form (see
e.g. [9]).

Lemma 3.4: For any measurable function f : R2 ×Po ×Po ×N2
Po → [0,∞), it

holds that

λ(1)

∫

N2
Po×Po

∫R2×Po

f(x, ξ1, ξ2, txψ) ψ(2)(d(x, ξ2))P(1)
Y (d(ψ, ξ1))

= λ(2)

∫

N2
Po×Po

∫R2×Po

f(−x, ξ1, ξ2, ψ) ψ(1)(d(x, ξ1))P(2)
Y (d(ψ, ξ2)) ,

(11)

where ψ = (ψ(1), ψ(2)) ∈ N2
Po .
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Using Lemmas 3.3 and 3.4, we now derive a representation formula which is
crucial for the indirect simulation algorithm.

Theorem 3.5 : Let h : Po → [0,∞) be a Borel–measurable function, which is
translation-invariant, i.e., h(ξ) = h(ξ + x) for any ξ ∈ Po and x ∈ R2. Then,Eh(Ξ∗

c) =
1E ν1(∂Ξ∗

T )
E(

ν1(∂Ξ∗
T )E (

h(Ξ
X̃c∪{Z}

(Z)) | T ∗
))
, (12)

where Ξ∗
c denotes the typical cell of TXc

and Ξ∗
T denotes the zero cell of T ∗.

Furthermore, Ξ
X̃c∪{Z}

(Z) denotes the Voronoi cell around an additional point

Z ∈ ∂Ξ∗
T with respect to X̃c ∪ {Z}. This point Z is conditionally uniformly dis-

tributed on ∂Ξ∗
T and conditionally independent of X̃c given T ∗.

Proof : Consider the function f : R2 ×Po × Po ×N2
Po → [0,∞) given by

f(x, ξc, ξ, ψ) =

{
h(ξc) if o ∈ ∂ξ + x,

0 otherwise,
(13)

i.e., f(x, ξc, ξ, ψ) = h(ξc) if the cell ξ + x centred at x contains the origin on its
boundary. Then, applying Lemma 3.4, we get thatEh(Ξ∗

c) =

∫

N2
Po×Po

h(ξc)P(1)
Y (d(ψ, ξc))

=
1

2

∫

N2
Po×Po

∫R2×Po

f(x, ξc, ξ, txψ)ψ(2)(d(x, ξ))P(1)
Y (d(ψ, ξc))

=
λ(2)

2λ(1)

∫

N2
Po×Po

∫R2×Po

f(−x, ξc, ξ, ψ)ψ(1)(d(x, ξc))P(2)
Y (d(ψ, ξ)) .

Note that the factor 1/2 appears due to the fact that for each point of Xc that
is located on one (and only one) edge of T , there are exactly two cells of T that
have this point of Xc on their boundary. Furthermore, the outer integration in
the latter expression can be decomposed into an outer integral with respect to P∗

T

and an inner integral with respect to PT
X̃c

|T∗. Thus, using the definition of the

function f given in (13), we getEh(Ξ∗
c) =

λ(2)

2λ(1)
E(E(∫

∂Ξ∗
T ×Po

h(ξc)TX̃c
(d(x, ξc)) | T ∗

))
. (14)

From Lemma 3.3 we get that the conditional expectation given T ∗ is the expecta-
tion with respect to a PVT induced by a Poisson process which is concentrated on
the edges of T ∗ with linear intensity λℓ. This means in particular that for given
T ∗ the number S = T

X̃c
(∂Ξ∗

T × Po) of points on the boundary ∂Ξ∗
T of the zero

cell Ξ∗
T of T ∗ is Poisson distributed with mean η = λℓν1(∂Ξ∗

T ). It is well known
that for given T ∗ and S = n the locations of these n points can be described
by an n-dimensional random vector (Z1, . . . , Zn) whose components are indepen-
dent and (identically) uniformly distributed on ∂Ξ∗

T . Moreover, the random vector

(Z1, . . . , Zn) is conditionally independent of the locations of those points of X̃c

which are not located on ∂Ξ∗
T .

Let Ξ1, . . . ,Ξn denote the Voronoi cells with the nuclei Z1, . . . , Zn of the corre-
sponding (conditional) PVT. Note that the cells Ξ1, . . . ,Ξn are not independent,



April 8, 2008 11:32 Journal of Statistical Computation & Simulation Preprint

Simulation of the typical Poisson-Voronoi-Cox-Voronoi cell 13

but they are identically distributed. This givesE(∫

∂Ξ∗
T ×Po

h(ξc)TX̃c
(d(x, ξc)) | T ∗

)

=

∞∑

n=1

P(S = n | T ∗) E( n∑

i=1

h(Ξi) | S = n, T ∗
)

=

∞∑

n=1

P(S = n | T ∗)nE(
h(Ξ1) | S = n, T ∗

)

= η
∞∑

n=1

P(S = n− 1 | T ∗) E(
h(Ξ1) | S = n, T ∗

)

= η
∞∑

n=0

P(S = n | T ∗) E(
h(Ξ1) | S = n+ 1, T ∗

)
.

