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Abstract

The fast growth of installed photovoltaic capacity is leading to an increasing

impact of variable photovoltaic generation on the overall electricity industry,

affecting all stakeholders in this sector. As a consequence, the importance of

appropriate photovoltaic power forecasts for planning and decision support

is rising, to cope with the resulting uncertainty. In particular, probabilis-

tic forecasts are becoming increasingly important to assess the underlying

risks, e.g., depicting the effect of adverse combinations. Whereas determinis-

tic forecasts, while having the advantage of being more detailed, suffer from

reflecting only an average expectation. Therefore, this paper proposes a com-

prehensive hybrid approach to generate deterministic and probabilistic pho-

tovoltaic power forecasts, while introducing several improvements for intra-

day and day-ahead modelling and forecasting applications. In this context,

several pre- and post-processing steps have been combined for the determinis-
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tic model, while the spatial interrelation of the forecasting errors is taken into

account by applying D-vine copulas for the probabilistic forecasts. The reli-

ability of the proposed hybrid approach is validated, using a comprehensive

case study with high-resolution numerical weather predictions and real-world

measurement data over several years for multiple photovoltaic units. Further-

more, the proposed model is benchmarked against various combinations of

a photovoltaic power model (with and without statistical post-processing)

and typical probabilistic models. As part of the evaluation the Energy score,

Variogram-based score and Diebold-Mariano test are applied to evaluate the

proposed model and highlight the strong performance of the proposed hybrid

approach.

Keywords: Solar power supply, forecasting, physical PV model, VARX

model, error distribution, D-vine copula, spatial dependency

1. Introduction

The decarbonization of the energy sector requires an increasing use of

variable renewable energies (RE). As a result, the generation structures are

evolving from a centralized structure to a decentral energy system, raising

various energy related issues. In this context, photovoltaic (PV) power has

become one of the most important RE in Germany over the last decades,

reaching an installed capacity of 49 GW in 2019 (BNetzA, 2020). In partic-

ular, the characteristics of PV generation and other RE lead to a spatial and

temporal decoupling of electricity generation and consumption, resulting no-

tably in an increased need for improved modelling and forecasting techniques

while providing more flexibility to the energy system. In the future, this need
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can be alleviated by several options, in particular the use of storage and sec-

tor coupling technologies (e.g. between electricity, heat and gas grids and

with the mobility sector), but also by adapting energy grid infrastructures.

Towards these options, an improved understanding of the applicability of

uncertainty forecasts is of utmost importance for the electric power industry.

Hence, forecasting PV power generation becomes increasingly relevant for op-

erational and long-term tasks of system operators and market participants,

respectively. For instance, the forecasts are used for a secure network oper-

ation, maintenance scheduling and long-term portfolio management, see e.g.

Bessa et al. (2017) where the application of probabilistic weather forecasts

in decision making processes is discussed, and Schermeyer et al. (2018) con-

siders the ambient temperature as input for an optimal power flow program.

Especially situations in which high renewable infeed might cause congestion

are often solved by curtailing RE units proactively without taking uncertain-

ties into account. In this context, appropriate forecasts can help to reduce

RE curtailment by supporting system operators and market participants in

day-ahead and intraday planning. Instead of making decisions based on de-

terministic values, probabilistic forecasts can be more informative as a range

of possible scenarios.

In terms of deterministic forecasts of PV power generation, both, sta-

tistical and physical models, are established methods. Physical PV models

typically use numerical weather predictions (NWP) and a model representa-

tion of the PV power plant to convert meteorological parameters into power

output (Lorenz et al., 2011). Most available meteorological measurements en-

compass global horizontal irradiance (GHI) and its decomposition into direct
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and diffuse irradiance as well as air temperature. However, in terms of NWP

data, GHI might be provided exclusively, which introduces the necessity for

a separate model for direct and diffuse irradiance decomposition. In litera-

ture, several approaches exist to derive the direct and diffuse irradiance from

other meteorological sources. In this context, especially the Boland-Ridley-

Laurent (BRL) model, following Ridley et al. (2010), performs reasonably

well compared to other models by using GHI forecasts exclusively. Besides

physical models, statistical models can be used to forecast PV generation.

These models are typically based on historical time series, live measurement

data and the previous forecasting performance, while sometimes taking into

account exogenous explanatory variables (e.g. from NWP). A comprehen-

sive overview is given by Antonanzas et al. (2016), listing several publications

which use different machine-learning techniques such as artificial neural net-

works (ANNs), support vector machines (SVMs) and random forests. Among

the most common techniques are linear auto-regressive methods (AR) and

auto-regressive moving-average (ARMA) models which in addition to the

time series of the power performance itself, take the historical time series of

the model error into account. In this context, accurate deterministic forecasts

based on statistical PV models are typically complex and computationally

intensive, see Gigoni et al. (2018). However, combinations of statistical and

physical models can be used to cope with the non-linear patterns in the resid-

uals and to take advantage of the strengths of both techniques (Bouzerdoum

et al., 2013).

However, deterministic forecasts are not sufficient to cope with the un-

certainty of forecasts which becomes increasingly relevant, e.g. for market
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participants to balance their portfolio of day-ahead hourly contracts by trad-

ing intraday quarter-hourly contracts or for system operators to quantify the

risk of congestion. A review on probabilistic PV power forecasting has been

provided by van der Meer et al. (2017). Common methods are e.g. quantile

regression (Bacher et al., 2009), quantile regression forests (Almeida et al.,

2015) and analog model chain forecasts (Alessandrini et al., 2015).More re-

cently, a bivariate copula model has been proposed for the prediction of

level-crossing probabilities of solar power supply (von Loeper et al., 2020).

The validation results highlight strong performance of the latter model. The

bivariate copula model might be improved by including further influence

factors. That topic was addressed in von Loeper et al. (2021) by includ-

ing influence factors such as further weather information and solar power

supply of previous hours as explanatory variables using multivariate D-vine

copulas. In addition, probabilistic forecasts of the output power of photo-

voltaic systems using ANNs seem to be promising, see Wang et al. (2017),

by improving the prediction accuracy for different seasons and with respect

to different prediction horizons. Yet, ANNs are computationally quite ex-

pensive and time-consuming to train using conventional CPUs, so this factor

still limits their potential applications. Therefore, the focus of the present

study is to improve the prediction accuracy of conventional methods by in-

troducing various steps of pre- and post-processing of the available data and

by improving the probabilistic predictions by using copulas.

It can be observed that the forecasting errors of different PV units are

correlated. Hence, the PV power injection at different network nodes might

superpose in terms of transmission line loading affecting power system opera-
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tion. Therefore, spatial probabilistic forecasts are needed, which describe the

correlated uncertainties at all relevant network nodes, i.e., of those network

nodes which are affected by uncertain PV net power injections. Higher-

dimensional copulas can be applied to describe the dependency structure of

the multidimensional random vectors (Joe, 2014). In particular, D-vine cop-

ulas have been applied to model the spatial (Lu et al., 2014) and temporal

(Becker, 2017) multivariate probability distribution of wind power supply.

Moreover, Gaussian and R-vine copulas were utilized to estimate the multi-

variate probability distribution for the solar power supply of a small sample

of individual PV units (Golestaneh and Gooi, 2017).

