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Abstract The notion of stationary Apollonian packings in the d-dimensional Euclidean space is
introduced as a mathematical formalization of so-called random Apollonian packings and rotational
random Apollonian packings, which constitute popular grain packing models in physics. Apart from
dealing with issues of existence and uniqueness in the entire Euclidean space, asymptotic results are
provided for the growth durations and it is shown that the packing is space-filling with probability
1, in the sense that the Lebesgue measure of its complement is zero. Finally, the phenomenon is
studied that grains arrange in clusters and properties related to percolation are investigated.
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1 Introduction

The task of creating dense packings of non-overlapping grains is a classical problem which continues
to be a highly topical and important research question more than 2000 years after its initial appear-
ance [1, 20, 23]. As noted in [8], so-called random Apollonian packings can be used for modeling
dense packings of objects occurring in applications ranging from the study of tree crowns in dense
forests [15, 25] to the analysis of structural properties in porous materials [12, 21, 26]. To create such
packings one starts either from an initial set of objects with a specified size or with an initial set of
germs from which grains start to grow radially at equal speed. Whenever two growing grains meet,
both cease to grow. Then, iteratively, new germs are added, which grow until hitting an already
existing grain. In order to provide more realistic models, the initial set of germs is usually placed
at random. A realization of a two-dimensional random Apollonian packing is shown in Figure 1.
Denser packings can be achieved in so-called rotational random Apollonian packings, where each
grain is rotated around its germ so as to maximize the time of growth until some other grain is hit.
We refer the reader to [7] for a detailed analysis of this model.

From a mathematical perspective, it is an undesirable property of these packings that their
distribution could depend on the size of the sampling window or on properties of the initial seed.
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Fig. 1: Realization of a planar random Apollonian packing

Therefore, in the present paper we study a framework where points arrive in the entire Euclidean
space Rd according to a space-time point process of germs in Rd × [0,∞) which is stationary in its
spatial component. Although random Apollonian packings are based on a seemingly simple growth
mechanism, when considering extensions to the entire Euclidean plane, the size of a considered grain
potentially depends on the configuration of the point process in arbitrarily far away regions. Indeed,
in order to determine the growth duration of a considered grain, one requires some information on the
growth durations of surrounding germs. A priori it is not clear that these iterated dependencies can
be resolved and do not continue indefinitely. Hence, there is no simple expression that would allow
one to compute the growth duration of a considered grain by taking into account the configuration
of the process of grains in its surrounding. Due to this complicated dependency structure, the issue
of existence of extensions of Apollonian packings to the entire Euclidean space is a non-trivial one.

The growth protocol described above is of lilypond type. These growth protocols have been
investigated for almost 20 years, see e.g. [3, 4, 5, 9, 11, 13, 17], and by now there is a well-established
toolkit that can be used to tackle the question of existence. Loosely speaking, this suggests to define
stationary Apollonian packings as the packing that results from letting each grain grow until a
certain growth stopping time is reached, which may vary from one grain to another. This family
of growth-stopping times should satisfy two important properties. First, there are no overlappings
between grains, and second the growth of any grain is stopped by getting into contact with some
other grain. The first question considered in this paper deals with providing suitable sufficient
conditions that not only imply the existence of a family of growth-stopping times satisfying the two
constraints mentioned above, but also that this family is unique.

In a locally finite setting, i.e., if there are only a finite number of germs arriving in any bounded
region of Rd, the corresponding model is investigated in [9], where in addition to issues of existence
and uniqueness, also questions of percolation are studied and a central limit theorem is established.
In the present paper, after adapting classical methods to derive existence and uniqueness conditions
for stationary Apollonian packings, we move in a slightly different direction. Our primary goal is to
investigate effects that are distinctive for non-locally finite settings, i.e., for configurations where in
any bounded region of the Euclidean space an infinite number of germs are born. For this purpose,
we will assume that the process of germs is a spatially homogeneous Poisson point process, which
is independently marked using certain star-shaped grain shapes. The precise conditions on these
shapes will be discussed in Section 3.

As mentioned above, there is no simple formula expressing the growth duration of a given germ
in terms of properties of germs in its surrounding. Nevertheless, in the present paper, we show that
it is possible to describe some asymptotic properties of these growth durations as the time of birth
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tends to infinity. As time proceeds, the growth duration of newly-born germs should decrease, since
available (pore) space becomes narrower, so that it takes less time until an already existing grain
is hit. When considering a bounded sampling window, we show that growth durations decay at a
polynomial speed, in the sense that we provide both upper and lower polynomial bounds for growth
durations. We also provide numerical evidence for the conjecture that the upper bound is sharp.

Since in the setup considered in this paper germs arrive incessantly, the pore space left by
stationary Apollonian packings is shrinking as time proceeds. Note that large holes in the pore
space cannot persist for a long period of time, as grains induced by newly-arriving germs will fill up
these holes quickly. Hence, it is natural to expect that stationary Apollonian packings are space-
filling, in the sense that almost surely, the pore-space volume tends to 0 as time tends to infinity.
This will be shown in Section 5.

Finally, we consider questions of percolation. Formally, percolation of stationary Apollonian
packings can be captured by considering percolation on a directed graph on the process of germs,
where an edge is drawn from one germ to another if the grain corresponding to the latter one stops
the growth of the former one. Again, absence of percolation in lilypond models (see, e.g. [4, 11])
provides some useful intuition, but still care has to be taken. Indeed, the non-local finiteness induces
effects that are not present in the classical setup. First, we show that there is absence of oriented
percolation. This is in accordance with intuition, as directed edges tend to point in the direction
of larger grains. Hence, the infinitely many small grains that are added in the non-locally finite
model do not play a role. For non-oriented percolation, the rationale is different. Since bounded
sampling windows typically contain an infinite number of germs, we cannot hope for the absence of
percolation in the sense of obtaining cluster sizes consisting of finitely many grains. In fact, for a
packing of balls, we show under homogeneous Poisson assumptions that, with probability 1, every
cluster consists of infinitely many balls. On the other hand, we show that the reasoning for lilypond
models can indeed be adapted to prove absence of infinite-volume clusters. In fact, we conjecture
absence of percolation in the stronger sense that every cluster forms a bounded subset of Rd.

Our paper is organized as follows. First, in Section 2, we introduce some basic notation and state
our main results. Next, in Section 3, we derive a sufficient condition for existence and uniqueness of
stationary Apollonian packings. In Section 4, we show under Poisson assumptions that the growth
time of a grain whose germ had arrived at time t > 0 decays according to a power law in t and we
provide rigorous upper and lower bounds for the exponent depending only on the dimension and the
rate at which new germs enter the system. We also discuss the results of Monte Carlo simulations
which have been performed to study the dependence of this exponent on the rate at which new
germs arrive. Section 5 is devoted to the space-filling property of stationary Apollonian packings. In
Section 6, we observe that in stationary Apollonian packings, grains of the final configuration arrange
in clusters and we consider percolation-type properties including finiteness of the volume covered by
each cluster and absence of percolation after any finite amount of time. We also provide simulation
results for the number of connected components in a bounded sampling window depending on the
rate at which new germs arrive. Finally, in Section 7, we present further conjectures and possible
directions of future research.

2 Main results

Before analyzing various properties of stationary Apollonian packings, the first step is to prove a
rigorous existence and uniqueness result. In contrast to classical random Apollonian packings where
germs are added sequentially to a bounded sampling window and each grain grows until it touches
one of the previously determined grains, we consider a model defined in the entire Euclidean space
where several grains may grow simultaneously. In particular, the size of a given grain not only
depends on the space-time location of earlier germs, but can also be influenced by germs which
appear at a later point in time. As explained in Section 1, the well-definedness of such a model is a
non-trivial issue, and we establish a sufficient condition for existence and uniqueness of stationary
Apollonian packings based on the absence of a specific variant of descending chains. To make this
precise, we first introduce some basic notation.
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Let d ≥ 2 be any fixed integer. We define Rd,+ = Rd×[0,∞). Let Qr(ξ) = ξ+[−r/2, r/2]d denote
the d-dimensional cube of side length r > 0 centered at ξ ∈ Rd. For any B ⊂ Rd we write intB and
∂B for the topological interior and the topological boundary of B, respectively. By S we denote
the set of all compact, star-shaped subsets B ⊂ Rd such that 1) the star center is given by the
origin o ∈ Rd and 2) intB = ∪t<1tB, where tB = {tb : b ∈ B}. Note that the second condition has
important implications. For instance, it allows us to conclude that for any B ∈ S we have B ⊂ int sB
for any s > 1. Additionally, if ξ1, ξ2 ∈ Rd and B1, B2 ∈ S satisfy (ξ1 + intB1) ∩ (ξ2 + intB2) = ∅,
then (ξ1 +B1)∩ (ξ2 + intB2) = ∅. Furthermore, we put Rd,+,S = Rd,+×S and say that ϕ ⊂ Rd,+,S
is locally finite if ϕ ∩ (B × S) is finite for every bounded Borel set B ⊂ Rd,+. For r0 > 0 we let
N(r0) denote the family of all locally finite subsets ϕ of Rd,+,S which are r0-bounded in the sense
that ` ⊂ Qr0(o) for all (ξ, τ, `) ∈ ϕ. Finally, we put N∗ = ∪r0>0N(r0).

If there is no collision with other grains, then we assume that any grain grows homothetically and
linearly in time, where the center of the homothety is given by the spatial location of the associated
germ. To be more precise, define the function g : ϕ× [0,∞)→ B(Rd) by

g((ξ, τ, `), t) =

{
ξ + (t− τ)` if t ≥ τ,
∅ otherwise,

where B(Rd) denotes the σ-algebra of Borel sets in Rd. For x ∈ ϕ write ϕx ⊂ ϕ for the subset
consisting of x and those y = (η, σ, `′) ∈ ϕ with η ∈ int g(x, σ). In a sense, germs from ϕx are not
important for the growth of the grain at x. Indeed, the interaction between grains will be defined
in such a way that any germ y = (η, σ, `′) ∈ ϕx does not influence the growth of the grain at x: at
time σ either the grain corresponding to x does not grow any longer, or the appearance of the germ
y does not play a role, since its spatial coordinate η is covered by the interior of the grain at x.

Next, we define the notion of a family of growth-stopping times, which is closely related to the
kind of dynamic lilypond models that has been introduced in [9]. These growth-stopping times
are used to describe two key features of stationary Apollonian packings. On the one hand, they
constitute hard-core particle packings in the sense that no two grains can overlap. That is, once a
grain is in contact with some other grain, it stops growing. On the other hand, for any grain there
exists a stopping neighbor provided that this grain does not grow for an unbounded amount of time
and that its germ is not covered by an existing grain. Loosely speaking, the stopping neighbor can
be thought of as the first grain that will get into contact with the given grain.

Definition 1 A function f : ϕ → [0,∞] with f(ξ, τ, `) ≥ τ for all (ξ, τ, `) ∈ ϕ is said to define a
family of ϕ-growth-stopping times if the following two conditions are satisfied.

(H) Hard-core property. (int g(x, f(x))) ∩ g(y, f(y)) = ∅ for all x ∈ ϕ and y ∈ ϕ \ ϕx.
(N) Existence of stopping neighbors. If x = (ξ, τ, `) ∈ ϕ is such that f(x) < ∞, then there exists

y ∈ ϕ \ ϕx such that
(a) ξ ∈ int g(y,min{τ, f(y)}), or
(b) f(y) ≤ f(x) and g(x, f(x)) ∩ g(y, f(y)) 6= ∅.

In other words, the hard-core property says that grains cannot overlap. It also ensures that the
spatial coordinate η of a germ y = (η, σ, `′) ∈ ϕ can be covered by the interior of the grain at x ∈ ϕ
only if y ∈ ϕx. An element y ∈ ϕ \ ϕx as in property (N) is called stopping neighbor of x. The
existence of stopping neighbors means that if a grain does not grow for an unbounded amount of
time and its germ is not covered by an existing grain, then there exists another grain with smaller or
equal growth-stopping time, and which is in contact with the considered grain. Furthermore, for any
given ϕ, we briefly say family of growth-stopping times instead of family of ϕ-growth-stopping times.
As mentioned above, existence and uniqueness of growth-stopping times are non-trivial issues. We
will derive a sufficient condition based on a specific notion of descending chains.

Definition 2 Let ϕ ∈ N∗. A sequence {xn}n≥1 of elements in ϕ is said to form a strong descending
chain if there exists a sequence {tn}n≥1 of non-negative numbers such that

(i) tn > tn+1 for all n ≥ 1,
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(ii) xn1 6= xn2 for all n1, n2 ≥ 1 with n1 6= n2,
(iii) g(xn, tn) ∩ g(xn+1, tn) 6= ∅ and g(xn, tn+1) ∩ g(xn+1, tn+1) = ∅ for all n ≥ 1.