Note that E(
h(Ξ1) | S = n+ 1, T ∗

)
= E (

h(Ξ
X̃c∪{Z}(Z)) | S = n, T ∗

)
, where the

random variable Z is conditionally uniformly distributed on ∂Ξ∗
T and conditionally

independent of X̃c, given S = n and T ∗, and Ξ
X̃c∪{Z}(Z) denotes the Voronoi cell

around the additional point Z ∈ ∂Ξ∗
T with respect to X̃c ∪ {Z}. Thus, using (14),

we get that Eh(Ξ∗
c) =

λℓλ
(2)

2λ(1)
E (
ν1(∂Ξ∗

T )E (
h(Ξ

X̃c∪{Z}
(Z)) | T ∗

))
.

Since λ(1) = λℓEν1(T (1) ∩ [0, 1]2) and Eν1(∂Ξ∗
T ) = 2/λ(2)Eν1(T (1) ∩ [0, 1]2), this

completes the proof. �

Now we summarize the indirect simulation algorithm for the typical cell of
PVCVT which is justified by Theorem 3.5. Thus, from now on, we assume that
T = TXp

, where Xp is a stationary Poisson process with intensity λp and Ξ∗
p is the

typical cell of TXp
. Note that then Eν1(∂Ξ∗

p) = 4/
√
λp.

1. Simulate a Poisson process Xp = {Xi}i≥1 radially with intensity λp, add
the origin to Xp, which gives X∗

p = Xp ∪ {o}.
2. Construct the Voronoi cell Ξ∗

p of TX∗
p

around o.

3. Place independently and uniformly distributed the points {Zi}1≤i≤n of X̃c

on the boundary of Ξ∗
p. Here n is the realization of a random variable S ∼

Poi(λℓν1(∂Ξ∗
p)). Place one additional point Z independently of the other points

and uniformly on ∂Ξ∗
p.

4. Construct further edges of T ∗
Xp

and place points Xi,c of X̃c on the edges
according to linear Poisson processes.
5. Construct the Voronoi cell Ξ

X̃c∪{Z} around Z.

6. Weight h(Ξ
X̃c∪{Z}) by ν1(∂Ξ∗

p)
√
λp/4.

Then, with the weighted value
√
λp/4 ν1(∂Ξ∗

p)h(Ξ
X̃c∪{Z}) we can obtain the dis-

tribution of h(Ξ∗
c). An overview of the different steps is shown in Figure 5.

Note that indirect simulation algorithm is similar to the direct simulation al-
gorithm, but now we have to construct a cell around Z, so we have to adjust
the stopping criterion of the direct algorithm by choosing the maximal radius
as rmax = maxi=1,...,n(|vi| + |vi − Z|). Again vi, i = 1, . . . , n denote the ver-
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(a) Start: The cell around the origin is con-

structed, points (grey) of X̃c are placed on the
boundary and one further point Z (grey with
black boundary) is added.

(b) Initial cell: The initial cell around Z is con-
structed using the previously simulated points

(grey) of X̃c ∪ {Z}.

(c) Further points of X̃c are simulated (grey)
and the initial cell is intersected by the bisectors.

(d) The cell around Z is completed and the al-
gorithm stops.

Figure 5. Indirect simulation of the typical PVCV cell

tices of the initial cell, see Figure 6. The result of the simulation algorithm is
then a cell Ξ

X̃c∪{Z}
. This cell can be used to estimate characteristics of the typ-

ical cell Ξ∗
c . For given T ∗

Xp
with typical cell Ξ∗

p consider the random variable

hZ = ν1(∂Ξ∗
p)h(Ξ

X̃c∪{Z}
). If we then regard independent copies hZ,1, ..., hZ,n of

hZ we can define the estimator ĥ by

ĥ =

√
λp

4

1

n

n∑

i=1

hZ,i. (15)

Then ĥ is unbiased for Eh(Ξ∗
c) due to Theorem 3.5.
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(a) Stopping criterion: If the circle (grey) is
contained in the polygon of the outer vertices
(dashed segments) the algorithm stops.