Consequently, this paper proposes a novel hybrid approach to generate

probabilistic forecasts of PV power supply at different network nodes, by us-

ing a combination of physics-based methods for (deterministic) forecasting of

the PV power supply together with a data-driven (statistical) pre- and post-

processing of the input data and a data-driven (probabilistic) copula model

to forecast the spatio-temporal uncertainty of the forecasting errors. Hereby,

the physical PV model computes deterministic predictions of solar power

supply at the corresponding network nodes which are then post-processed

by applying an adaptive vector autoregressive model with exogenous vari-

ables (VARX model). Using the forecasting errors of the PV units, in a

first step a one-dimensional marginal distribution is fitted for each of the

network nodes. In a second step, a D-vine copula is fitted, which describes

the spatial dependency of the forecasting errors at different network nodes.

Subsequently, probabilistic forecasts are generated using the NWP-based de-

terministic forecasts of the physical PV model and the uncertainty sets drawn
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Figure 1: Flowchart describing the structure of this paper and the content of each section.

from the D-vine copula model. To evaluate the performance of the proposed

approach, the deterministic forecasts are benchmarked to the physical model

without statistical post-processing and an adaptive VARX model as a purely

statistical approach. For the probabilistic forecasts, the D-vine copula model

is compared to a multivariate normal distribution. Furthermore, to see the

significance of taking spatial dependence into account, the D-vine copula

model is furthermore benchmarked to a probabilistic model applying prod-

ucts of univariate normal distributions describing the forecasting errors at

each node, thus assuming spatial independence.
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The paper is structured as follows (cf. Figure 1). In terms of deterministic

forecasts in Section 2, the physical PV model is introduced briefly. Section 3

explains how the VARX model is applied to improve the forecasts. Regard-

ing the probabilistic forecasts, Section 4 introduces D-vine copulas, which are

applied to model the error distribution and subsequently combined with the

deterministic predictions to generate probabilistic forecasts. Thereupon, the

proposed approach is tried out in a real-world application. Therefore, an

evaluation methodology is presented in Section 5. In Section 6 the hybrid

approach is applied to the case study mentioned above, whereby the avail-

able data is separated into a training dataset for fitting the models and a test

dataset for their evaluation. Thus, the performance of the hybrid approach

on the test dataset is benchmarked to alternative approaches of determin-

istic and probabilistic modelling. Therefore, the deterministic forecasts and

the probabilistic forecasts are investigated for both, intraday and day-ahead

applications. Section 7 concludes, highlighting the key findings of this paper.

2. Physical model

A physical PV model is introduced to generate deterministic forecasts of

the PV net power injection of individual PV units, see Figure 2. The model

is based on statistically post-processed NWP data which are combined with

synoptic observations, see Baldauf et al. (2011), Hess (2020) and Schaumann

et al. (2020, 2021). In addition, the available weather data is pre-processed

to receive all required inputs for the physical PV model. In contrast to com-

mon probabilistic approaches, see Saint-Drenan et al. (2017), the net power

injection at a certain node of the underlying power system is then determined
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by aggregating the individual forecasts. This posterior aggregation enables

the system operator to get a more detailed view on the individual PV units.

3. PV panel
3.b PV panel

parameters

3.c DC 
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4. Inverter

4.b AC power 

generation
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Figure 2: Outline of the different inputs, model components, parameters and the output

of the physical model for photovoltaic power generation.

Using hourly weather data for the global horizontal irradiance and the

ambient temperature as input variables (indicated as Boxes 0.a and 0.b in

Figure 2), this physical model (abbreviated as PM) computes the net power

injection for individual PV units. In this context, four modeling components

(indicated as Boxes 1 to 4 in Figure 2) are applied subsequently using weather

data, data of PV units provided by the system operator and representative

parameters for panels and inverters:

1. Irradiance decomposition model

The available global irradiance on a horizontal surface is decomposed

into a direct and diffuse fraction (cf. Boxes 1.a and 1.b in Figure 2)
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by means of a logistic approximation following Ridley et al. (2010).

Moreover, the parameters of the model are recalibrated for the consid-

ered location, hence, increasing forecasting performance, as proposed

by Laiti et al. (2018).

2. Solar transposition model

The effective irradiance on the tilted surface (referred to as the tilted

irradiance, cf. Box 2.d in Figure 2) of the PV panels is determined fol-

lowing Saint-Drenan et al. (2015). In this context, the diffuse irradiance

(cf. Box 2.b) on the tilted surface of the PV panels is determined by

applying an isotropic approach, as proposed by Kamphuis et al. (2020).

Furthermore, the optical angular losses (cf. Box 2.a) on the surface of

the PV panels are determined following Martin and Ruiz (2001). In

this context, the data of the PV unit’s panel orientation, provided by

the system operator, are used (cf. Box 2.c), meanwhile typical values

of silicon PV panels are assumed with respect to the angular loss coef-

ficient and the fitting parameters of the model, as proposed by Mart́ın

and Ruiz (2005).

3. PV panel model

The DC power output of the PV panels (cf. Box 3.c in Figure 2) is ob-

tained by using a simplified single diode solar cell model to determine

the maximum power point (MPP) voltage and current, see Wagner and

Bendel (2003) and Humada et al. (2020). Thereby, a linear temperature

dependency of the MPP voltage and current is assumed, based on com-

monly used voltage and current temperature coefficients as prosposed

by Marion et al. (1999), together with a non-linear temperature model
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for the saturation current as described by Kou et al. (1998). In terms

of the PV panel parameters (cf. Box 3.b), it is assumed that all PV

units of the case study use customary monocrystalline silicon PV pan-

els, without considering the individual configuration and the installed

components in detail. The nominal power of PV units (cf. Box 3.a) is

provided by the system operator.

4. Inverter model

The efficiency of the PV inverter is modelled using a generic quadratic

approach for the losses based on Driesse et al. (2008) and neglecting

the voltage dependency to ensure the applicability of the model to all

types of inverters, following Baumgartner et al. (2007). Analogous to

the previous assumptions, the use of customary components with stan-

dard inverter parameters (cf. Box 4.a in Figure 2) is assumed for the

inverter model, without considering the individual configuration and

the installed components in detail. Finally, the AC power generation

(cf. Box 4.b) describes the feed-in of the PV unit into the power system.

Considering the alignment, orientation and dimensioning of the individual

PV units assumptions are made with reference to findings from a compre-

hensive survey for the application area of the case study introduced below,

see Saint-Drenan et al. (2017). As already stated above, the relevant input

parameters for the PV panel and inverter modelling may be estimated using

data available in the technical specifications and data sheets of representative

poly-crystalline and mono-crystalline modules. More details on the applied

PV panel and inverter models are provided in Schinke and Hirsch (2019).
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3. VARX model for benchmarking and statistical post-processing

To validate and possibly improve the performance of the physical model

considered in this paper, an adaptive vector autoregressive model with exoge-

nous variables (VARX model) is used. In contrast to previous publications on

PV power forecasts using VARX models, e.g. following Bessa et al. (2015), a

statistical post-processing of the previously introduced physical model (PM)

is carried out using the forecast of the PM as exogenous variables. In ad-

dition, the VARX model allows to benchmark the results of the proposed

hybrid model chain and the physical model. Especially in terms of neighbor-

ing PV units, the VARX model seems to be the most promising approach

compared to other models, cf. Bessa et al. (2015). For more information on

the advantages and disadvantages of VARX models, see Antonanzas et al.