For questions of percolation, a weaker form of descending chains will also play an important role.
Since this concept is not needed to state our main results, we defer its introduction to Section 3.2.
In Section 3, we prove the following result on the existence and uniqueness of limit configurations.

Theorem 1 Let ϕ ∈ N∗ and assume that ϕ does not contain strong descending chains. Then, there
exists a unique family of ϕ-growth-stopping times fϕ : ϕ→ [0,∞].

Theorem 1 builds on earlier work regarding the well-definedness of various models of stochastic
geometry in the whole space. As already mentioned in Section 1, the growth protocol underlying the
stationary Apollonian packings is of lilypond type and for lilypond systems existence and uniqueness
results have been thoroughly investigated in literature (see, e.g. [9, 11, 13]). However, the idea
behind imposing the absence of descending chains, namely that the configuration in a bounded
sampling window should not be influenced by points that are arbitrarily far away, also appears in
the investigation of sandpile models [10]. Indeed, in [10] the absence of ‘infinite backwards chains
of topplings’ is used to establish the well-definedness of limit configurations of topplings.

Next, we show that the sufficient condition in Theorem 1 is fulfilled with probability 1 for a
large class of spatially stationary marked point processes. If r0 > 0 and (Ω,F ,P) is any probability
space, a function Φ : Ω → N(r0) is said to be a marked point process in Rd,+,S if #(Φ ∩ B) is an
integer-valued random variable for every Borel set B ⊂ Rd,+,S whose projection to Rd,+ is bounded.
In the following, we say that Φ is spatially stationary, if the distribution of the marked point process
{(ξ + η, t, L)}(ξ,t,L)∈Φ does not depend on the choice of η ∈ Rd. Additionally, we say that Φ is m-

dependent if for any bounded Borel sets A,B ⊂ Rd that are of distance at least m the marked point
processes Φ ∩ (A× [0,∞)× S) and Φ ∩ (B × [0,∞)× S) are independent.

Theorem 2 Let Φ be a marked point process in Rd,+,S . Assume that Φ is spatially stationary and
m-dependent for some m ≥ 1. Then, almost surely, Φ does not contain a strong descending chain.

After having established a sufficient condition for the a.s. absence of strong descending chains in
Φ, we address the issue of percolation of stationary Apollonian packings. First, it is convenient to
associate with each ϕ ∈ N∗ a directed graph G(ϕ) encoding the stopping-neighbor relation.

Definition 3 Let ϕ ∈ N∗ and suppose that ϕ does not admit strong descending chains. Define a
directed graph G(ϕ) on the vertex set ϕ as follows. For x, y ∈ ϕ an edge is drawn from x to y if and
only if y constitutes a stopping neighbor of x. Furthermore, G′(ϕ) denotes the undirected graph on
the vertex set ϕ, where x, y ∈ ϕ are connected by an edge if and only if there is an edge from x to
y in G(ϕ) or there is an edge from y to x in G(ϕ).

Our goal is to analyze various properties of the connected components of G(Φ) and G′(Φ) for a
suitable class of spatially stationary marked point processes Φ. A realization of the graph G′(Φ) is
shown in Figure 2.

First, we consider the problem of oriented percolation in the directed graph G(Φ), recalling that
oriented percolation is said to occur in a directed graph if it contains an infinite directed self-avoiding
path. In the following, we say that the marked point process Φ is independently marked if it can
be represented as {(xi, Li)}i≥1, where {xi}i≥1 is a sequence of random vectors in Rd,+ and {Li}i≥1
denotes a family of independent and identically distributed r0-bounded random elements of S that
are independent of {xi}i≥1. We also need the notion of second factorial moment measures of point
processes, see e.g. [24].

Theorem 3 Let m ≥ 1 and Φ be an independently marked point process, where the projection of
Φ to Rd,+ is a spatially stationary, m-dependent point process in Rd,+ with absolutely continuous
second factorial moment measure. Then, with probability 1, there is no oriented percolation in G(Φ).

The issue of non-oriented percolation is more involved. Therefore, we now require additionally
that with probability 1 each x ∈ Φ admits precisely one stopping neighbor y ∈ Φ. In Section 6.3, we
will present specific examples of stationary point processes satisfying this condition. In the following,
for any x ∈ Φ let Cx ⊂ G′(Φ) be the connected component of G′(Φ) containing x.
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Fig. 2: Realization of the graph G′(Φ) and the underlying Apollonian packing

Theorem 4 Let m ≥ 1 and Φ be an independently marked point process, where the projection of Φ to
Rd,+ is a spatially stationary, m-dependent point process in Rd,+ with absolutely continuous second
factorial moment measure. Furthermore, assume that with probability 1 each x ∈ Φ admits precisely
one stopping neighbor y ∈ Φ. Then, with probability 1, the cluster volume νd

(⋃
y∈Cx g(y, fΦ(y))

)
is

finite for all x ∈ Φ, where νd denotes the Lebesgue measure in Rd.

Theorem 4 can be seen as an analogue of the absence of percolation in classical lilypond models [4,
11]. However, when investigating not the volume, but the number of grains in a cluster, then the
behavior is radically different in the sense that with probability 1, all clusters percolate. We prove
this claim for a specific model, where the grains are constant and equal to B1(o), the unit ball in
Rd which is centered at the origin.

Theorem 5 Consider the marked point process Φ = Ψ ×B1(o), where Ψ is a homogeneous Poisson
point process in Rd,+ with intensity λ > 0. Then, almost surely, for every x ∈ Φ there exist infinitely
many y = (η, σ,B1(o)) ∈ Cx with fΦ(y) > σ.

Next, we study the dependence of the growth duration of grains on the time of arrival of the
corresponding germ. We will see that asymptotically this duration is contained within some polyno-
mial bounds. In order to derive these bounds, we assume that Φ is an independently marked Poisson
point process such that the intensity function λ : Rd,+ → [0,∞) of the underlying unmarked Poisson
point process is given by

λ(ξ, τ) = λ(1 + τ)α, (1)

for some α > −1 and λ > 0. Note that for α = 0, we obtain a stationary space-time Poisson point
process in Rd,+. But by choosing α to be either strictly negative or strictly positive, we can also
consider models where the rate at which new germs appear either decreases or increases over time.

First, we derive an upper bound. For ε ∈ (0, 1), t > 0 let Et,ε denote the event that there exists
x = (ξ, τ, `) ∈ Φ ∩

(
Q1(o)× [t,∞)× S

)
with fΦ(x)− τ ≥ τ−α1+ε, where α1 = (α+ 1)/d.

Theorem 6 Let Φ be an independently marked Poisson point process such that the intensity function
λ : Rd,+ → [0,∞) of the underlying unmarked Poisson point process is given by (1). Furthermore,
assume that there exists r1 > 0 such that Qr1(o) ⊂ L for all (ξ, τ, L) ∈ Φ. Then, for every ε ∈ (0, 1)
there exist t1, c1 > 0 such that P(Et,ε) ≤ exp(−tc1) for all t ≥ t1.

In particular, using the Borel-Cantelli lemma shows that with probability 1 there exists a random
time T1 ∈ (0,∞) such that

fΦ(x)− τ ≤ τ−α1+ε for all x = (ξ, τ, `) ∈ Φ ∩
(
Q1(o)× [T1,∞)× S

)
. (2)
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Next, we derive a lower bound on the growth duration, which corresponds to (2). Here and in
the following, let SOd denote the group of rotations in Rd. Of course, the definition of indepen-
dently marked point processes can easily be modified to allow marks in SOd instead of marks in S.
Furthermore, we put α2 = (1 + 1/d)(α+ 1).

Theorem 7 Let Φ′ = {(ξi, τi, Θi)}i≥1 be an independently SOd-marked Poisson point process such
that the intensity function λ : Rd,+ → [0,∞) of the underlying unmarked Poisson point process is
given by (1). Put Φ = {(ξi, τi, Θi(A))}, where A = {z ∈ Rd : β(z) ≤ 1} ∈ S is the unit ball with
respect to a certain norm β(·) on Rd. Let ε ∈ (0, 1) be arbitrary. Then with probability 1, there exists
a random time T2 <∞ such that fΦ(x)−τ ≥ τ−α2−ε for all x = (ξ, τ, `) ∈ Φ∩

(
Q1(o)× [T2,∞)×S

)
such that fΦ(x) > τ .

Finally, under the same assumptions as in Theorem 7, we show that the stationary Apollonian
packing AP(Φ) defined by

AP(Φ) =
⋃
x∈Φ

int g(x, fΦ(x))

is a.s. space-filling. To be more precise, considering the pore space Rd\AP(Φ) as a stationary random
closed set [24], we show that with probability 1 its Lebesgue measure is equal to 0.

Theorem 8 Let Φ be an independently marked point process that is constructed as in Theorem 7.
Then, the packing AP(Φ) is a.s. space-filling, i.e., P

(
νd
(
Rd \ AP(Φ)

)
= 0
)

= 1.

3 Existence and uniqueness

Section 3.1 is devoted to the proof of Theorem 1. In Section 3.2, we relate absence of `-descending
chains to absence of percolation in specific graphs and also show that the almost sure absence of
percolation holds for a large class of independently marked point processes, which contains e.g. spa-
tially homogeneous Poisson point processes with absolutely continuous intensity function. We also
discuss a specific family of not necessarily independently marked models consisting of stationary
approximations to rotational random Apollonian packings.

3.1 A sufficient condition based on absence of descending chains

As observed in [9], Apollonian packings are intimately related to the well-studied lilypond models
initially introduced in [11]. Various techniques have been established to prove existence and unique-
ness of lilypond models on different levels of generality. For our purposes, the approaches described
in [6, 9, 13] turn out to be most suitable. However, the main difference from [9] lies in the assump-
tions on the space-time process of germs. While this process is assumed to be spatially locally finite
in [9], we deal with configurations that are locally finite only in the space-time domain. Considering
finite-time approximations and using further adaptations, the techniques developed in [6, 9] are
powerful enough to derive the desired results in the present setting. Still, to make our presentation
self-contained, we provide a detailed proof of Theorem 1. We first consider models truncated at a
finite time t0 > 0, where it will be convenient to use the abbreviations Rd,t0,S = Rd × [0, t0] × S
and Nt0,∗ = {ϕ ∈ N∗ : ϕ ⊂ Rd,t0,S}. Furthermore, for the proof it is convenient to consider some
variants of conditions (H) and (N), which are less intuitive but more convenient for proofs. Later,
in Lemma 10, we will see that when allowing also t0 =∞, then these new conditions are equivalent
to conditions (H) and (N).

Definition 4 Let t0 > 0 and ϕ ∈ Nt0,∗. Then, a function f : ϕ → [0, t0] with f(ξ, τ, `) ≥ τ for all
(ξ, τ, `) ∈ ϕ is said to define a family of (t0, ϕ)-growth-stopping times if the following two conditions
are satisfied.

(H′) Hard-core property. (int g(x, f(x))) ∩ g
(
y,min{f(x), f(y)}

)
= ∅ for all x ∈ ϕ and y ∈ ϕ \ ϕx.
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(N′) Existence of stopping neighbors. For all x ∈ ϕ with f(x) < t0 there exists y ∈ ϕ \ ϕx with
g(x, f(x)) ∩ g

(
y,min{f(x), f(y)}

)
6= ∅.

For Lemmas 1–9 and Corollaries 1–2 we assume that t0 > 0 and ϕ ∈ Nt0,∗. If t0 and ϕ are
given, then we also say family of growth-stopping times instead of family of (t0, ϕ)-growth-stopping
times. Note that most arguments in the present section can be extended to the case, where the
r0-boundedness assumption of the grains is replaced by the weaker condition that the system of
grains {` + ξ}x=(ξ,τ,`)∈ϕ defines a locally finite family of compact sets. Nevertheless, in order to
make the presentation more accessible, we restrict ourselves to the r0-bounded case.

Another very useful property of growth-stopping times – which initially has been observed in [13]
– is their possible interpretation as fixed points of a specific operator Tt0 : [0, t0]ϕ → [0, t0]ϕ, [0, t0]ϕ

denoting the family of functions from ϕ to [0, t0]. Given a proposal h : ϕ → [0, t0] for a family
of growth-stopping times and a germ x ∈ ϕ the value of the new function Tt0h evaluated at x is
given by the largest time t such that the grain g(x, t) intersects neither another growing grain nor
any grain that has stopped growing at the time described by the function h. More precisely, for
h : ϕ→ [0, t0] define the function Tt0h : ϕ→ [0, t0] by

(Tt0h)(x) = sup
{
t ∈ [0, t0] : g(x, t) ∩ ∪y∈ϕ\ϕx g(y,min{t, h(y)}) = ∅

}
.