(b) Simulated cell (black) with typical cell (grey)
of the PVT used for the weighting

Figure 6. Stopping criterion and simulated cell for the indirect algorithm

4. Numerical results

4.1. Scaling invariance

Recall that the Poisson-Voronoi-Cox process Xc and the PVCVT TXc
can be fully

characterized by two parameters: λℓ and λp. But a scaling invariance can be
observed which means that the structural properties of Xc and TXc

do not change
if the x–axis and the y–axis are scaled in the same way. This implies that with
respect to numerical computations it suffices to regard a one-dimensional parameter
space with a single parameter κ, i.e., instead of the originally two-dimensional
parameter (λℓ, λp) consider the scaling factor κ = 2

√
λp/λℓ, which is the mean

total length of edges of TXp
per unit area divided by the mean number of points

of Xc per unit length of TXp
. If the x–axis and the y–axis are scaled in the same

way, then κ remains constant, and hence the same random structure is obtained,
but on different scales. For example, for different parameter pairs (λℓ, λp) and
(λ′ℓ, λ

′
p) with (λ′ℓ,

√
λ′p) = a (λℓ,

√
λp) for some a > 0, we get Eν0(Ξ∗′

c ) = Eν0(Ξ∗
c),Eν1(∂Ξ∗′

c ) = aEν1(∂Ξ∗
c) and Eν2(Ξ∗′

c ) = a2Eν2(Ξ∗
c) where Ξ∗

c and Ξ∗′
c denote the

typical cells of the PVCVT corresponding to the parameter pairs (λℓ, λp) and
(λ′ℓ, λ

′
p), respectively, and ν0(Ξ) denotes the number of vertices of a cell Ξ. On the

other hand, for large κ we only get a few points per edge of the PVT Tp, whereas
for small values of κ we get many points per edge.

In [5] and [6] a similar effect for PLCVT is used to reduce the number of parame-
ters in the numerical experiments. Namely, using scaling invariance, it is sufficient
to do computations for each κ only for one parameter pair (λl, λp). For all other
parameter pairs with the same scaling factor κ these numerical results can then
be used to calculate, for example, estimated mean values of different characteris-
tics by appropriate scaling. In addition the outputs of simulations with different
parameter pairs but equal κ can be used for implementation tests, see Section 4.2.

For κ ∈ {10, 20, 30, 40, 50, 60, 90, 120} and 2
√
λp = 1 we simulated in each case

1 000 000 cells with both algorithms which are used in the following.
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4.2. Implementation Tests

First, we used the simulated cells to test the correctness of the implementation of
the algorithms, where methods for software tests with random output are suitable
([5],[10]). In particular, we compared the output of the implementations of the two
introduced algorithms in order to test the correctness of the implementation. This
test can be performed in a similar way as the software tests proposed in [5], i.e.,
an asymptotic Gaussian two sample test for equal means is performed to compare
characteristics like the mean perimeter, area or number of vertices of the outputs
of the two algorithms for different parameters. All the tests showed the expected
behaviour, so we assume that our implementations are correct.

4.3. Comparison of the direct and indirect algorithm

The sample means of cell characteristics for the directly simulated cells and the
sample means of the weighted characteristics for the cells of the indirect algorithm
should be equal, but the variances might differ since we are considering different
random variables. So we computed the sample variances of the (weighted) number
of vertices (ν0), perimeter (ν1) and area (ν2) of the simulated cells for both algo-
rithms. The results are displayed in Table 1 for different values of κ. It can be seen
that the variance of the output of the direct algorithm is always smaller. Since
both algorithms have similar runtimes, the variance of the (random) output is the
main criterion which algorithm is preferable for the computation of distributional
properties. Because of that we concentrate in the following only on results for the
directly simulated cells, although the indirect algorithm yields similar results.

Note that especially for the computation of shortest path lengths ([7]) it is im-
portant to have an algorithm with low variance of the output, since due to time-
consuming computations only a relatively small sample size can be considered.
Thus, also for this purpose, the direct algorithm should be preferred.

4.4. Comparison of distributional properties of PVT, PLCVT and PVCVT

The simulated cells have been used to compute histograms for the area, perime-
ter and number of vertices of the typical cell of PVCVT as well as the coefficient
of variation (cvX :=

√
VarX/EX) of these characteristics. Furthermore, we esti-

mated the mean boundary length of the typical cell. The results are displayed in
Figure 7 and in Tables 2 and 3, respectively, together with corresponding results
for the typical cell of PLCVT ([5]) and PVT. The parameters for PVT, PVCVT
and PLCVT were chosen such that the expected area of the typical cell is equal to
100 and, for PVCVT and PLCVT, the scaling factor κ is the same, i.e., the mean
edge lengths per unit area of the underlying PVT and PLT, respectively, are equal.