(2016).

In the following, the cumulative net power injection of all PV units con-

nected to a certain network node k ∈ K = {1, . . . , K} is considered as the

relevant forecast variable P̂Phys,t,k. Thereupon, the VARX model forecasts the

net power injection P̂t,k at each network node k ∈ K = {1, . . . , K} during

time step t based on past observations Pt−l,i of all other network nodes i ∈ K

(including themselves). Hereby, L denotes the set of lags used (any combi-

nation of natural numbers greater than zero) and the exogenous variables

Xm,t,i and m ∈M = {1, . . . ,M} is the index of the exogenous variables:

P̂t,k
P0,k

= αk +
∑
l∈L

∑
i∈K

βl,k,i
Pt−l,i
P0,i

+
∑
m∈M

∑
i∈K

γm,k,iXm,t,i. (1)

In Equation 1, P0,k is the cumulative nominal power of the PV units con-

nected to node k. Following, e.g., Bessa et al. (2015), the parameters of
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the VARX model αk, βl,k = (βl,k,1, . . . , βl,k,K) with l ∈ L and γm,k =

(γm,k,1, . . . , γm,k,K) with m ∈ M can be determined by K separate ordinary

least square (OLS) minimizations of the error between predicted power P̂τ,k

and observed power Pτ,k of each network node k ∈ K using a moving-horizon

of Th hours preceding to the forecasting time step t:

{
α̂k, β̂l,k, γ̂m,k

}
= argmin

αk,βl,k,γm,k

t−1∑
τ=t−Th

(
Pτ,k − P̂τ,k

)2
. (2)

Moreover, to determine the optimal specifications of the VARX model the

auto-correlation function can be considered in a first step to identify the most

promising sets of lags L, following Bessa et al. (2015). Meanwhile in a second

step, different variations of those lags can then be combined with different

lengths of the moving horizon Th. In this context, we apply the VARX model

in two ways: For post-processing of the forecasts obtained from the physical

PV model (PM-VARX) and for benchmarking (VARX-B). For that purpose,

different exogenous variables are used for both applications:

1. VARX-B: Set X1,t,k = E
(k)

G,hor,t, X2,t,k = ϑ
(k)

a,t and M = 2,

2. PM-VARX: Set X1,t,k = P̂Phys,t,k and M = 1,

where E
(k)

G,hor,t is the average global horizontal irradiance, ϑ
(k)

a,t is the ambient

temperature and P̂Phys,t,k is the deterministic forecast of the physical model

at network node k ∈ K and time step t. To compare the performance of the

deterministic forecasts obtained by the proposed PM-VARX approach, the

solely physical model (PM-B) is used for benchmarking as well.
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4. Hybrid model using D-vine copulas

Since deterministic predictions usually differ from actual measurements

of PV net power injection, the resulting forecasting errors must be taken into

consideration. For that purpose, there are well-known tools for modelling un-

certainties such as the multivariate normal distribution. However, these tools

are facing elementary limitations regarding marginal distributions and tail

dependency modelling to address joint extreme values adequately (McNeil

et al., 2005). In contrast, D-vine copulas are well suited to take tail depen-

dencies into account and flexible regarding the number of input variables.

4.1. D-vine copula

A bivariate copula is defined as the joint cumulative distribution func-

tion (CDF) C : [0, 1]× [0, 1]→ [0, 1] of a 2-dimensional random vector with

uniform marginals on the unit interval [0,1]. Based on bivariate copulas,

so-called vine copulas or pair-copula architectures can be constructed. Each

type of vine copula corresponds to a different kind of decomposition of an

n-dimensional density into a product of marginal densities and conditional

bivariate copula densities with conditional CDFs as their arguments. An

n-dimensional type of vine copula can be applied to estimate the joint mul-

tivariate distribution of arbitrary random variables R1, . . . , Rn for any fixed

n > 2. Further details regarding general copula theory can be found e.g. in

Aas et al. (2009), Joe (2014) and Nelsen (2006).

There exist different types of vine copulas. However, D-vine copulas are

chosen in this paper, because they are the only type of vine copulas where

each node of their graph-based architecture is connected to exactly two edges,
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thus giving equal importance to all input variables, see also Joe (2014). The

D-vine copula corresponds to the decomposition of an n-dimensional joint

density f1,...,n of the random variables R1, . . . , Rn given by

f1,...,n=
n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,..., i+j−1
(
Fi|i+1:i+j−1, Fi+j|i+1:i+j−1

)
·
n∏
l=1

fl, (3)

where fi denotes the density of the random variable Ri and ci,i+j|i+1,..., i+j−1 is

some bivariate copula density. The bivariate copula densities ci,i+j|i+1,..., i+j−1

are applied to the conditional CDFs Fi|i+1:i+j−1 and Fi+j|i+1:i+j−1 of Ri and

Ri+j given the random variables Ri+1, . . . , Ri+j−1. A mathematical deriva-

tion of Equation 3 can be found in Joe (2014).

4.2. Multivariate distribution model

First, a univariate distribution has to be fitted separately for each of the

random variables R1, . . . , Rn . For that purpose, histograms are computed

providing a visual impression which types of marginal distributions might be

most suitable for describing the realizations of R1, . . . , Rn. Since all can-

didates of one-dimensional marginal distributions considered in the present

paper have exactly two parameters penalizing the number of parameters as

done in the Akaike or Bayesian information criterion becomes unnecessary

(Konishi and Kitagawa, 2008). Thus, the maximum likelihood is computed

to assess the goodness of fit and choose the distribution type with the high-

est maximum likelihood as most suitable distribution type. Then, in a next

step, the data is transformed by applying the CDFs FRi
of the fitted marginal

distributions.

To fit the D-vine copula, the bivariate conditional copulas ci,i+j|i+1,..., i+j−1

in the D-vine copula structure are estimated sequentially based on the trans-
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formed data (Joe, 2014). For that purpose, the Archimedean copula types

Joe, Frank, Gumbel and Clayton are considered (Nelsen, 2006). Each con-

ditional copula density is fitted to the outputs of the CDFs, which are given

as arguments in Equation 3. The copula parameters are estimated for each

considered copula type using the inference function for margins method as

proposed in Joe and Xu (1996). To conclude fitting the multivariate distribu-

tion model, the copula type with the highest maximum likelihood is chosen

for each bivariate conditional copula.

We apply the multivariate distribution model to generate samples of the

random vector (R1, . . . , Rn). Using the sampling algorithm for vine copulas

explained by Aas et al. (2009), n-dimensional samples can be drawn from the

fitted D-vine copula. These samples have uniform marginal distributions and

describe the interdependence of the fitted D-vine copula. Thus, the inverse

of the fitted marginal CDFs F−1Ri
has to be applied on the drawn samples, to

get corresponding samples of the random vector (R1, . . . , Rn).