Additionally, let (St0h)(x) denote the set of all points of ϕ where the above supremum is assumed,
i.e., all y = (η, σ, `′) ∈ ϕ \ ϕx such that

g(x, Tt0h(x)) ∩ g(y,min{Tt0h(x), h(y)}) 6= ∅.

Our interest in Tt0 is based on the following observation.

Lemma 1 Let f ∈ [0, t0]ϕ with f(ξ, τ, `) ≥ τ for all (ξ, τ, `) ∈ ϕ. Then, f defines a family of
growth-stopping times if and only if Tt0f = f . Additionally, under these equivalent conditions, if
x ∈ ϕ is such that f(x) < t0, then every element of St0f(x) constitutes a stopping neighbor of x.

Proof. First, assume Tt0f = f and observe that the hard-core property is immediately implied by
the definition of Tt0 . Furthermore, if x ∈ ϕ is such that f(x) < t0, then clearly any y ∈ (St0f)(x)
forms a stopping neighbor of x.

To prove the other direction, assume that f defines a family of growth-stopping times and let
x ∈ ϕ be arbitrary. For the inequality Tt0f(x) ≤ f(x) assume for the sake of deriving a contradiction
that there exists t > 0 with t ∈ (f(x), Tt0f(x)) and let y ∈ ϕ be a stopping neighbor of x. Then
g(x, t)∩ g(y,min{t, f(y)}) 6= ∅, which contradicts the definition of Tt0f(x). To show Tt0f(x) ≥ f(x)
assume that there exists t > 0 with t ∈ (Tt0f(x), f(x)) and let y ∈ St0f(x). In particular, using
condition 2) of the definition of S we conclude that g(x, Tt0f(x)) ⊂ int g(x, t), so that (int g(x, t))∩
g(y,min{t, f(y)}) 6= ∅. However, this yields a contradiction to the hard-core property. ut

We note the following useful properties of Tt0 and refer the reader to [13, Proposition 3.1] for a
detailed discussion of the respective statements for lilypond models.

Lemma 2 Let h1, h2 ∈ [0, t0]ϕ be such that h1(x) ≤ h2(x) for all x ∈ ϕ. Then Tt0h1(x) ≥ Tt0h2(x)
for all x ∈ ϕ.

Proof. Applying the definition of Tt0 shows immediately that Tt0h1(x) ≥ Tt0h2(x) for all x ∈ ϕ. ut

Lemma 3 Let (hn)n≥1 be a sequence of functions hn : ϕ→ [0, t0] with hn(ξ, τ, `) ≥ τ for all n ≥ 1
and (ξ, τ, `) ∈ ϕ. If (hn)n≥1 converges pointwise to a function h : ϕ → [0, t0], then (Tt0hn)n≥1
converges pointwise to Tt0h.

Proof. Let x ∈ ϕ be arbitrary. To prove Tt0h(x) ≥ lim supn→∞ Tt0hn(x), assume there exists t > 0
with t ∈ (Tt0h(x), lim supn→∞ Tt0hn(x)). Choose y = (η, σ, `′) ∈ ϕ \ ϕx such that

(int g(x, t)) ∩ g(y,min{t, h(y)}) 6= ∅. (3)
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Then, from t < lim supn→∞ Tt0hn(x) we conclude g(x, t)∩g(y,min{t, hn(y)}) = ∅ for infinitely many
n ≥ 1, which implies (int g(x, t))∩g(y,min{t, h(y)}) = ∅. However, the latter identity contradicts (3).

To prove Tt0h(x) ≤ lim infn→∞ Tt0hn(x), assume t ∈ (lim infn→∞ Tt0hn(x), Tt0h(x)) for a suit-
able t > 0. Since t > lim infn→∞ Tt0hn(x), we may choose y = (η, σ, `′) ∈ ϕ \ ϕx such that

g(x, t) ∩ g(y,min{t, hn(y)}) 6= ∅ (4)

for infinitely many n ≥ 1. In particular, g(x, t) ∩ g(y,min{t, h(y)}) 6= ∅. However, from Tt0h(x) > t
we conclude g(x, t) ∩ g(y,min{t, h(y)}) = ∅, contradicting (4). ut

In the following, we construct a family of growth-stopping times f : ϕ → [0, t0] by providing a
family of functions (fn)n≥0 such that (f2n)n≥0 converges to f from above and (f2n+1)n≥0 converges
to f from below. To be more precise, for n = 0 we put f0 = t0 and for n ≥ 0 we define recursively
fn+1 = Tt0f

n. By definition of g and Tt0 , we have τ ≤ fn(x) ≤ t0 for all n ≥ 0 and x = (ξ, τ, `) ∈ ϕ.
For the proof of the uniqueness of growth-stopping times, the following result is useful.

Lemma 4 If f ∈ [0, t0]ϕ is a family of growth-stopping times, then f2n+1(x) ≤ f(x) ≤ f2n(x) for
all n ≥ 0 and x ∈ ϕ.

Proof. The assertion follows immediately from Lemmas 1 and 2. ut

The convergence of the sequences (f2n)n≥0 and (f2n+1)n≥0 is based on the following result.

Lemma 5 For every n ≥ 0 and x ∈ ϕ, it holds that

(i) f2n(x) ≥ f2n+2(x),
(ii) f2n+1(x) ≤ f2n+3(x),
(iii) f2n+1(x) ≤ min{f2n(x), f2n+2(x)}.

Proof. Properties (i)-(iii) follow immediately from Lemma 2 by induction. ut

In particular, Lemma 5 yields functions f−, f+ : ϕ→ [0, t0] such that for every x ∈ ϕ,

(i) limn→∞ f
2n(x) = f+(x),

(ii) limn→∞ f
2n+1(x) = f−(x),

(iii) f−(x) ≤ f+(x).

We also note an immediate corollary to Lemma 3.

Corollary 1 The identities f−(x) = Tt0f
+(x) and f+(x) = Tt0f

−(x) hold for all x ∈ ϕ.

The next step in the construction of a family of growth-stopping times consists in deriving a
suitable sufficient condition that implies f−(x) = f+(x) for all x ∈ ϕ. To achieve this goal, we need
the following two auxiliary results, which show that growth-stopping times decrease when passing
to stopping neighbors.

Lemma 6 Let h, h′ ∈ [0, t0]ϕ be such that Tt0h
′ = h and h′ = Tt0h. If x = (ξ, τ, `) ∈ ϕ and

y ∈ St0h′(x) are such that ξ 6∈ int g(y,min{τ, h′(y)}), then h′(y) ≤ h(x).

Proof. We assume h′(y) > h(x) for the sake of deriving a contradiction. First, we deduce from
Tt0h

′(x) = h(x) that h(x) ≥ τ . Next, if x ∈ ϕy, then ξ ∈ int g(y, τ) (note that the roles of x and y
are switched in comparison to the definition in Section 2). Thus, h′(y) > h(x) ≥ τ would contradict
our assumption ξ 6∈ int g(y,min{τ, h′(y)}). Therefore, we may assume x 6∈ ϕy. By definition of
y, we have g(x, h(x)) ∩ g(y, h(x)) 6= ∅ and since x 6∈ ϕy the assumption h′(y) = Tt0h(y) implies
(int g(y, h′(y))) ∩ g(x, h(x)) = ∅. However, taken together, these two relations yield a contradiction
to h(x) < h′(y). ut

Corollary 2 Let f ∈ [0, t0]ϕ be a family of growth-stopping times. If x = (ξ, τ, `), y ∈ ϕ are such
that y is a stopping neighbor of x and ξ 6∈ int g(y,min{τ, f(y)}), then f(y) ≤ f(x).
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Proof. Assume that f(y) > f(x). Then, using f(x) ≥ τ and ξ 6∈ int g(y,min{τ, f(y)}), we conclude
that x 6∈ ϕy. Next, since y is a stopping neighbor of x, we have g(x, f(x)) ∩ g(y, f(x)) 6= ∅. Hence,
int(g(y, f(y))) ∩ g(x, f(x)) 6= ∅ which contradicts (H′). ut

The following result describes in greater detail the consequences of f−(x) < f+(x).

Lemma 7 Let x ∈ ϕ be such that f−(x) < f+(x). Then for all y ∈ St0f+(x),

(i) f−(y) < min{f−(x), f+(y)},
(ii) g(x, f−(x)) ∩ g(y, f−(x)) 6= ∅,
(iii) g(x, f−(y)) ∩ g(y, f−(y)) = ∅.

Proof. Throughout the proof, we write x = (ξ, τ, `). First, assume that ξ ∈ int g(y,min{τ, f+(y)}),
so that f−(x) = τ . We can use Corollary 1 to deduce that Tt0f

−(x) = f+(x). Hence, applying the
definition of Tt0 gives

(int g(x, f+(x))) ∩ g(y,min{f+(x), f−(y)}) = ∅, (5)

so that f−(y) < τ . For the second part of (i) we observe that f+(y) = f−(y) would imply ξ ∈
int g(y, f−(y)), which contradicts (5). Property (ii) is clear by the choice of y. Finally, (iii) follows
immediately from f−(x) = τ and (i).

It remains to consider the case where ξ 6∈ int g(y,min{τ, f+(y)}). By Lemma 6, we have f+(y) ≤
f−(x), so that f−(y) < f−(x) follows once f−(y) < f+(y) is verified. For the latter, observe
that f−(y) = f+(y) would yield a contradiction to the relations g(x, f−(x)) ∩ g(y, f+(y)) 6=
∅, (int g(x, f+(x))) ∩ g(y, f−(y)) = ∅ and our assumption f−(x) < f+(x). From g(x, f−(x)) ∩
g(y, f+(y)) 6= ∅ we deduce g(x, f−(x)) ∩ g(y, f−(x)) 6= ∅, which is (ii). Finally, we also have
(int g(x, f−(x)))∩g(y, f+(y)) = ∅, which implies (iii), since f−(y) < f−(x) and f−(y) < f+(y). ut

Lemma 7 can be used to prove that if there exists x ∈ ϕ with f−(x) < f+(x), then ϕ contains
a strong descending chain.

Lemma 8 If there exists x ∈ ϕ with f−(x) < f+(x), then ϕ contains a strong descending chain.

Proof. We define the sequence {xn}n≥1 with xn ∈ Rd,t0,S for n ≥ 1 recursively by putting x1 = x
and by choosing xn+1 ∈ ϕ to be an arbitrary element from St0f

+(xn). Here St0f
+(xn) 6= ∅, since

Lemma 7 implies that f−(xn) < f+(xn) ≤ t0. Furthermore, we put tn = f−(xn). Then Lemma 7
shows that {xn}n≥1 forms a strong descending chain using the sequence of times {tn}n≥1. ut

As corollary, we obtain existence and uniqueness of (t0, ϕ)-growth-stopping times.

Corollary 3 If ϕ does not contain strong descending chains, then there exists a unique family of
(t0, ϕ)-growth-stopping times ft0,ϕ : ϕ→ [0, t0].

Proof. Lemma 8 shows that f−(x) = f+(x) for all x ∈ ϕ, so that Corollary 1 yields f+ = Tt0f
+.

Hence, by Lemma 1, ft0,ϕ = f+ defines a family of (t0, ϕ)-growth-stopping times. Regarding unique-
ness, if f is any family of (t0, ϕ)-growth stopping times, then Lemma 4 yields f = f+. ut

To pass from Rd,t0,S to Rd,+,S we use the following compatibility result.

Lemma 9 Let 0 < t′0 < t0, and f ∈ [0, t0]ϕ be a family of (t0, ϕ)-growth-stopping times. Then

f ′ = min{f, t′0} defines a family of (t′0, ϕ ∩ Rd,t′0,S)-growth-stopping times.

Proof. Since the hard-core property is immediate, it suffices to show existence of stopping neighbors
with respect to ϕ ∩ Rd,t′0 . So let x = (ξ, τ, `) ∈ ϕ ∩ Rd,t′0,S be such that f(x) < t′0 and let y =
(η, σ, `′) ∈ ϕ \ ϕx denote a stopping neighbor of x with respect to ϕ. We distinguish two cases

and first assume ξ ∈ int g(y,min{τ, f(y)}). Then, y ∈ ϕ ∩ Rd,t′0,S and min{τ, f(y)} = min{τ, f ′(y)}
which shows that y is a stopping neighbor of x with respect to ϕ ∩ Rd,t′0,S . On the other hand, if
ξ 6∈ int g(y,min{τ, f(y)}) then we may apply Corollary 2 to deduce σ ≤ f(y) ≤ f(x) < t′0. Hence, y

is contained in ϕ ∩ Rd,t′0,S and therefore forms a stopping neighbor of x in ϕ ∩ Rd,t′0,S . ut
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It can be checked that the result of Lemma 9 is also true in the case t0 =∞, i.e., when ϕ ⊂ Rd,+,S .
Here, we say that a function f : ϕ → [0,∞] with f(ξ, τ, `) ≥ τ for all (ξ, τ, `) ∈ ϕ defines a family
of (∞, ϕ)-growth-stopping times if the following two conditions are satisfied.