Although the shapes of the histograms in Figure 7 seem to be similar, we can ob-
serve a large difference between the histograms for PLCVT and PVCVT, especially
for small values of κ. This difference seems to decrease with increasing κ, but also
for large values of κ it is still noticeable. Similar effects can be observed in Tables 2
and 3. For PVCVT the cv is decreasing with increasing κ for all characteristics,
but it is always smaller than the cv of the same characteristics for PLCVT. As
mentioned above, the mean area is 100 and the mean number of vertices is 6 for
all values of κ, but the mean boundary length depends on the scaling factor κ,
see Table 3. For PVCVT the estimated mean boundary length only slightly differs
from 40, the expected boundary length for PVT, and statistical significance tests
for equality do not lead to rejection. However, for PLCVT the estimated boundary
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Figure 7. Histograms for characteristics of the typical cell

length is always significantly smaller than 40.
These differences might be caused by the larger irregularity of PLT compared

to PVT. If the expected edge lengths per unit area of both tessellations are equal,
then the segments of PVT are more evenly spread in the plane and the variations
within these segments is much smaller than for PLT. Furthermore, infinitely many
nuclei are located on each single line of PLCVT with probability 1, whereas this is
not possible for PVCVT.

Comparing PVCVT to PVT, the shapes of the histograms in Figure 7 are quite
similar, but there is some difference which is decreasing with κ. From Tables 2
and 3 we can see that for PVCVT the cv of the considered characteristics is always
slightly larger than for PVT and decreasing with κ. But this difference is much
smaller than the difference to PLCVT and seems to become negligible for large
values of κ.

Altogether there seems to be a quite large difference between the distributions of
cell characteristics of PLCVT and PVCVT, especially for small values of κ. This
difference is decreasing with increasing κ, but seems to be noticeable also for large
values of κ. On the other hand, the distributions of cell characteristics of PVCVT
and PVT seem to be similar and for large values of κ almost identical. However,
note that for the estimation of shortest path lengths in telecommunication network
models the typical cell has to be simulated together with the underlying tessellation.
Thus, also for large values of κ, the PVCVT is still an interesting model.
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5. Discussion and Outlook

We presented two different algorithms for the simulation of the typical cell of
PVCVT, where we compared these algorithms with respect to precision and run-
time. The direct algorithm is preferable from this point of view since the runtimes
are almost equal, but the variance in the random output of the direct algorithm
is smaller. Nevertheless the indirect algorithm has some advantages, too. First, it
can be used for implementation tests. On the other hand, it is more general and
can be used for a variety of Cox-Voronoi tessellations, whereas the direct algorithm
can only be used in the special case of PVCVT, because it seems to be very difficult
and perhaps impossible to get a similar Palm representation as in Lemma 3.2 for
other models than PVT.

The numerical results show that the typical cell of PVCVT is much more sim-
ilar to the typical cell of ordinary PVT than to the typical cell of PLCVT. This
observation can probably be explained by the fact that especially for large values
of κ the likelihood of three or more points of the PVCV process to be located on
the same edge of the underlying Voronoi tessellation is close to zero. Therefore,
the dependence between different points of the PVCV process almost vanishes for
larger κ. This leads to a point process that behaves quite similar to a Poisson
point process, in particular with regard to the induced Voronoi tessellation. For a
PLCVT these arguments do not hold to such an extend due to the fact that even
for very large κ we find infinitely many points of the PLCV point process to be
located on a specific line of the underlying Poisson line process.

Simulation algorithms for the typical cell of PVCVT are a useful tool in order to
perform cost analysis in telecommunication networks. Together with the techniques
described in [7], the computation of shortest path lengths and similar characteristics
can be extended to new models. So far only PLT have been considered as models
for the roads, but by using the results of the present paper also PVT can be taken
into account.

A further step in the development of an adequate pool of possible tessellation
models for the cost analysis of telecommunication networks is the extension of the
methods described here to simulation algorithms for the typical cell of models like
the Poisson-Delaunay tessellation (PDT) and iterated tessellations. Together with
efficient techniques for the simulation of shortest paths and the computation of
their length, such algorithms will lead to a portfolio of realistic cost models that
can be fitted to given telecommunication data, in order to enable cost calculation
and, sometimes even more important, cost prediction.
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[17] G. J. Schütz, M. Axmann, S. Freudenthaler, H. Schindler, K. Kandror, J. C. Roder, and A. Jeromin.

Visualization of vesicle transport along and between distinct pathways in neurites of living cells.
Microscopy Research and Technique, 63:159–167, 2004.

[18] D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic Geometry and its Applications. J. Wiley & Sons,
Chichester, second edition, 1995.

[19] J. G. Wendel. A problem in geometric probability. Mathematica Scandinavica, 11:109–111, 1962.