4.3. Model combination

For any given forecast horizon, each deterministic model (PM-VARX,

VARX-B and PM-B as introduced in Sections 2 and 3 generates deterministic

forecasts of power injection for all network nodes at the considered time steps

t. Now we want to combine these deterministic models with D-vine copulas.

For that purpose, we use the following modeling steps:

1. For any given forecast horizon, compute deterministic forecasts by

means of the considered deterministic model.

2. Compute and normalize forecasting errors for each network node as

described in Equation 4 below.
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3. Fit marginal distributions and a D-vine copula to the forecasting errors

at all considered network nodes as described in Section 4.2.

4. Sample the fitted error distribution as discussed in Section 4.2 and

reverse the normalization.

5. Generate probabilistic forecasts by adding renormalized samples of er-

ror vectors to the deterministic forecasts.

Note that step 2 is performed as follows. For each deterministic model δ the

forecasting errors ε
(δ)
t,k = Pt,k− P̂ (δ)

t,k are computed by comparing the forecasts

to actual measurements subsequently, these are normalized as follows:

e
(δ)
t,k =

ε
(δ)
t,k − 1

|TTrain,t|
∑

τ∈TTrain,t
ε
(δ)
τ,k

PEx,t,k

, (4)

where TTrain,t contains all time steps of the training dataset (cf. Section 6.1)

with the same daily hour as time step t (with |TTrain,t| the size of the dataset),

while PEx,t,k = EEx,hor,t,kP0,k/EEx,0 represents the theoretical extraterrestrial

PV power generation at time step t. Here EEx,hor,t,k is the extraterrestrial

irradiance which is computed based on the physical model of Inman et al.

(2013), EEx,0 is the extraterrestrial solar constant and P0,k is the cumulative

nominal power of the PV units connected to node k.

The resulting normalized forecasting errors e
(δ)
t,k at the network node k ∈ K

are interpreted as realizations of a random variable Rk, see Section 4.2. For

each deterministic model and considered forecast horizon, a multivariate error

distribution is thus fitted and sampled as explained in Section 4.2. Finally,

we renormalize the sampled forecasting errors by reversing the procedure

described in Equation 4 and add the renormalized samples of error vectors

to the deterministic forecasts.
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We propose the combination of the statistically post-processed physical

PM-VARX model with the D-vine copula model as the hybrid model to gen-

erate probabilistic forecasts. While PM-VARX is benchmarked to the deter-

ministic models VARX-B and PM-B, the D-vine copula model is compared to

a multivariate normal distribution (MVN) fitted to the forecasting errors at

all nodes. Moreover, to highlight the importance of modelling spatial depen-

dence, univariate normal distributions (UVN), fitted to the forecasting errors

at each node, are sampled separately and the samples are added to the cor-

responding deterministic forecasts at the corresponding node. The resulting

probabilistic prediction model is compared in Section 6 to the probabilistic

forecasts based on the D-vine copula and the MVN.

Thus, all combinations of the deterministic models PM-VARX, VARX-B

and PM-B and the probabilistic models based on D-vine copula, MVN and

UVN are considered, leading to a total of 9 model combinations. In the

following these model combinations are referred to as model chains. Each

model chain is fitted to a training dataset and validated based on a test

dataset (cf. Section 6.1).

5. Evaluation methodology

To quantify the performance of the proposed hybrid model in Section 4, a

three-stage evaluation is applied: In a first step, the improvements resulting

from the pre-processing of meteorological data are considered, whereas in the

second step the PM-VARX model is benchmarked to the PM-B and VARX-B

models using deterministic performance metrics. Thereupon, the probabilis-

tic forecasts computed by the D-vine copula model are benchmarked to the
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probabilistic forecasts based on MVN and UVN in a third step, see Sec-

tion 4.3.

5.1. Deterministic performance metrics

To evaluate the quality of the generated deterministic forecasts for a cer-

tain network node k ∈ K, the normalized root mean square error (NRMSE)

can be used as performance metric, following e.g. van der Meer et al. (2017):

NRMSEk =

√√√√ 1

|TTest|
∑
t∈TTest

(
Pt,k − P̂t,k

P0,k

)2

, (5)

where TTest is the test dataset (cf. Section 6.1). Furthermore, the quantity

NRMSEk given in Equation 5 can be used to determine the forecast skill Sk,

following Coimbra et al. (2013), which benchmarks the quality of the forecast

of the considered PV model to a naive persistence method. Hereinafter, the

benchmarking persistence model relies on the assumption that the net power

injection of the PV units at node k ∈ K is constant relative to the extrater-

restrial irradiance EEx,hor,t,k. Thus, the benchmarking persistence forecasts

are computed using P̂t,k = EEx,hor,t,k (Pt,k−1/EEx,hor,t,k−1). The forecast skill

is then defined as

Sk = 1− NRMSEk
NRMSEpers,k

, (6)

with

NRMSEpers,k =

√√√√ 1

|TTest|
∑
t∈TTest

(
Pt,k
P0,k

− Pt,k−1
P0,k

EEx,hor,t,k

EEx,hor,t,k−1

)2

. (7)

The forecast skill Sk given in Equation 6 does not measure the quality

of the physical model exclusively, but rather the performance of the weather
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forecast together with the physical model. However, when benchmarking

different PV models, the forecast skill Sk indicates the improvement of the

considered model compared to the persistence method. Therefore, the best

deterministic model achieves the highest forecast skill Sk which is correspond-

ing to the lowest NRMSE.

5.2. Probabilistic performance metrics

In this section, the performance metrics for evaluating the probabilistic

forecasts generated by different model chains, see Section 4.3, are introduced.

Based on the deterministic forecasts P̂
(ξ)

t of model chain ξ a sample of size

m of the forecasting errors ε
(ξ)
t is drawn from the corresponding probabilistic

model (cf. Section 4.3). Thereupon, the probabilistic forecast is defined as

P̃
(ξ)

t = P̂
(ξ)

t + ε
(ξ)
t , constituting a |K| ×m dimensional matrix.

A common performance metric for multivariate probabilistic forecasts is

the energy score introduced by Gneiting and Raftery (2007). In this context,

the energy score (ES) during time step t can be written as

ESt =
1

m

m∑
j=1

√∑
k∈K

(pt,k − p̃t,k,j)2 −
1

2m2

m∑
i=1

m∑
j=1

√∑
k∈K

(p̃t,k,i − p̃t,k,j)2, (8)

where pt,k is the observed power supply at network node k ∈ K and p̃t,k,j is

the j-th of m realizations of the predicted power supply.

However, Pinson and Tastu (2013) show that, while the energy score is

useful to detect differences between the observed and predicted power sup-

ply, its discriminative ability in terms of variance and correlation is poor.

Therefore, we follow Golestaneh et al. (2016) using a variogram-based score

as an additional scoring rule, which is reported to have a higher discrim-

inative power regarding the variance and the interdependence structure of
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multivariate distributions (Scheuerer and Hamill, 2015; Golestaneh et al.,

2016). In case of a K-variate probabilistic forecast represented by a sample

of size m, the variogram-based score (VS) is defined as

V St =
∑
i∈K

∑
k∈K

wi,j

(
|pi,t − pt,k|0.5 −

1

m

m∑
j=1

|p̃t,i,j − p̃t,k,j|0.5
)2

, (9)

where wi,j are arbitrarily selectable weighting factors for all i, j ∈ K, e.g. rep-

resenting the historical correlation of the spatio-temporal forecasting errors

or power injections at different locations, see Scheuerer and Hamill (2015).