(H′′) Hard-core property. (int g(x, f(x))) ∩ g
(
y,min{f(x), f(y)}

)
= ∅ for all x ∈ ϕ and y ∈ ϕ \ ϕx.

(N′′) Existence of stopping neighbors. For all x ∈ ϕ with f(x) < ∞ there exists y ∈ ϕ \ ϕx with
g(x, f(x)) ∩ g

(
y,min{f(x), f(y)}

)
6= ∅.

Before proving Theorem 1, we show that conditions (H) and (N) are equivalent to conditions
(H′′) and (N′′).

Lemma 10 Let ϕ ∈ N∗ and f ∈ [0,∞]ϕ be such that f(ξ, τ, `) ≥ τ for all (ξ, τ, `) ∈ ϕ. Then,
conditions (H) and (N) are equivalent to conditions (H′′) and (N′′).

Proof. Assume that conditions (H) and (N) hold. Condition (H′′) is a direct consequence of condition
(H). To verify condition (N′′), let x ∈ ϕ be such that f(x) <∞ and let y ∈ ϕ be as in condition (N).
First, if ξ ∈ int g(y,min{τ, f(y)}), then g(x, f(x)) ∩ g

(
y,min{f(x), f(y)}

)
contains ξ. On the other

hand, if f(y) ≤ f(x) and g(x, f(x)) ∩ g(y, f(y)) 6= ∅, then g(x, f(x)) ∩ g
(
y,min{f(x), f(y)}

)
6= ∅.

For the other direction, assume that conditions (H′′) and (N′′) hold. To verify condition (H), let
x = (ξ, τ, `) ∈ ϕ and y = (η, σ, `′) ∈ ϕ \ ϕx be arbitrary. Condition (H) is satisfied if f(x) = τ , so
that we may assume f(x) > τ . If f(y) ≤ f(x), then condition (H′′) shows that (int g(x, f(x))) ∩
g(y, f(y)) = ∅, so that we can restrict to the case f(y) > f(x). In particular, (int g(x, f(x))) ∩
g(y, f(x)) = ∅, which shows that x 6∈ ϕy. Hence, we can again apply condition (H′′) (with reversed
roles of x and y) to conclude the verification of condition (H). Finally, we verify condition (N). Let
x = (ξ, τ, `) ∈ ϕ be such that f(x) < ∞ and let y ∈ ϕ \ ϕx be as in condition (N′′). If y is such
that ξ 6∈ int g(y,min{τ, f(y)}), then we can argue as in the proof of Corollary 2 that f(y) ≤ f(x).
Indeed, in order to derive a contradiction, we assume that f(y) > f(x). Hence, condition (N′′) gives
g(x, f(x))∩g(y, f(x)) 6= ∅. In particular, int(g(y, f(y)))∩g(x, f(x)) 6= ∅ which contradicts (H′′). ut

Proof of Theorem 1. Using Corollary 3, we see that for all n ≥ 1 there exists a unique (n, ϕ∩Rd,n,S)-
growth-stopping time fn,ϕ∩Rd,n,S . Define a function f : ϕ→ [0,∞] by

f(x) = lim
n→∞
n≥n0

fn,ϕ∩Rd,n,S (x), (6)

where n0 ≥ 1 is chosen such that x ∈ ϕ ∩ Rd,n0,S . Using Lemma 9 we see that the limit (6)
exists (or converges to ∞) and (using Lemma 10) that f : ϕ → [0,∞] constitutes a well-defined
ϕ-growth-stopping time. We also conclude from Lemma 9 and the subsequent remark that any
ϕ-growth-stopping time f ′ satisfies min{f ′(x), n} = fn,ϕ∩Rd,n,S (x) for all x ∈ ϕ, which proves
uniqueness. ut

3.2 Descending chains and dependent percolation

In Section 3.1 we solved the problem of existence and uniqueness of stationary Apollonian packings
under the condition of absence of strong descending chains. Hence, it is worthwhile to verify this
condition for a large class of spatially stationary point processes.

In the case of convex grains, general sufficient conditions have been derived for a closely related
variant of descending chains in [9], which requires suitable bounds on the factorial moment mea-
sures of the underlying point process. We propose a further method which is especially useful in
situations with finite range of dependence. To be more precise, the a.s. absence of strong descending
chains holds for spatially stationary m-dependent marked point processes, see Proposition 2 below.
This observation will be useful when constructing approximations to optimally rotated Apollonian
packings in Section 3.3.

We follow a similar approach to [14] and relate the existence of descending chains to percolation
in specific graphs on the vertex set ϕ. The absence of percolation in these graphs may be proven
within the dependent percolation framework of [19].

11



Definition 5 Let b ≥ 0, ε > 0 and ϕ ∈ N∗. Then, define a graph Gs(ϕ, b, ε) on ϕ as follows. Two
vertices x, y ∈ ϕ are connected by an edge in Gs(ϕ, b, ε) if and only if g(x, b + ε) ∩ g(y, b + ε) 6= ∅
and g(x, b) ∩ g(y, b) = ∅.

We say that a (directed) graph percolates if there exists a (directed) self-avoiding path consisting
of infinitely many vertices. The following result clarifies the relation between percolation ofGs(ϕ, b, ε)
and strong descending chains.

Lemma 11 Let ϕ ∈ N∗. If ϕ admits a strong descending chain, then there exists b ≥ 0 such that
Gs(ϕ, b, ε) percolates for all ε > 0.

Proof. Let {xn}n≥1 be a strong descending chain for some sequence {tn}n≥1 and let ε > 0 be
arbitrary. Since {tn}n≥1 forms a strictly decreasing sequence converging to some limit b and since
g(xn, tn)∩g(xn+1, tn) 6= ∅ for all n ≥ 1, there exists n0 ≥ 1 such that g(xn, b+ε)∩g(xn+1, b+ε) 6= ∅
for all n ≥ n0. Moreover, from tn > tn+1 and g(xn, tn+1)∩g(xn+1, tn+1) = ∅ for all n ≥ 1 we conclude
g(xn, b) ∩ g(xn+1, b) = ∅ for all n ≥ 1. Hence, xn and xn+1 are connected by an edge in Gs(ϕ, b, ε)
for all n ≥ n0. ut

It will be convenient to use the abbreviation Qt,Sr (ξ) for Qr(ξ) × [0, t] × S, where r, t > 0 and
ξ ∈ Rd. The following proposition constitutes a useful auxiliary result in proving the a.s. absence of
strong descending chains.

Proposition 1 Let b ≥ 0, r0, t > 0 and Φ be an m-dependent spatially stationary marked point
process in Rd,+,S . Then, there exists ε > 0 such that with probability 1 the graph Gs(Φ∩Rd,t,S , b, ε)
does not percolate.

Proof. We define a site-percolation process Y = {Yz}z∈Zd as follows, where we put Φt = Φ∩Rd,t,S .

Say that z is open, i.e., Yz = 1 if and only if there exist x ∈ Φt ∩Qt,S1 (z) and y ∈ Φt such that x, y
are connected by an edge in Gs(Φt, b, ε). For ε ∈ (0, 1) this process clearly exhibits finite range of
dependence and we claim that the probability that a site is open can be made as small as desired
if ε > 0 is chosen sufficiently small. Once this claim is proven, using [19, Theorem 0.0], we conclude
that the site process Y a.s. does not percolate provided that ε > 0 is sufficiently small. Therefore,
also the graph Gs(Φt, b, ε) does not percolate. In order to show that the probability that o is open
tends to 0 as ε → 0, we first note that by r0-boundedness of the grains, there exist only finitely
many pairs x, y ∈ Φt with x ∈ Qt,S1 (o), g(x, b+ 1)∩ g(y, b+ 1) 6= ∅ and g(x, b)∩ g(y, b) = ∅. For each
such pair choose some (random) εx,y > 0 such that g(x, b+εx,y)∩g(y, b+εx,y) = ∅. Then, for every

ε > 0 smaller than the minimum of these finitely many values there do not exist x ∈ Φ ∩ Qt,S1 (z)
and y ∈ Φ such that x, y are connected by an edge in Gs(Φt, b, ε). ut

Theorem 2 on the almost sure absence of strong descending chains for m-dependent marked
point processes is now obtained from Proposition 1.

Proof of Theorem 2. It suffices to show that for every t > 0 with probability 1, the set Φt = Φ∩Rd,t,S
does not contain a strong descending chain. The proof is similar to [14, Thereom 2.2], but we
provide the details for the convenience of the reader. Consider a function h : [0,∞) → [0,∞)
with h(b) = b + ε(b), where ε(b) > 0 is chosen such that Gs(Φt, b, ε(b)) a.s. does not percolate.
Clearly, this function satisfies the condition of [14, Lemma 2.1], so that there exists a countable
set C ⊂ [0,∞) with

⋃
b∈C[b, b+ ε(b)) = [0,∞). If Φt admits a strong descending chain (xn, tn)n≥1,

then put b = limn→∞ tn. Choose b0 ∈ C and ε0 > 0 such that [b, b + ε0) ⊂ [b0, b0 + ε(b0)). Since
Gs(Φt, b0, ε(b0)) ⊃ Gs(Φt, b, ε0) we conclude from Lemma 11 that Gs(Φt, b0, ε(b0)) percolates. In
particular, we obtain

P(Φt admits a strong descending chain) ≤ P
(
∪b0∈C∩[0,∞) G

s(Φt, b0, ε(b0)) percolates
)

≤
∑

b0∈C∩[0,∞)

P(Gs(Φt, b0, ε(b0)) percolates).

Since P(Gs(Φt, b0, ε(b0)) percolates) = 0, this completes the proof. ut
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For existence and uniqueness of stationary Apollonian packings, absence of strong descending
chains is a sufficient condition. However, as we will see in Section 6, for percolation-type questions
absence of another kind of descending chains is highly relevant.

Definition 6 Let ϕ ∈ N∗. A sequence {xn}n≥1 of elements in ϕ is said to form a weak descending
chain if there exists a sequence {tn}n≥1 such that

(i) tn ≥ tn+1 for all n ≥ 1,
(ii) xn1 6= xn2 for all n1, n2 ≥ 1 with n1 6= n2,
(iii) g(xn, tn) ∩ g(xn+1, tn) 6= ∅ and g(xn, tn+1) ∩ int g(xn+1, tn+1) = ∅ for all n ≥ 1.

Note that in contrast to a strong descending chain, in a weak descending chain the sequence of
times {tn}n≥1 could be eventually constant. Furthermore, if {xn}n≥1 constitutes a strong descending
chain, then {xn}n≥1 forms also a weak descending chain.

As before, to verify absence of weak descending chains, it is useful to investigate percolation of
a specific graph.

Definition 7 Let b ≥ 0, ε > 0 and ϕ ∈ N∗. Then, define a directed graph Gw(ϕ, b, ε) on the vertex
set ϕ as follows. For x, y ∈ ϕ an edge is drawn from x to y if

(i) g(x, b+ ε) ∩ g(y, b+ ε) 6= ∅, and
(ii) g(x, b) ∩ int g(y, b) = ∅.

Note that in comparison to the second condition in Definition 5, the second condition in Defini-
tion 7 is weaker since it only requires g(x, b) ∩ int g(y, b) = ∅ instead of g(x, b) ∩ g(y, b) = ∅. As in
Lemma 11, we may now prove the following result.

Lemma 12 Let ϕ ∈ N∗. If ϕ contains a weak descending chain, then there exists b ≥ 0 such that
Gw(ϕ, b, ε) percolates for all ε > 0.