To evaluate our results given in Section 6 below, we usually refer to the av-

erage energy and variogram-based scores over the full validation period, i.e.,

ES = 1
|TTest|

∑
t∈TTest

ESt and V S = 1
|TTest|

∑
t∈TTest

V St.

5.3. Statistical significance

To investigate if the observed differences of the results obtained by the de-

terministic and probabilistic models are statistically significant, the Diebold-

Mariano test can be used in two ways, following Diebold and Mariano (1995),

and Gneiting and Katzfuss (2014). Note that the notation changes when ap-

plying the test to deterministic or probabilistic forecasts. Thus, the test will

be used for both cases separately.

In terms of deterministic forecasts, for any network node k ∈ K and model

δ, we interpret the forecasting errors ε
(δ)
1,k, ε

(δ)
2,k, . . . introduced in Section 4.3

as realizations of a certain random variable ε
(δ)
k . Then, this test checks the

null hypothesis that the difference of the expected forecasting errors of two

models, say δi and δj for i 6= j, is equal to zero for a certain network node

k ∈ K (and a certain forecast horizon h), i.e.,

E
(
g
(
ε
(δi)
k

)
− g

(
ε
(δj)
k

))
= 0 (10)
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for some function g : R → R. Possible choices for g are g(ε) = |ε| or

g(ε) = ε2, hence, representing either the mean absolute error or the mean

squared error. Hereinafter, we only consider the mean squared error. The

null hypothesis of the Diebold-Mariano test can be evaluated using the test

statistic tDM,k, given by

tDM,k =
d̄k
√
|TTest|√
νk

, (11)

where |TTest| is the number of forecasts in the test dataset and d̄k is the

sample mean of the differences dt,k = g(ε
(δi)
t,k ) − g(ε

(δj)
t,k ). Furthermore, the

normalizing factor νk in Equation 11 is given by

νk = ς0 + 2
h−1∑
i=1

(|TTest| − i)
|TTest|

ςi, (12)

where ςi is the i-th sample autocovariance of d1,k, d2,k, . . . and h is the forecast

horizon in hours, see Harvey et al. (1997). Under the null hypothesis, the

test statistic tDM,k is asymptotically standard normal distributed, i.e. tDM,k ∼

N (0, 1).

In terms of probabilistic forecasts, for two model chains ξi and ξj with

i 6= j, the Diebold-Mariano test can be used to compare the differences of

two probabilistic performance metrics, see Gneiting and Katzfuss (2014).

Hence, the time series of two scores S(P̃
(ξi)

t ,pt) and S(P̃
(ξj)

t ,pt) are used,

which can be either the energy score (ES) or the variogramm-based score

(VS) introduced in Section 5.2, with pt the actual realization of the net

power injections at all network nodes from K. Therefore, the null hypothesis

can be tested that the expected difference of both scores is equal to zero, i.e.,

on average, both model chains ξi and ξj have the same forecast performance.

Based on the sample mean S̄(ξ) = 1
|TTest|

∑
t∈TTest

S(P̃
(ξ)

t ,pt), the test statistic
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can be accessed as

t
(ξi,ξj)
DM =

√
|TTest|

S̄(ξi) − S̄(ξj)

σ̂(ξi,ξj)
(13)

with

σ̂(ξi,ξj) =

√
1

|TTest|
∑
t∈TTest

(
S(P̃

(ξi)

t ,pt)− S(P̃
(ξj)

t ,pt)
)2
. (14)

Referring to Gneiting and Katzfuss (2014), the test statistic t
(ξi,ξj)
DM given in

Equation 13 is asymptotically standard normal distributed under the null

hypothesis mentioned above, i.e., t
(ξi,ξj)
DM ∼ N (0, 1). When rejecting the null

hypothesis, the model chain ξi is preferred if t
(ξi,ξj)
DM is negative and ξj is

preferred if t
(ξi,ξj)
DM is positive.

6. Application

To demonstrate the advantages of the proposed hybrid forecasting model,

see Section 4, a case study based on data observed for an existing power

system is introduced in Section 6.1. The hybrid forecasting model is fitted

and some model characteristics are discussed in Section 6.2. In Section 6.3,

short-term and long-term forecasts of PV power supply are evaluated, based

on all model chains considered in this paper.

6.1. Case study

In our case study we consider the high voltage power system of N-ERGIE

Netz GmbH in the south of Germany and select 53 PV units which are

connected to five nodes of the considered power system, see also von Loeper

et al. (2020). Furthermore, the underlying distribution network (i.e. the

interconnections between the considered nodes and the individual PV units)

is neglected to focus on the probabilistic forecasts exclusively. In this context,

23



Figure 3 visualizes the spatial distribution of the considered PV units, their

installed capacity and the corresponding network node. The nominal power

of the individual PV units (i.e., the installed capacity) varies between 250

kW and 5.4 MW and the maximum distance between the two outermost PV

units is less than 50 km.

Figure 3: Locations of PV units considered in this case study, where the size of the circles

corresponds to the nominal power (in kW) and the color indicates the associated network

node.

For deterministic forecasting of PV power supply, statistical forecasts of

global horizontal irradiance and ambient temperature (2m above ground) of

Ensemble-MOS of DWD are used, see also Baldauf et al. (2011), Hess (2020)

and Schaumann et al. (2020, 2021). The weather forecasts are used in a

spatial resolution of 20×20 km, with a temporal resolution of one hour and

a forecast horizon of 19 hours. In this context, the parameters of the irra-
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diance decomposition model (cf. Section 2 have been recalibrated for the

considered location, whereby the forecasting performance has been improved

significantly. Subsequently, direct and diffuse irradiance at the location of

each PV unit is calculated for each hour via inverse distance weighting of the

four nearest available grid points of the weather dataset. The same inter-

polation procedure is applied to the temperature, used as an input variable

of PV panel efficiency in the following section. The forecasts of irradiance

and temperature are updated every 3 hours. The updates improve the fore-

cast quality for a given point in time in general, whereas the improvement

is most significant for very short-term forecasts (i.e., of the next hour) but

rather negligible at the end of the forecast horizon. Here, we focus on the

latest available forecast for each hourly time step (i.e., with a forecast horizon

of 1-3 hours in advance) hereinafter referenced as the intraday forecast and

on the earliest available forecast (i.e., with a forecast horizon of 17-19 hours

in advance) subsequently referenced as the day-ahead forecast. Furthermore,

since focusing on PV generation and applications to power systems, all mod-

els are applied for the hours between 9 a.m. and 18 p.m. exclusively, hence,

neglecting the morning and evening hours while focusing on those hours of

the day with the highest impact on the power system.