Proof. Let {xn}n≥1 be a weak descending chain for some sequence {tn}n≥1 and let ε > 0 be
arbitrary. Since {tn}n≥1 forms a (not necessarily strictly) decreasing sequence converging to some
limit b and since g(xn, tn)∩g(xn+1, tn) 6= ∅ for all n ≥ 1, there exists n0 ≥ 1 such that g(xn, b+ε)∩
g(xn+1, b+ ε) 6= ∅ for all n ≥ n0. Moreover, from tn ≥ tn+1 and g(xn, tn+1) ∩ int g(xn+1, tn+1) = ∅
for all n ≥ 1 we conclude g(xn, b) ∩ int g(xn+1, b) = ∅ for all n ≥ 1. Hence, xn is connected to xn+1

by a directed edge in Gw(ϕ, b, ε) for all n ≥ n0. ut

Similarly to Proposition 1 and Theorem 2, one now establishes the a.s. absence of weak descend-
ing chains. However, a close inspection of the proof of Proposition 1 shows that we need to make
the additional assumption that for every b ≥ 0 with probability 1, there do not exist x, y ∈ Φ such
that g(x, b) ∩ g(y, b) 6= ∅ and g(x, b) ∩ int g(y, b) = ∅. The proof of the following result is omitted,
since it would be a simple repetition of the arguments presented in Proposition 1 and Theorem 2.

Corollary 4 Let Φ be an m-dependent spatially stationary marked point process in Rd,+,S . Fur-
thermore, assume that for every b > 0 with probability 1 there do not exist x ∈ Φ and y ∈ Φ \ Φx
such that g(x, b) ∩ g(y, b) 6= ∅ and g(x, b) ∩ int g(y, b) = ∅. Then, almost surely, Φ does not contain
a weak descending chain.

We conclude this section by verifying the condition in Corollary 4 for independently marked,
m-dependent point processes.

Lemma 13 Let b ≥ 0 and Φ be an independently marked spatially stationary point process in
Rd,+,S . Furthermore, assume that the second factorial moment measure of the underlying unmarked
point process is absolutely continuous. Then, with probability 1, there do not exist x, y ∈ Φ such that
g(x, b) ∩ g(y, b) 6= ∅ and g(x, b) ∩ int g(y, b) = ∅.

Proof. Let Nb denote the number of elements x, y ∈ Φ such that g(x, b) ∩ g(y, b) 6= ∅ and g(x, b) ∩
int g(y, b) = ∅. Then, it suffices to show that P(Nb = 0) = 1. If x = (ξ, τ, L), y = (η, σ, L′) ∈ Φ,

are such that g(x, b) ∩ g(y, b) 6= ∅ and g(x, b) ∩ int g(y, b) = ∅, then σ = b − dL′(g(x, b), η), where
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dL
′
(g(x, b), η) = min{r ≥ 0 : (η+rL′)∩g(x, b) 6= ∅} denotes the smallest r ≥ 0 such that the η+rL′

hits the grain g(x, b). Letting α(·, ·) denote the density of the second factorial moment measure and
A the distribution of the typical mark, Campbell’s formula implies that

ENb ≤
∫
S

∫
S

∫
Rd

∫ b

0

∫
Rd

∫ b

0

α((ξ, τ), (η, σ))1σ=b−dL′ (ξ+(b−τ)L,η)dτdξdσdηA(dL)A(dL′),

and the latter expression vanishes, since the Lebesgue measure of the set {(η, σ, ξ, τ) : σ = b −
dL
′
(ξ + (b− τ)L, η)} is 0. ut

3.3 Examples

In Theorem 2 and Corollary 4, we provided explicit sufficient conditions for absence of strong and
weak descending chains in independently marked point processes. In particular, these conditions
hold for spatially stationary Poisson point processes.

Proposition 2 Let α ∈ R, A ∈ S and Φ′ = {(ξi, τi, Θi)}i≥1 be an independently SOd-marked
Poisson point process such that the intensity function λ : Rd,+ → [0,∞) of the underlying unmarked
Poisson point process is spatially constant. Then, almost surely, = {(ξi, τi, Θi(A)} contains neither
strong nor weak descending chains.

Proof. The absence of descending chains follows from Theorem 2, Corollary 4 and Lemma 13. ut

Example 1 In the following sections, we consider intensity functions of the form λ : Rd,+ → [0,∞)
given by λ(ξ, τ) = λ(1 + τ)α for some α > −1 and λ > 0. Increasing the value of α increases the
speed at which new germs appear. Interesting special cases include α = 0, where the space-time
intensity measure of germs is proportional to (d+ 1)-dimensional Lebesgue measure or α = −1 + ε
with small ε > 0, where the number of germs in a bounded sampling window is infinite but increases
very slowly in time. Furthermore, the parameter α may also yield additional flexibility that could
be useful when fitting the model to real data. In the following, we restrict our attention to the case
α > −1, since for α < −1 the number of grains arriving in any bounded sampling window is almost
surely finite. Additionally, a more detailed analysis of the critical case α = −1 would be worthwhile.

Apart from the case of independent marks, Theorem 2 also covers m-dependent marks and as an
application of this general framework we consider stationary approximations to rotational random
Apollonian packings. Recall that in the latter model, which is investigated in [7], germs are added
sequentially to a bounded sampling window and for each germ the corresponding grain is rotated
so as to maximize the time until an already existing grain is hit. When trying to create a stationary
variant of this packing, it is already difficult to define a suitable optimization criterion. Indeed,
since grains may still grow while further germs arrive, complex dependencies between the optimal
positioning of grains arise.

Let A ∈ S be fixed and ψ ⊂ Rd,+ be locally finite. We propose a family of stationary packings,
where at each point x = (ξ, τ) ∈ ψ an approximation to the optimal rotation is determined by
inspecting a suitable neighborhood of x. Possible rotations of A are restricted to a finite (but
arbitrarily large) set of rotations U ⊂ SOd. To be more precise, for b > 0 a fixed positive number,
we consider the space-time neighborhood ψ∩(Qb(ξ)× [0, τ+b]) of x and write ϕ∩

(
Qb(ξ)× [τ+b]

)
=

{x1, . . . , xn} for some n ≥ 1. First, recall that for n ≥ 1, k ∈ {1, . . . , n} and t = (t1, . . . , tn) ∈ [0,∞)n

the kth order statistic ordk,n(t) is the kth smallest element of t, i.e.,

ord1,n(t) ≤ ord2,n(t) ≤ · · · ≤ ordn,n(t).

For k ∈ {1, . . . , n} we construct recursively a subset Uk ⊂ Un as follows. For θ = (θ1, . . . , θn) ∈ Un
let fθ be the family of growth-stopping times associated with {yi,θ}1≤i≤n = {(xi, θi(A))}1≤i≤n. For
k = 1 we define U1 ⊂ Un to be the set of all θ ∈ Un maximizing ord1,n(fθ(y1,θ), . . . , fθ(yn,θ)). For
k > 1 we define Uk ⊂ Uk−1 to be the set of all θ ∈ Uk−1 that maximize ordk,n(fθ(y1,θ), . . . , fθ(yn,θ)).
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Finally, let θopt,U,b
x ∈ Un denote an element of Un chosen according to some deterministic rule.

Note that the construction of the family of marks (θopt,U,b
x )x∈ϕ is invariant with respect to spatial

translation of the underlying locally finite set ψ and that for x ∈ ψ the value of θopt,U,b
x (A) is

determined by ψ ∩ (Qb(ξ) × [0,∞)). Thus, Theorem 2 yields the following result, where we put
ψopt,U,b = {(x, θopt,U,b

x (A))}x∈ψ.

Corollary 5 Let b > 0, A ∈ S, U ⊂ SOd be finite and Ψ ⊂ Rd,+ be a spatially stationary and
m-dependent point process in Rd,+. Then, a.s. Ψopt,U,b does not contain strong `opt,U,b-descending
chains.

It would be interesting to investigate if the marks θopt,Un,bn(A) converge to some random marking
as bn → ∞ and for suitably increasing Un ⊂ SOd. This limit would then qualify as stationary
extension of the rotational random Apollonian packing.

4 Asymptotics for growth durations

In the present section, we study the dependence of the growth duration of grains on the time of
arrival of the corresponding germ. We will see that under Poisson assumptions this quantity exhibits
a power-law decay in time and we provide rigorous bounds on the corresponding exponent. We also
performed Monte Carlo simulations to obtain more precise information on the dependence of this
exponent on the speed at which new germs arrive. The simulation results are given in Section 4.2.

4.1 Rigorous bounds on the exponent

We begin by providing an elementary proof of Theorem 6, which is based on the observation that a
grain can only grow for a long time if there is a large space-time environment of the corresponding
germ that does not contain any further points.

Proof of Theorem 6. If r > 0 and x = (ξ, τ, `) ∈ Φ are such that τ > 1 and fΦ(x) > r + τ , then
Φ∩Qτ,Sr1r(ξ) = ∅. For t > 0 let Nt denote the number of elements x = (ξ, τ, `) ∈ Φ∩(Q1(o)×[t,∞)×S)

such that Φ ∩Qτ,S
r1τ−α1+ε(ξ) = ∅. Using the Slivnyak-Mecke formula, we compute for all sufficiently

large t > 1,

P(Nt > 0) ≤ ENt

= λ

∫
Q1(o)

∫ ∞
t

(1 + τ)αP
(
Φ ∩Qτ,S

r1τ−α1+ε(ξ) = ∅
)
dτdξ

= λ

∫
Q1(o)

∫ ∞
t

(1 + τ)αexp
(
− λrd1τ−(α+1)+dε

∫ τ

0

(1 + σ)αdσ
)
dτdξ

= λ

∫ ∞
t

(1 + τ)αexp
(
− λ(α+ 1)−1rd1τ

−(α+1)+dε
(
(1 + τ)α+1 − 1

))
dτ

≤
∫ ∞
t

exp
(
− λ(α+ 1)−12−1rd1τ

dε
)
dτ.

Since the latter expression is at most exp(−tdε/2), this proves the claim. ut

To prove a rigorous lower bound on the growth duration, we need a couple of auxiliary results. We
assume additionally that Φ = {(ξi, τi, Θi(A)}i≥1, where {(ξi, τi, Θi)}i≥1 is an independently SOd-
marked Poisson point process. First, we derive a more refined upper bound on the growth duration
of grains which arrive rather early. We fix r1, r2 > 0 such that Br1(o) ⊂ intA and A ⊂ Br2(o),
where Br(o) = {ξ ∈ Rd : |ξ| ≤ r} denotes the ball with radius r > 0 in Rd centered at the origin,
and | · | denotes the Euclidean norm on Rd. In the following, it will also be convenient to use the
abbreviation Btr(o) = Br(o)× [0, t], where r, t > 0. Finally, for t > 0 let E1,t denote the event that
there exists x = (ξ, τ, `) ∈ Φ ∩ Rd,t,S with (fΦ(x)− τ)r2 ≥ max{|ξ|/2, t}.
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Lemma 14 There exists t2 > 0 such that P(E1,t) ≤ exp(−td) for all t ≥ t2.

Proof. Let Cx,r = x +
{

(η, σ) ∈ Rd,r : η ∈ Brr1(o) \ Bσr1(o)
}

denote the complement inside

x+Brrr1(o) of the cone of height r > 0, base Brr1(o) and apex x ∈ Rd,+. Then, letting κd = νd(B1(o))

denote the volume of the unit ball in Rd, we obtain for every measurable function u : [0,∞)→ [0,∞)

E#
{
x = (ξ, τ) ∈ Φ ∩ Rd,t,S : Φ ∩ (Cx,u(|ξ|) × S) = ∅

}
= λ

∫
Rd

∫ t

0

(1 + τ)αexp
(
− λκdrd1

∫ u(|ξ|)

0

(u(|ξ|)d − σd)(1 + τ + σ)αdσ
)
dτdξ

≤ λ
∫
Rd

∫ t

0

(1 + τ)αexp
(
− λκd2−1(u(|ξ|)r1)d

∫ u(|ξ|)/2

0

(1 + τ + σ)αdσ
)
dτdξ

≤ λ
∫
Rd

∫ t

0

(1 + τ)αexp
(
− λκd2−2(u(|ξ|)r1)du(|ξ|)(1 + τ + u(|ξ|)/2)min{0,α})dτdξ

≤ λ2|α|t1+|α|
∫
Rd

exp
(
− λκd2−2rd1u(|ξ|)d+1(1 + t+ u(|ξ|)/2)min{0,α})dξ.

Observe that if x = (ξ, τ, `) ∈ Φ ∩ Rd,t,S is such that (fΦ(x) − τ)r2 ≥ max{|ξ|/2, t}, then Φ ∩
(Cx,r−1

2 max{|ξ|/2,t} × S) = ∅. Hence, putting c1 = λκd2
−2rd1r

−d−1
2 ,

P(E1,t)(λ2|α|t1+|α|)−1 ≤
∫
B2t(o)

exp
(
− c1td+1(1 + t+ t/(2r2))min{0,α})dξ

+

∫
Rd\B2t(o)

exp
(
− c12−d−1|ξ|d+1(1 + t+ |ξ|/(4r2))min{0,α})dξ.

We derive bounds for these two summands separately, which are valid for all sufficiently large t > 0.
For the first one we have∫

B2t(o)

exp
(
− c1td+1(1 + t+ t/(2r2))min{0,α})dξ

= κd2
dtdexp

(
− c1td+1

(
1 + (1 + 1/(2r2))t

)min{0,α})
≤ κd2dtdexp

(
− c1(2 + 1/(2r2))min{0,α}td+1+min{0,α}), (7)

whereas, for the second one we compute∫
Rd\B2t(o)

exp
(
− c12−d−1|ξ|d+1(1 + t+ |ξ| /(4r2))min{0,α})dξ

≤
∫
Rd\B2t(o)

exp
(
− c12−d−1

(
2 + 1/(4r2)

)min{0,α} |ξ|d+1+min{0,α} )
dξ

= dκd

∫ ∞
2t

rd−1exp
(
− c12−d−1

(
2 + 1/(4r2)

)min{0,α}
rd+1+min{0,α})dr. (8)

Combining (7) and (8) completes the proof of Lemma 14. ut

Additionally, we need a similar upper bound for grains that arrive rather late. For t > 0,
ε ∈ (0, 1) denote by E2,ε,t the event that there exists x = (ξ, τ, `) ∈ Φ ∩

(
Rd × [t,∞) × S

)
with

(fΦ(x)− τ)r2 ≥ uε,τ (|ξ|), where uε,τ : [0,∞)→ [0,∞) denotes the function defined by

uε,τ (r) =

{
τ−α1+ε if r ≤ 4,

r/2 otherwise.

Lemma 15 Let ε ∈ (0, 1) be arbitrary. Then, there exists t3 > 0 such that for every t ≥ t3,

P(E2,ε,t) ≤ exp(−tmin{dε,(α+1)/2}/2).
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Proof. First, for all sufficiently large t > 0,

E#
{
x ∈ Φ ∩

(
Rd × [t,∞)× S

)
: Φ ∩

(
Bτ(r1/r2)uε,τ (|ξ|)(ξ)× S

)
= ∅
}

= λdκd

∫ ∞
t

(1 + τ)α
∫ ∞
0

rd−1exp
(
− λκd(r1/r2)duε,τ (r)d

∫ τ

0

(1 + σ)αdσ
)
drdτ

≤ λdκd
∫ ∞
t

(1 + τ)α
∫ ∞
0

rd−1exp
(
− λκd(r1/r2)d2−1(1 + α)−1uε,τ (r)dτα+1

)
drdτ.

Observe that if x = (ξ, τ, `) ∈ Φ is such that (fΦ(x)− τ)r2 ≥ uε,τ (|ξ|), then Φ∩ (Bτ(r1/r2)uε,τ (|ξ|)(ξ)×
S) = ∅. Hence, putting c2 = λκd(r1/r2)d2−1(1 + α)−1, P(E2,ε,t) is bounded from above by

E#
{
x ∈ Φ ∩

(
Rd × [t,∞)× S

)
: Φ ∩

(
Bτ(r1/r2)uε,τ (|ξ|)(ξ)× S

)
= ∅
}

≤ λdκd
∫ ∞
t

(1 + τ)α
∫ 4

0

rd−1exp
(
− c2τ−α−1+dετα+1

)
drdτ

+ λdκd

∫ ∞
t

(1 + τ)α
∫ ∞
4

rd−1exp
(
− c22−drdτα+1

)
drdτ.

As before, we derive bounds for these two summands separately. For the first one we have∫ ∞
t

(1 + τ)α
∫ 4

0

rd−1exp
(
− c2τ−α−1+dετα+1

)
drdτ ≤ 4d+|α|

∫ ∞
t

ταexp
(
− c2τdε

)
dτ, (9)

whereas for the second∫ ∞
t

(1 + τ)α
∫ ∞
4

rd−1exp
(
− c22−drdτα+1

)
drdτ ≤ 2|α|

∫ ∞
t

exp
(
− c22dτα+1

)
dτ

≤
∫ ∞
t

exp
(
− τ (α+1)/2

)
dτ, (10)

provided that t > 0 is sufficiently large. Combining (9) and (10) completes the proof. ut

As a final preliminary result, we derive sufficient conditions implying that for sufficiently large
system times, germs are always born after their stopping neighbors. This auxiliary result will also
be used in Section 6. To be more precise, for a, t > 0, let E3,a,t denote the event that there exist
x = (ξ, τ, `) ∈ Φ ∩

(
Q1(o)× [t− 1, t]× S

)
and y = (η, σ, `′) ∈ Φ such that fΦ(x)− τ ≤ τ−a and y is

a stopping neighbor of x with σ ≥ τ .

Lemma 16 Let a > 0 and ε ∈ (0, 1) be arbitrary. Then, there exists t4 > 0 such that P(E3,a,t) ≤
t2α−(d+1)a+ε for all t ≥ t4.

Proof. For x = (ξ, τ, `) ∈ Φ ∩
(
Q1(o) × [t − 1, t] × S

)
with fΦ(x) − τ ≤ τ−a let E3,a,t,x denote the

event that there exists a stopping neighbor y = (η, σ, `′) of x with σ ≥ τ . We first claim that every
x = (ξ, τ, `) ∈ Φ∩

(
Q1(o)× [t−1, t]×S

)
with fΦ(x)− τ ≤ τ−a and for which there exists a stopping

neighbor y = (η, σ, `′) of x with σ ≥ τ satisfies Φ ∩
(
B2r2τ−a(ξ) × (τ, τ + τ−a] × S

)
6= ∅. Indeed,

fΦ(y) − σ ≤ fΦ(x) − τ ≤ τ−a implies Br2τ−a(ξ) ∩ Br2τ−a(η) 6= ∅. Hence, for all ε > 0 there exists
t4 > 0 such that for all t > t4

P
(
E3,a,t

)
≤ E#

{
x ∈ Φ ∩

(
Q1(o)× [t− 1, t]× S

)
: E3,a,t,x holds

}
≤ λ

∫
Q1(o)

∫ t

t−1
(1 + τ)αP

(
Φ
(
B2r2τ−a(ξ)× [τ, τ + τ−a]× S

)
> 0
)
dτdξ.

By stationarity and the Markov inequality the integral in the last line is bounded from above by∫ t

t−1
(1 + τ)αEΦ

(
B2r2τ−a(o)× [τ, τ + τ−a]× S

)
dτ ≤

∫ t

t−1
(1 + τ)ακdr

d
22d+|α|τα−a(d+1)dτ

≤ t2α−(d+1)a+ε. ut
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Using Lemmas 14, 15 and 16 we can now prove Theorem 7. The idea is to make use of the
observation that if a grain has a small but non-zero growth duration, then it is constrained to lie
very closely to the boundary of its stopping neighbor. Recall that we assume, additionally, that
A = {z ∈ Rd : β(z) ≤ 1} is the unit ball with respect to a certain norm β(·) on Rd. Furthermore,
we also suppose that the process Φ is independently marked.

Proof of Theorem 7. For readability we write f instead of fΦ and ft instead of min{t, fΦ}, where
t > 0. Moreover, without loss of generality we may assume ε ∈ (0,min{1, (α+ 1)/2}). We first show
that the number of x = (ξ, τ, `) ∈ Φ ∩

(
Q1(o) × [0,∞) × S

)
satisfying 0 < f(x) − τ < τ−α2−ε and

having a stopping neighbor y = (η, σ, `′) ∈ Φ with σ ≥ τ is finite with probability 1. Indeed, since
2α < (d + 1)α2 − 1 we may combine the estimate obtained in Lemma 16 with the Borel-Cantelli
lemma to obtain the almost sure finiteness of the number of x = (ξ, τ, `) ∈ Φ∩

(
Q1(o)× [0,∞)×S

)
satisfying 0 < f(x)− τ < τ−α2−ε and having a stopping neighbor y = (η, σ, `′) ∈ Φ with σ ≥ τ .

It remains to consider the case, where x = (ξ, τ, Θ(A)) ∈ Φ admits a stopping neighbor y =
(η, σ,Θ′(A)) with σ < τ . We claim that then ξ must lie close to the boundary of the grain associated
with y. To be more precise, we assert that

ξ ∈ η + (fτ (y)− σ + ρτ−α2−ε)Θ′(A) \ (fτ (y)− σ)Θ′(A),

where ρ = 1+r2/r1. Indeed, the assumption f(x) > τ yields ξ 6∈ η+(fτ (y)−σ)Θ′(A). On the other
hand, from f(x)−τ < τ−α2−ε we conclude that

(
ξ+τ−α2−εΘ(A)

)
∩
(
η+(fτ (y)−σ+τ−α2−ε)Θ′(A)

)
6=

∅. By the choice of r1, r2, we therefore obtain(
(Θ′)−1(ξ) + r2r

−1
1 τ−α2−εA

)
∩
(
(Θ′)−1(η) + (fτ (y)− σ + τ−α2−ε)A

)
6= ∅.

Finally, since A is the unit ball with respect to a norm, we conclude

ξ − η ∈ (fτ (y)− σ + ρτ−α2−ε)Θ′(A),

where ρ = 1 + r2/r1. For x = (ξ, τ, Θ(A)) ∈ Φ we say that the event E4,x occurs if there exists
y = (η, σ,Θ′(A)) ∈ Φ∩Rd,τ,S such that ξ−η ∈ (fτ (y)−σ+ρτ−α2−ε)Θ′(A)\(fτ (y)−σ)Θ′(A). Observe

that when using the notation A
(1)
y,τ = η+

(
A

(2)
y,τ⊕ρτ−α2−εΘ′(A)

)
\A(2)

y,τ , with A
(2)
y,τ = (fτ (y)−σ)Θ′(A),

we see that E4,x can be written as
{
ξ ∈

⋃
y∈Φ∩Rd,τ,S A

(1)
y,τ

}
. Hence, for any ε1 ∈ (0, 1) and t > 2,

P
(
∪x∈Φ∩(Q1(o)×[t−1,t]×S) E4,x

)
≤ E#

{
x ∈ Φ ∩

(
Q1(o)× [t− 1, t]× S

)
: E4,x

}
= λ

∫
Q1(o)

∫ t

t−1
(1 + τ)αP

(
ξ ∈ ∪y∈Φ∩Rd,τ,SA(1)

y,τ

)
dτdξ

≤ λ2|α|tα
∫ t

t−1
P
(
o ∈ ∪y∈Φ∩Rd,τε1 ,SA

(1)
y,τ

)
dτ (11)

+ λ2|α|tα
∫ t

t−1
P
(
o ∈ ∪y∈Φ∩(Rd×[τε1 ,τ ]×S)A(1)

y,τ

)
dτ. (12)

We first consider expression (11). If y ∈ Φ is such that (fτ (y) − σ)r2 ≤ τε1 , then there exists a
constant c > 0 (not depending on y or τ) such that

νd
(
A(1)
y,τ

)
= νd(A)

(
(fτ (y)− σ + ρτ−α2−ε)d − (fτ (y)− σ)d

)
≤ cνd(A)τ−α2−ετ (d−1)ε1 ,

provided that τ > 0 is sufficiently large. Also observe that if Ec1,τε1 occurs, then B1(o)∩A(1)
y,τ = ∅ for

all y ∈ Φ∩Rd,τε1 ,S with y 6∈ Bτε12τε1 (o)×S and, moreover, (fτ (y)−σ)r2 ≤ τε1 for all y ∈ Φ∩Bτε12τε1 (o).
Hence,

P
(
o ∈ ∪y∈Φ∩Rd,τε1 ,SA

(1)
y,τ

)
= κ−1d Eνd

(
B1(o) ∩ ∪y∈Φ∩Rd,τε1 ,SA

(1)
y,τ

)
≤ κ−1d Eνd

(
∪y∈Φ∩(Bτε1

2τε1
(o)×S) A

(1)
y,τ

)
1Ec

1,τε1
+ P(E1,τε1 )

≤ κ−1d E
∑

y∈Φ∩(Bτε1
2τε1

(o)×S)

νd
(
A(1)
y,τ

)
1Ec

1,τε1
+ P(E1,τε1 ).
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For the first summand we compute

E
∑

y∈Φ∩(Bτε1
2τε1

(o)×S)

νd
(
A(1)
y,τ

)
1Ec

1,τε1
≤ cνd(A)τ−α2−ετ (d−1)ε1EΦ

(
Bτ

ε1

2τε1 (o)× S
)

≤ λcνd(A)τ−α2−ε+(d−1)ε1
∫
B2τε1 (o)

∫ τε1

0

(1 + σ)αdσdη

≤ λcνd(A)κd(α+ 1)−12d+1+|α|τ−α2+ε1(2d+α)−ε.