For empirical validation, measurement data of the net power supply for

May to July is available for all PV units considered in this paper and the

years 2015, 2016 and 2017. In this context, we split up the available data

into two sets: The training dataset, denoted by TTrain, consists of NTrain

hourly data between May and July for the years 2015 and 2016, and the test

dataset, denoted by TTest, consisting of |TTest| hourly data between May and

25



July of the year 2017. This hourly data contains measurement time series

for individual PV units as well as forecasting time series of the weather data

obtained from ModelMix of DWD. As these time series of weather forecasts

and observed PV power injections are in some cases subject to missing data,

noise or minor calibration errors, the following filtering steps are conducted:

1. In case of detecting unreasonable offsets, the time series is recalibrated

by superposition with a time invariant constant (e.g. indicated by a

certain power in-feed during night times).

2. All hours of days with observations of zero power supply between 9 and

18 pm (UTC+2) are treated as missing data.

3. For some hours, data gaps occur in either the weather dataset or in

the measurement data of the considered PV units. Days, with such

data gaps occurring in at least one hour, are excluded entirely (in both

training and evaluation). Removed days are 2015-05-01, 2015-07-31,

2016-05-01, 2016-06-20, 2016-07-31, 2017-05-01, 2017-06-01, 2017-07-

17 and 2017-07-31.

In this context, the PM-B model has been calibrated on the training

dataset once and applied subsequently to the test dataset. Furthermore,

the PV power injections have been aggregated for each network node and

subsequently used as an input variable regarding the post-processing for the

PM-VARX model. In terms of the VARX-based models, the best results were

obtained using lags of 1 and 2 hours for intraday and day-ahead forecasts,

representing the highest autocorrelations of the considered time series in the

test dataset. In addition, the VARX-based models are taking a moving win-

dow of the last four weeks into account. For that reason and furthermore
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to eliminate the effect of seasonal or annual weather phenomena, the prob-

abilistic models (D-vine copula, MVN and UVN) are fitted on a subset of

the training dataset, hence, taking the time series of 2016 into account ex-

clusively. Since the models are calibrated and trained using (subsets of) the

training dataset, the performance metrics and their statistical significance

are evaluated typically for the test dataset.

6.2. Application of the D-vine copula model

Now we apply the D-vine copula model described in Section 4 to the case

study presented in Section 6.1.

Figure 4: Histograms (diagonal), pairwise scatter plots (bottom left) and pairwise

Kendall’s rank correlation coefficients (top right) of the forecasting errors (for intraday

forecasts of the PM-B approach) in May, June and July of year 2016 evaluated for the five

network nodes n1, . . . , n5.

We consider the five network nodes n1, . . . , n5, see Figure 3. For the

intraday forecasts of the PM-B approach, normalized forecasting errors in

27



May, June and July of year 2016 are visualized using histograms, pairwise

scatterplots and pairwise Kendall’s rank correlation coefficients in Figure 4.

Based on visual inspection of the histograms, the forecasting errors at the

network nodes n1, . . . , n5 correspond to unimodal distribution types such as

the normal, Weibull, gamma and logistic distribution. We selected these four

distribution types as candidates for the marginal distributions. Moreover, the

pairwise scatterplots provide detailed information about the interdependence

of any pairs of forecasting errors. Based on the scatterplots we conclude that

the errors at two network nodes gather near a line through the origin. To

quantify the interdependence of two random variables X and Y , we apply

Kendall’s rank correlation coefficient defined by

τ̂ =
2

n(n− 1)

∑
i<j

sgn(xi − xj) sgn(yi − yj) (15)

for given realizations (x1, . . . , xn) and (y1, . . . , yn) of the random variables X

and Y . The pairwise Kendall’s rank correlation coefficients in Figure 4 show

that the forecasting errors are strongly correlated and a multivariate distri-

bution model such as the D-vine copula model is suitable. Furthermore, by

comparing Figures 3 and 4 we notice that the forecasting errors of pairs of

nodes are stronger correlated if the distance between the nodes is smaller. In

Step 3 of Section 4.3 we fit marginal distributions to the normalized forecast-

ing errors for each considered network node, deterministic model and forecast

horizon. Comparing the loglikelihood function of the fitted marginal distri-

butions it seems that that the logistic distribution is slightly better than the

normal distribution, whereas the Weibull and gamma distribution are clearly

worse.
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6.3. Forecasting results

At first, the improvements of the pre-processing for the weather data

are evaluated, whereby additionally the BRL model parameters (see Section

PhysicalModelSec) are recalibrated. Secondly, the deterministic forecasts

of the PM-VARX approach are benchmarked to the PM-B and VARX-B

approaches, which are introduced in Section 3, for different forecast horizons

(intra-day and day-ahead). Then, the marginal and spatial distributions of

the forecasting errors resulting from different deterministic models are tested

for normality and representativity. Finally, the probabilistic forecasting is

carried out and evaluated for the different forecast horizons (intra-day and

day-ahead).

6.3.1. Deterministic intraday forecasts

For each forecasting model with a forecast horizon of 1 to 3 hours, the

NRMSE and forecast skill S, as introduced in Section 5.1, are determined

at the five considered network nodes. The results depicted in Figure 5 show

the results for the proposed PM-VARX model as well as for both benchmark

models PM-B and VARX-B (cf. Section 3).

As expected, all deterministic models show substantially lower forecast

errors than the persistence benchmark indicated by a consistently positive

forecast skill. Hence, the NRMSE is ranging from 5.7% to 6.8% for PM-

VARX, from 5.9% to 6.9% for VARX-B and from 6.2% to 7.5% for PM-

B. This leads to average forecast skills of 57.9% for the PM-VARX model,

56.5% for the VARX-B and 54.1% for the PM-B. In this context, the re-

sults are clearly indicating the proposed PM-VARX approach to outperform

both benchmarks (VARX-B and PM-B). Furthermore, the VARX-B model
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Figure 5: Comparison of validation scores for 3 models at the five considered network

nodes for intraday forecasts. Note that a better model performance is indicated in (a)

by a lower score and in (b) by a higher score.

is preferable in comparison with the PM-B for most of the network nodes,

due to the lower NMRSE values at nodes n2 to n5, and provides an overall

better forecasting performance than the PM-B approach.

To test for significance of the differences in the NRMSE the Diebold-

Mariano test, introduced in Section 5.3, is carried out for the intraday and

day-ahead forecast horizons. The corresponding results are depicted in Ta-

ble 1. To establish consistency to following tables, we introduce a notation

which indicates the confidence level on which a null hypothesis H0 of equally

performing models is rejected: No asterisk means that the null hypothesis

is not rejected, plus sign (+) confidence = 90%, one-asterisk (*) confidence

= 95%, two-asterisks (**) confidence = 99% and three-asterisks (***) confi-

dence = 99.9%.

When comparing the proposed PM-VARX approach to the VARX-B the
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Network PM-VARX vs. VARX-B VARX-B vs. PM-B

node Intraday Day-ahead Intraday Day-ahead

n1 −2.679∗∗∗ −3.848∗∗∗ 0.476 −0.343

n2 −4.586∗∗∗ −3.551∗∗∗ −2.189∗ 0.201

n3 −4.446∗∗∗ −2.20∗ −2.210∗ −1.479

n4 −2.273∗ −3.101∗∗∗ −4.378∗∗∗ −3.128∗∗∗

n5 −4.399∗∗∗ −4.034∗∗∗ −1.218 −0.645

Table 1: Test statistic of the Diebold-Mariano test computed for deterministic intraday

and day-ahead forecasts comparing all three deterministic models. Confidence levels: No

symbol = H0 not rejected, (+) = 90% , (*) = 95%, (**) = 99%, (***) = 99.9%.

test statistics indicate that the null hypothesis of equally performing models

can be rejected for most of the network nodes, so the advantages of the VARX

(post-processing) are – albeit not very large - highly significant. Comparing

the VARX-B and PM-B approaches, the performance differences are in favour

of the VARX-B approach but not as clear as above: The significance levels

for the intraday-forecasts are reaching confidence above 95% only for three

network nodes, meanwhile for day-ahead forecast the test indicates equal

forecast performance for almost all network nodes, see also Section 6.3.2.

6.3.2. Deterministic day-ahead forecasts

The respective results for NRMSE and forecast skill for a forecast horizon

of 17 to 19 hours are depicted in Figure 6. In this context, the NRMSEs for

day-ahead forecasts at the network node level increase to a range from 6.7%

to 8.9%.

When comparing the forecasting performance of the proposed model to
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Figure 6: Comparison of validation scores for 3 models at the five considered network

nodes for day-ahead forecasts. Note that a better model performance is indicated in

(a) by a lower score and in (b) by a higher score.

the PV forecasts of whole regions, see e.g. see Saint-Drenan et al. (2017) for

Germany, there are two outcomes: On the one hand, the day-ahead forecast-

ing performance on a regional level seems to exceed the performance when

forecasting PV production on a network node level. On the other hand, since

the variance of the forecast decreases with an increasing number of PV units,

the observed forecasting performance on a regional level is not a good bench-

mark regarding forecasts on a network node level. As the performance of the

persistence model deteriorates considerably compared to the intraday fore-

casts, the forecasting skill rises to a range between 57% and 81%. Again, the

proposed PM-VARX approach outperforms both benchmarks (VARX-B and

PM-B). However, although the differences in NRMSE are small, the perfor-

mance of PM-VARX is still significantly better compared to the other models

according to the test statistic of the Diebold-Mariano test given in Table 1.
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Unlike to the intraday forecasts, the performance differences between VARX

(benchmark) and the physical model are not statistically significant, except

for the network node n4.

6.3.3. Probabilistic intraday forecasts

When considering the previously discussed results, the question arises

how sensitive the probabilistic forecasts are with respect to the performance

of the deterministic models and which benefits can be achieved by using

D-vine copula models instead of well-established approaches such as MVN

or UVN. In this context, and as already mentioned above, the probabilistic

forecast for a certain model chain ξ is carried out by applying Monte Carlo

simulation, i.e., for each network node k ∈ K and each time step t, a sample

of size m is drawn for the model chain. The result is then the |K| × m-

dimensional matrix P̃
(ξ)

t = P̂
(ξ)

t + ε
(ξ)
t , to which the energy score (ES) as

well as the variogram-based score (VS) described in Section 5.2 are applied,

in order to compare the probabilistic forecast P̃
(ξ)

t to the |K|-dimensional

vector of the actually measured PV power supplies P t. Furthermore, VS

can be determined without weighting (VS1: wij = 1 for all i, j ∈ K) and

with weighting, e.g., according to the correlation ρTrainij of the power injection

for each pair i, j ∈ K of network nodes in the test dataset (VS2: wij =

ρTrainij for all i, j ∈ K). The results of the evaluation are depicted in Table

11 for different model chains, i.e. combinations of the deterministic and

probabilistic models.
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Deterministic model Probabilistic model ES VS1 VS2

PM-VARX D-vine 2.04 3.06 2.76

PM-VARX MVN 2.09 3.11 2.80

PM-VARX UVN 2.15 3.56 3.22

VARX-B D-vine 2.10 3.08 2.78

VARX-B MVN 2.18 3.12 2.81

VARX-B UVN 2.23 3.62 3.28

PM-B D-vine 2.22 3.59 3.25

PM-B MVN 2.38 3.86 3.49

PM-B UVN 2.39 4.01 3.62

Table 2: Energy score (ES) and variogram-based scores (VS1 and VS2) of the intraday

forecasts for different model chains. Better model performance is indicated by lower scores.

The results of energy and variogram-based scores indicate the proposed

hybrid model chain, incorporating a PM-VARX approach together with a D-

vine copula model (with individually fitted marginal distributions and pre-

processing of the forecasting errors) to outperform all other model chains.

Not only the PM-VARX approach surpasses the VARX-B and PM-B bench-

marks when comparing the same probabilistic models, but also the D-vine

copula surpasses the MVN and UVN when comparing the same deterministic

models. We notice that the differences in the scores seem to be rather small

(especially when comparing the D-vine copula and MVN), which rises the

question whether the differences in the forecast performance of competing

model chains are statistically significant. However, the outstanding forecast-

ing performance of the PM-VARX approach has already been confirmed to be
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statistical significant for intraday and day-ahead forecasts (cf. Sections 6.3.1

and 6.3.2). Thus, the Diebold-Mariano test is carried out for a pairwise

comparison of the different probabilistic models only, see Table 3.

Deterministic D-vine vs. MVN MVN vs. UVN

model ES VS1 VS2 ES VS1 VS2

PM-VARX −8.67∗∗∗ −3.96∗∗∗ −3.98∗∗∗ −0.17 −6.75∗∗∗ −6.8∗∗∗

VARX-B −10.62∗∗∗ −4.42∗∗∗ −4.45∗∗∗ 0.14 −6.24∗∗∗ −6.29∗∗∗

PM-B −13.96∗∗∗ −8.63∗∗∗ −8.79∗∗∗ 0.99 −0.04 −0.02

Table 3: Test statistic of the Diebold-Mariano test for pairwise comparison of the forecast

performance based on ES, VS1 and VS2 of the intraday forecasts. Confidence levels: No

symbol = H0 not rejected, (+) = 90% , (*) = 95%, (**) = 99%, (***) = 99.9%.

When considering the results, the highly negative values of the test statis-

tic based on the ES clearly indicate the D-vine copula model to outperform

the MVN and UVN approach for all deterministic models with confidence

level above 99.9%. Only VS1 and VS2 do not confirm these results when

comparing MVN and the D-vine copula model, but indicate a confidence

level of 90% for intraday forecasts incorporating the PM-VARX approach

instead. As a consequence, even though the differences of the scores depicted

in Table 2 are small, a statistical significance can be observed for most of the

model chains in pairwise comparisons.

Therefore, two results can be concluded for intraday forecasts: On the

one hand, the VARX-based models seem to improve the spatial modelling,

hence, taking spatial dependencies already into account during the deter-

ministic forecasting process. On the other hand, the forecasting errors can
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be approximated appropriately using a MVN in a first step. Nevertheless,

the D-vine copula model is capable to improve the probabilistic intraday

forecasts, especially for physical models.