For any ε1 ∈ (0, ε/(4d+ 2α)) we use the inequality α2 ≥ α+ 1 to deduce that

λ2|α|tα
∫ t

t−1
P
(
o ∈ ∪y∈Φ∩(Rd,τε1 ,S)A

(1)
y,τ

)
dτ ≤ t−1−ε/4, (13)

for all sufficiently large t > 0. Next, we derive a suitable upper bound for the expression P
(
o ∈⋃

y∈Φ∩(Rd×[τε1 ,τ ]×S)A
(1)
y,τ

)
appearing in (12). If y = (η, σ,Θ′(A)) ∈ Φ is such that (fτ (y) − σ)r2 ≤

σ−α1+ε1 and σ < τ , then there exists a constant c′ > 0 (not depending on y or τ) such that

νd
(
A(1)
y,τ

)
= νd(A)

(
(fτ (y)− σ + ρτ−α2−ε)d − (fτ (y)− σ)d

)
≤ c′νd(A)τ−α2−εσ−(d−1)α1+(d−1)ε1 ,

for all sufficiently large τ > 0. Also observe that if Ec2,ε1,τε1 occurs, then B1(o) ∩ A(1)
y,τ = ∅ for

all y ∈ Φ ∩
(
(Rd \ B4(o)) × [τε1 , τ ] × S

)
and, moreover, (fτ (y) − σ)r2 ≤ σ−α1+ε1 for all y ∈

Φ ∩ (B4(o)× [τε1 , τ ]× S). As before,

P
(
o ∈

⋃
y∈Φ∩(Rd×[τε1 ,τ ]×S)

A(1)
y,τ

)
≤ κ−1d Eνd

(
B1(o) ∩

⋃
y∈Φ∩(Rd×[τε1 ,τ ]×S)

A(1)
y,τ

)
≤ κ−1d Eνd

( ⋃
y∈Φ∩(B4(o)×[τε1 ,τ ]×S)

A(1)
y,τ

)
1Ec

2,ε1,τ
ε1

+ P(E2,ε1,τε1 )

≤ κ−1d E
∑

y∈Φ∩(B4(o)×[τε1 ,τ ]×S)

νd
(
A(1)
y,τ

)
1Ec

2,ε1,τ
ε1

+ P(E2,ε1,τε1 ),

and we also obtain that

E
∑

y∈Φ∩(B4(o)×[τε1 ,τ ]×S)

νd
(
A(1)
y,τ

)
1Ec

2,ε1,τ
ε1
≤ c′νd(A)τ−α2−εE

∑
(η,σ,`′)∈Φ∩(B4(o)×[τε1 ,τ ])

σ−(d−1)α1+(d−1)ε1

≤ λc′νd(A)τ−α2−ε
∫ τ

τε1

∫
B4(o)

(1 + σ)ασ−(d−1)α1+(d−1)ε1dηdσ

≤ λc′νd(A)τ−α2−εκd4
d

∫ τ

1

(1 + σ)ασ−(d−1)α1+(d−1)ε1dσ,

which is at most τ−α2+α1−ε/2 provided that τ > 0 is sufficiently large and that ε1 ∈ (0, ε/(2d− 2)).
We recall −α2 + α1 = −α− 1 to deduce that

λ2αtα
∫ t

t−1
P
(
o ∈

⋃
y∈Φ∩(Rd×[τε1 ,τ ]×S)

A(1)
y,τ

)
dτ ≤ t−1−ε/4 (14)

for all sufficiently large t > 0. Finally, taking relations (13) and (14) into account, and using the
Borel-Cantelli lemma completes the proof. ut

Remark. In the proof of Proposition 7 we subdivided Φ∩
(
Q1(o)× [0,∞)×S

)
into equidistant

parts
{
Φ ∩

(
Q1(o) × [n, n + 1) × S

)}
n≥0, computed suitable bounds for these parts and finally

applied the Borel-Cantelli to obtain information on the global behavior. One could try to improve
the results by considering different subdivisions, but it is not hard to check that e.g. the subdivision{
Φ ∩

(
Q1(o)×

[∑n
k=1 k

β ,
∑n+1
k=1 k

β
)
× S

)}
n≥0 with β ∈ (−1,∞) is optimal for β = 0.
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4.2 Simulation results

Using Theorems 6 and 7 we see that with probability 1 eventually the growth duration of a visi-

ble germ (ξ, τ) will be contained in the interval
(
τ−(α+1)(d−1+1)−ε, τ−(α+1)/d+ε

)
. Before trying to

determine the true value of the exponent in the power-law decay rigorously, it is reasonable to
obtain estimates with the help of Monte Carlo simulations. For t > 0 let N(t) denote the (random)
number of all visible germs which have arrived until time t in the unit cube Q1(o). In other words,

N(t) = #
{
x ∈ Φ ∩ (Qt,S1 (o)) : fΦ(x) > τ

}
. In Figure 3, we show plots of logN(t) versus log t for

various values of α and where the initial grain shape is deterministic and given by the unit disk
B1(o) in R2.
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Fig. 3: logN(t) versus log t for α = −1/2 (black), α = 0 (green),
α = 1 (red), α = 2 (blue) and α = 3 (orange).

From a conceptual point of view, it would be slightly more natural to provide plots of log t vs.
logN(t). However, from a computational point of view, it makes sense to first fix a large number
N (in our simulations N = 106), and then to simulate the models with varying parameter α, until
N grains are visible. In Figure 3, we provide a plot of logN(t) versus log t. In particular, for small
values of α one can observe clearly that N(t) is approximately of the form C(α)ta(α) for suitable
C(α), a(α) ≥ 0. For higher values of α this relationship is still plausible although it is also apparent,
that more germs have to be created until the power law becomes visible.

In [8], numerical evidence is provided that the radius (which in our model is proportional to

the growth time) of the nth visible grain is of the order n−1/(α
′−1), where α′ ≈ 2.56. Furthermore,

the relation α′ ≈ 2.56 was observed to be universal in the sense that changing the speed at which
grains grow does not have an effect on α′. The change of growth speed corresponds in our model to
a change in the rate at which new germs appear. Making use of these results, we see that we can
approximate the desired exponent of the power law corresponding to the grain radius at time t by
−a(α)/(α′− 1). A table of estimated values of a(α) and b(α) = a(α)/(α′− 1) is shown in Table 4.2.
The values for a(α) were fitted using linear regression, based on the last 500, 000 data points.

α −0.5 0 1 2 3
a(α) 0.391 0.781 1.57 2.33 3.05

b(α)/(α+ 1) 0.501 0.501 0.503 0.498 0.489

Table 1: Estimated exponents a(α) and b(α) = a(α)/(α′ − 1)
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Taking into account errors induced by finite sample size and by performing the simulation on
a bounded torus instead of the entire Euclidean space, the last line in Table 4.2 suggests that the
upper bound derived in Proposition 6 is in fact the true decay rate for the growth durations. To be
more precise, in the following conjecture we assume that the marks of Φ are constant and given by
some A ∈ S.
Conjecture. As t → ∞, the distribution of the random variable t(α+1)/d(fΦ∪{(o,t,A)}(o, t, A) − t)
conditioned on the event {fΦ∪{(o,t,A)}(o, t, A) > t} converges to the distribution of a non-degenerate
random variable.

5 Space-filling property

In this section, we prove Theorem 8, i.e., we show that stationary Apollonian packings are space-
filling in the sense that P

(
νd
(
Rd \AP(Φ)

)
= 0
)

= 1. In the proof, we show that there exists q ∈ (0, 1)
such that with probability 1, for every t > 0 the final pore-space volume νd(Q1(o)\AP(Φ)) is smaller
than q times the volume of the pore space in the unit cube at time t.

In order to prepare the proof of Theorem 8, we need to introduce certain auxiliary constructions.
Let t > 0, ϕ ∈ N∗ and assume that the projection of ϕ to S consists of rotations of a set A ∈ S
that is the unit ball with respect to a certain norm on Rd. Furthermore, assume that ϕ does not
contain strong descending chains. In the following, we write AP(ϕ, t) =

⋃
x∈ϕ int g(x,min{t, fϕ(x)})

for the Apollonian packing observed at time t > 0. In order to control the volume of the pore space
Q1(o)\AP(ϕ, t), we choose a subdivision of Q1(o) into congruent subcubes of length a = 1/(2N−1),
where N ≥ 1 is some positive integer. In the proof we will investigate properties of this subdivision
for large values of N . Without loss of generality, we may assume that νd(Q1(o) \ AP(ϕ, t)) > 0.
Furthermore, the subfamily consisting of vacant subcubes not intersecting AP(ϕ, t) will play an
important role. Therefore, we put

Svac =
{
z ∈ Zd ∩Q2N−1(o) : Qa(az) ∩ AP(ϕ, t) = ∅

}
.

Also define ρmax = supξ∈B√d(o) dA(o, ξ), ρmin = infξ∈B1(o) dA(o, ξ), ρ = dρmax/ρmine and ρ′ =

d + 3ρ, where dA denotes the metric induced by A. Furthermore, it is convenient to consider the
subset S int

vac of Svac consisting of those sites whose associated cube is neither close to the boundary
of the cube Q1(o) nor to the boundary of a grain in AP(ϕ, t), i.e.,

S int
vac =

{
z ∈ Svac ∩Q2N−1−16ρ′(o) : Q16ρ′a(az) ∩ AP(ϕ, t) = ∅

}
.

When covering the pore space Q1(o)\AP(ϕ, t), we distinguish between big and small grains. For
x ∈ ϕ,

Sx =
{
z ∈ S int

vac : g(x, fϕ(x)) ∩Qa(az) 6= ∅
}

denotes the family of all sites z ∈ S int
vac whose associated cube Qa(az) admits non-empty intersection

with the grain g(x, fϕ(x)). Moreover,

Sbig =
⋃

x=(ξ,τ,`)∈ϕ
fϕ(x)−τ≥4ρmaxa

Sx

denotes the family of all sites z ∈ S int
vac whose associated cube Qa(az) intersects some grain with

growth duration at least 4ρmaxa. We also consider the environment S+
big consisting of all z′ ∈ Svac

such that z′ ∈ Q2ρ′(z) for some z ∈ Sbig.
First, we derive a lower bound for the contributions νd

(
Qa(az)∩AP(ϕ) \AP(ϕ, t)

)
for z ∈ S+

big.

Lemma 17 Let t > 0, N ≥ 1 and ϕ ∈ N∗ and assume that the projection of ϕ to S consists of
rotations of a set A ∈ S that is the unit ball with respect to a certain norm on Rd. Furthermore,
put a = 1/(2N − 1) and assume that ϕ does not contain strong descending chains. Then,∑

z∈S+
big

νd
(
Qa(az) ∩ AP(ϕ) \ AP(ϕ, t)

)
≥ ad#S+

big/(2ρ
′ + 1)2d.
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Proof. We claim that for every z ∈ Sbig there exists a site h(z) ∈ Svac such that h(z) ∈ Q2ρ′(z) and
Qa(ah(z)) ⊂ AP(ϕ) \ AP(ϕ, t). This claim will yield the desired inequality, since∑

z∈S+
big

νd
(
Qa(az) ∩ AP(ϕ) \ AP(ϕ, t)

)
≥ ad#h(Sbig) ≥ ad#S+

big/(2ρ
′ + 1)2d,

where the second inequality uses (2ρ′ + 1)d#h(Sbig) ≥ #Sbig and (2ρ′ + 1)d#Sbig ≥ #S+
big.

To prove the claim, we first choose any x = (ξ, τ, `) ∈ ϕ with fϕ(x) − τ ≥ 4ρmaxa such that
z ∈ Sx. Then, we distinguish two cases. If d`(az, ξ) ≥ 3ρmaxa, then we put

η = ξ + (az − ξ)(1− 3ρmaxa/d`(az, ξ))

and choose h(z) ∈ Zd so that η ∈ Qa(ah(z)). First, observe that

|ah(z)− az| ≤ |ah(z)− η|+ |η − az| ≤
√
da+ 3ρmaxa|ξ − az|/d`(az, ξ) ≤ a(

√
d+ 3ρ).