In addition, the results indicate a higher sensitivity of the probabilistic

forecasts to the deterministic models than to the probabilistic models, i.e., the

PM-VARX and VARX-B with UVNs outperform or perform comparable to

the PM-B approach with a D-vine copula. Hence, when generating intraday

probabilistic forecasts, the initial focus should be laid on an appropriate

deterministic model as a basis for the probabilistic modelling (with marginal

distributions and D-vine copulas) to build on.

6.3.4. Probabilistic day-ahead forecasts

For the day-ahead forecasts, i.e., for a forecast horizon of 17 to 19 hours,

the energy score (ES) and the variogram-based scores (VS1 and VS2) are

depicted in Table 4 for different model chains.

In this context, the findings for the intraday forecasts can be confirmed

partly: The results of energy and variogram-based scores indicate the pro-

posed hybrid model chain, incorporating a PM-VARX approach together

with a D-vine copula model, to outperform all other model chains. How-

ever, in contrast to the intraday forecasts the differences in the ES between

MVN and UVN are vanishing for all three deterministic models. These re-

sults are confirmed by VS1 and VS2 for the PM-B approach only, meanwhile

the variogram-based scores indicate unequal forecasting performance for the

VARX-based approaches. Even though the differences in the scores for the

day-ahead forecasts are higher than for intraday forecasts, the question on

the statistical significance in the forecast performance of competing model
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Deterministic model Probabilistic model ES VS1 VS2

PM-VARX D-vine 2.53 3.93 3.54

PM-VARX MVN 2.66 4.06 3.66

PM-VARX UVN 2.66 4.60 4.17

VARX-B D-vine 2.64 4.01 3.62

VARX-B MVN 2.82 4.15 3.75

VARX-B UVN 2.81 4.68 4.24

PM-B D-vine 2.70 4.23 3.82

PM-B MVN 2.92 4.71 4.25

PM-B UVN 2.91 4.71 4.26

Table 4: Energy score (ES) and variogram-based scores (VS1 and VS2) of the day-ahead

forecasts for different model chains. Better model performance is indicated by lower scores.

chains remains. Therefore, the Diebold-Mariano test is carried out again for

a pairwise comparison of the different probabilistic models, see Table 5.

In contrast to the intraday forecasts, the results of the VARX-based mod-

els for all three scoring rules are in accordance with each other, namely, the

D-vine copula outperforms the MVN and UVN benchmarks. Hence, when

comparing the D-vine copula model to the MVN the highly negative test

statistics clearly indicate the D-vine copula model to provide the better fore-

cast performance with a confidence level above 99.9%. Furthermore, even

though there are some positive differences when comparing MVN and UVN

for the deterministic benchmark models (i.e., the UVN surpasses the MVN

approach in terms of the PM-B), the D-vine copula surpasses both approaches

clearly since these differences are statistically not significant. Finally, three
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Deterministic D-vine vs. MVN MVN vs. UVN

model ES VS1 VS2 ES VS1 VS2

PM-VARX −5.37∗∗∗ −1.73+ −1.74+ −6.2∗∗∗ −7.61∗∗∗ −7.66∗∗∗

VARX-B −7.48∗∗∗ −1.61 −1.62 −5.89∗∗∗ −8.25∗∗∗ −8.29∗∗∗

PM-B −13.16∗∗∗ −6.92∗∗∗ −7.02∗∗∗ −0.67 −2.02∗ −1.99∗

Table 5: Test statistic of the Diebold-Mariano test for pairwise comparison of the forecast

performance based on ES, VS1 and VS2 of the day-ahead forecasts. Confidence levels: No

symbol = H0 not rejected, (+) = 90% , (*) = 95%, (**) = 99%, (***) = 99.9%.

main findings of the probabilistic intraday forecasts may be retained for the

day-ahead forecasts:

1. The VARX-based models enable to take into account spatial depen-

dencies during deterministic modelling.

2. For day-ahead forecasts, the multivariate spatial dependency modelling

using D-vine copulas outperforms the MVN and UVN benchmarks.

Even though a more detailed modelling of the marginal distributions

(e.g. using kernel density estimators) may improve the forecasting per-

formance further, the spatial dependency modelling can be assumed to

be more relevant for the performance of day-ahead forecasts.

3. Furthermore, the findings suggest that the probabilistic forecasts are

more sensitive to the deterministic models than to the probabilistic

models.
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7. Conclusion

Probabilistic photovoltaic forecasts are mostly based either on completely

statistical approaches or neglect the underlying spatial structure, e.g., of

electricity networks. This paper goes further by introducing a hybrid ap-

proach for modelling spatially correlated probabilistic photovoltaic forecasts

and carrying out a comprehensive analysis using well-established models as

benchmarks. In opposite to previous research in this field a comprehensive

hybrid model chain with several improvements for intra-day and day-ahead

deterministic and probabilistic forecasts has been proposed. In this context,

several pre- and post-processing steps have been combined and benchmarked

using a case study for a certain location in the south of Germany. Therefore,

high-resolution numerical weather predictions and real-world measurement

data over several years have been used to demonstrate the advantages of

the proposed hybrid approach. The pre- and post-processing steps include

especially an improved irradiance decomposition using the Boland-Ridley-

Laurent model with individual calibration of the model parameters, an ad-

ditional post-processing using a vector autoregressive model with exogenous

variables, i.e., a VARX model, and introducing a novel normalization of fore-

casting errors. Furthermore parametric univariate marginal distributions and

a vine copula have been applied to cope with the remaining uncertainty of the

probabilistic forecasts. The results of the case study have been evaluated by

applying diverse deterministic and probabilistic performance measures while

considering statistical significance of the outcome as well.

As one of the key findings of this case study, the proposed hybrid approach

achieves the best results compared to different alternative model chains, i.e.,
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combinations of either a solely physical model or a solely VARX model to-

gether with either a vine copula model, a multivariate normal distribution

and, in particular, a product of univariate normal distributions. Another

key finding of this work is that although VARX models already account for

spatial dependencies, there is still a statistically significant interdependence

in the forecasting errors, justifying the use of vine copulas. Furthermore, one

of the key findings in this case study appears to be that probabilistic pho-

tovoltaic forecasts in general are more sensitive to the deterministic models

than to the probabilistic models for both, intraday and day-ahead forecasts,

respectively.

Therefore, the proposed hybrid approach offers advantages for all appli-

cations where high accuracy of the results and computational performance

of the models are crucial. For instance, in terms of online predictive grid

management systems most probabilistic forecasts are based on statistical

photovoltaic models, coming along with rather high computational effort,

and facing some elementary drawbacks compared to physical models. More-

over, these approaches are not able to estimate exceptional situations and

may be rather weak in out-of-sample applications, e.g., due to modifications

(i.e., expansion or removal of defective panels).

Further research could take the time-coupling of spatially interdependent

photovoltaic forecasting errors into account or extend the proposed vine cop-

ula model to other sources of uncertainty, e.g., wind or hydro power infeed.

As part of the future work, the authors are currently investigating spatio-

temporal probabilistic photovoltaic forecasts based on artificial neural net-

works. Furthermore, the key findings of this work can be used to investigate
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probabilistic forecasts of network congestions and form the basis for opti-

mization approaches to reduce renewable curtailment.
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