Next, we note that Qa(ah(z)) ⊂ AP(ϕ), since for every ζ ∈ Qa(ah(z)),

d`(ξ, ζ) ≤ d`(ξ, η) + d`(η, ah(z)) + d`(ah(z), ζ) ≤ d`(az, ξ)− 3ρmaxa+ ρmaxa+ ρmaxa,

which is at most fϕ(x) − τ , since Qa(az) ∩ g(x, fϕ(x)) 6= ∅. Finally, to show that Qa(ah(z)) ∩
g(x,min{t, fϕ(x)}) = ∅, we note that for every ζ ∈ Qa(ah(z)),

d`(ξ, ζ) ≥ d`(ξ, η)− d`(η, ah(z))− d`(ah(z), ζ) ≥ d`(az, ξ)− 3ρmaxa− ρmaxa− ρmaxa

≥ min{fϕ(x), t} − τ + 8ρ′ρmina− 5ρmaxa,

where the last inequality follows from z ∈ S int
vac. Next, we prove the existence of a site h(z) with the

desired properties in the case d`(az, ξ) ≤ 3ρmaxa. Note that since z ∈ S int
vac, this can happen only if

τ > t. Choosing h(z) = z, for every ζ ∈ Qa(az) we obtain that

d`(ξ, ζ) ≤ d`(ξ, az) + d`(az, ζ) ≤ 3ρmaxa+ ρmaxa ≤ fϕ(x)− τ,

where the last inequality is due to the choice of x. ut

Next, we consider lower bounds for the contributions from cubes associated with sites in Svac\S+
big.

We show that in a non-vanishing proportion of these cubes newly arriving grains cover a substantial
amount of volume. To be more precise, we introduce the subset Scent of S int

vac describing the set of
sites z ∈ Zd for which

uz ∈ Qa/2(az) and ϕ ∩ (Q(8ρ+1)a(az)× (tz, tz + ρmina]) = ∅,

where (uz, tz, `z) are the coordinates of the first germ appearing in ϕ∩ (Q(8ρ+1)a(az)× (t,∞)×S).

The importance of Scent is due to the observation that for every z ∈ Scent \ S+
big, the set Qa(az) ∩

AP(ϕ) \ AP(ϕ, t) contains Ba/(4ρ)(uz).

Lemma 18 Let a, t > 0, N ≥ 1 and ϕ ⊂ Rd,+,S be as in Lemma 17. Then, for every z ∈ Scent\S+
big,

the set Qa(az) ∩ AP(ϕ) \ AP(ϕ, t) contains a ball of radius a/(4ρ).

Proof. First, note that ρmina`z ⊃ Ba/(4ρ)(o), so that it suffices to show that Qa(az)∩g(x, fϕ(x)) = ∅
for all x ∈ ϕ ∩ Rd,tz+ρmina \ {(uz, tz)}. Suppose we could find x = (ξ, τ, `) ∈ ϕ ∩ Rd,tz+ρmina,S \
{(uz, tz, `z)} such that Qa(az) ∩ g(x, fϕ(x)) 6= ∅. First note that ξ 6∈ Q(8ρ+1)a(az), since z ∈ S int

vac

implies ϕ ∩ (Q(8ρ+1)a(az)× [0, t]) = ∅ and z ∈ Scent yields x 6∈ Q(8ρ+1)a(az)× [t, tz + ρmina]. Thus,

fϕ(x)− τ ≥ d`(ξ, ∂Qa(az)) ≥ 4ρρmina ≥ 4ρmaxa,

which contradicts the assumption that z 6∈ Sbig. ut

Hence, the next goal consists in deriving a lower bound for #Scent in terms of #S int
vac. Whereas

Lemmas 17 and 18 are purely deterministic, we will now need some randomness which will allow us
to achieve the desired lower bound with the help of the law of large numbers.
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Lemma 19 Let t > 0, be as in Lemma 17, and let Φ be an independently marked point process that
is constructed as in Theorem 7. Then, there exists c∗ > 0 such that

lim
a→0

P(#Scent ≥ c∗#S int
vac) = 1.

Proof. The proof is performed in two steps. First, choose a subset Sind ⊂ S int
vac such that #Sind ≥

(8ρ + 1)−d#S int
vac and such that intQ(8ρ+1)a(az1) ∩ intQ(8ρ+1)a(az2) = ∅ for all pairwise distinct

z1, z2 ∈ Sind. Moreover, conditioned on Φ ∩Rd,t,S the events that {z ∈ Scent}z∈Sind
are independent,

identically distributed and each occurs with some probability Pa > 0. Once we show that there
exists a deterministic p > 0 that does not depend on t and satisfies P(lim infa→0 Pa ≥ p) = 1, the
law of large numbers implies that

lim
a→0

P(#Scent ≥ c∗#S int
vac) ≥ lim

a→0
P(#Scent ≥ p#Sind/2) = 1,

where c∗ = p(8ρ+ 1)−d/2, noting that the definitions of the sets Scent, S
int
vac and Sind depend on a.

In order to prove the existence of p, we establish lower bounds for the probabilities of the events
{Uo ∈ Qa/2(o)} and

{Φ ∩ (Q(8ρ+1)a(o)× (To, To + ρmina]× S) = ∅}.

First, we note that the spatial homogeneity of Φ implies that P(Uo ∈ Qa/2(o)) = 1/(16ρ + 2)d. In
order to compute a lower bound for the second probability, it is convenient to distinguish between
the cases α ≤ 0 and α > 0. First, assume that α ≤ 0. Then, the rate at which new germs appear
decreases in system time and we obtain

P
(
Φ ∩

(
Q(8ρ+1)a(o)× (To, To + ρmina]× S

)
= ∅
)
≥ P

(
Φ ∩

(
Q(8ρ+1)a(o)× (0, ρmina]× S

)
= ∅
)

= exp(−λ(8ρ+ 1)dad
∫ ρmina

0

(1 + τ)αdτ),

which is at least exp(−λ(8ρ+ 1)dadρmina) and tends to 1 as a→ 0. It remains to consider the case,
where α > 0. Then, for every b > 0,

P(To > t+ b) = exp
(
− λ(8ρ+ 1)dad

∫ t+b

t

(1 + τ)αdτ
)

= exp(−λ(8ρ+ 1)dad((1 + t+ b)α+1 − (1 + t)α+1)/(α+ 1)).

In particular, choosing ba,t = (a−d+(1+t)α+1)1/(α+1)−(1+t), we see that p0 = inft>0 lim infa→0 P(To−
t ≤ ba,t) > 0. Moreover, conditioned on the event {To − t ≤ ba,t} if a > 0 is sufficiently small, then
the probability of the event {Φ ∩ (Q(8ρ+1)a(o)× [To, To + ρmina]× S) = ∅} is at least

exp
(
− λ(8ρ+ 1)dad

∫ To+ρmina

To

(1 + τ)αdτ
)

≥ exp
(
− λ(8ρ+ 1)dad

∫ t+ba,t+ρmina

t+ba,t

(1 + τ)αdτ
)

= exp
(
− λ(8ρ+ 1)dad(1 + t+ ba,t)

α+1((1 + ρmina/(1 + t+ ba,t))
α+1 − 1)/(α+ 1)

)
≥ exp

(
− 2λ(8ρ+ 1)dad(1 + t+ ba,t)

α+1
)

= exp
(
− 2λ(8ρ+ 1)d(1 + ad(1 + t)α+1)

)
,

and the latter expression is larger than some positive constant p1 provided that a ≤ (1 + t)−(α+1)/d.
In particular, choosing p = p0p1/(16ρ+ 2)d proves the claim. ut

With the help of Lemmas 17–19, we can now prove Theorem 8.
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Proof of Theorem 8. Our goal is to show that there exists q ∈ (0, 1) such that with probability 1,
for every t > 0,

νd(Q1(o) \ AP(Φ)) ≤ qνd(Q1(o) \ AP(Φ, t)).

Letting t→∞ will then complete the proof of Theorem 8.

Using Lemma 18, we see that for every z ∈ Scent \ S+
big,

νd
(
Qa(az) ∩ AP(Φ) \ AP(Φ, t)

)
≥ κd(4ρ)−dad,

so that ∑
z∈Scent\S+

big

νd
(
Qa(az) ∩ AP(Φ) \ AP(Φ, t)

)
≥ κd(4ρ)−dad#(Scent \ S+

big).

Combining this with Lemma 17 yields∑
z∈Svac

νd
(
Qa(az) ∩ AP(Φ) \ AP(Φ, t)

)
≥ c1ad#Scent, (15)

where c1 = min{κd(4ρ)−d, (2ρ′ + 1)−2d}.
From (15) and Lemma 19, we conclude that the event

νd
(
Q1(o) ∩ AP(Φ) \ AP(Φ, t)

)
≥ c1ad#Scent ≥ c1c∗ad#S int

vac

occurs with a probability tending to 1 as a tends to 0. It remains to show that for all sufficiently
small a > 0,

ad#S int
vac ≥ νd(Q1(o) \ AP(Φ, t))/2.

Indeed, as AP(Φ, t) consists of a finite union of convex bodies, it is elementary that lima→0 a
d(#S int

vac−
#Svac) = 0 and lima→0 νd(Q1(o) \ AP(Φ, t))− ad#Svac = 0. Putting q = 1− c1c2/2, we see that for
every t > 0,

P
(
νd(Q1(o) \ AP(Φ)) ≤ qνd(Q1(o) \ AP(Φ, t))

)
= 1,

as desired. ut

6 Results on percolation

In this section, we investigate properties of connected components in stationary Apollonian packings
and prove Theorems 3, 4 and 5.

6.1 Oriented percolation

In the present subsection, we consider the problem of oriented percolation for the directed graph
G(Φ). This result can be seen as an immediate extension of [9] to the case of germ configurations
that are not spatially locally finite. It turns out that also in this more general setting, the absence
of weak `-descending chains is the key to the proof of Theorem 3.

Proof of Theorem 3. It is an immediate consequence of Corollary 2 that any infinite directed self-
avoiding path γ = (xi)i≥1 in G(Φ) gives rise to the weak descending chain (xi, fΦ(xi))i≥1. Combining
this observation with Corollary 4 proves Theorem 3. ut
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6.2 Non-oriented percolation

In Section 6.1 we have seen that for a large class of marked point processes Φ there is almost
surely no oriented percolation in the graph G(Φ). However, when moving from the oriented to the
unoriented case, the problem of percolation becomes more complicated and we will prove four results
(Propositions 3 and 4, as well as Theorems 4 and 5).

First, some notation and assumptions need to be introduced. Let Φ be a spatially stationary
marked point process in Rd,+,S and assume that Φ does not admit strong descending chains and
that with probability 1 each x ∈ Φ admits a unique stopping neighbor. For instance, the latter
property is satisfied in models based on a Poisson point process of germs with independently marked,
strictly convex and non-rotated grains. This will be shown in Section 6.3. Then, we let hΦ : Φ →
Φ denote the function which assigns to each x ∈ Φ its uniquely determined stopping neighbor.
Furthermore, we say that {x, hΦ(x)} defines a doublet if hΦ(hΦ(x)) = x and note that if G(Φ) does
not percolate, then for any x ∈ Φ there exists a uniquely determined doublet {x′, hΦ(x′)} such that
hnΦ(x) ⊂ {x′, hΦ(x′)} for all sufficiently large n ≥ 1. Here hnΦ denotes the n-fold iteration of hΦ. We
denote by Φdoub the spatially stationary marked point process in Rd,+,S consisting of all elements
of the form minlex{x′, hΦ(x′)}, where {x′, hΦ(x′)} forms a doublet in Φ and where minlex denotes
the lexicographical minimum. We can use Φdoub to interpret the family of connected components of
G(Φ) as a marked point process with centers in Φdoub by associating with a connected component
C of G(Φ) the uniquely determined x′ ∈ Φdoub such that hnΦ(x) ⊂ {x′, hΦ(x′)} for all x ∈ C and all
sufficiently large n ≥ 1.

In the first result discussed in this section, we will use Lemma 16 to note that under suitable
assumptions the process of clusters in G(Φ) is locally finite in the sense that the projection of its
center process Φdoub to Rd forms a stationary point process with finite intensity.

Proposition 3 Let Φ′ = {(ξi, τi, Θi)}i≥1 be an independently SOd-marked Poisson point process
such that the intensity function λ : Rd,+ → [0,∞) of the underlying unmarked Poisson point process
is given by (1) with α ∈ (−1, 1/(d−1)). Put Φ = {(ξi, τi, Θi(A)}i≥1, where A ∈ S. It is also assumed
that with probability 1 each x ∈ Φ admits a unique stopping neighbor. Then, EK < ∞, where K
denotes the number of (ξ, τ, `) ∈ Φdoub such that ξ ∈ Q1(o).

Proof. Choose r2 > 1 such that A ⊂ Br2(o). We distinguish several cases. First, if x = (ξ, τ, `), y =
(η, σ, `′) ∈ Φ form a doublet with ξ ∈ Qr2(o) and η 6∈ Q6r2(o), then (fΦ(x)− τ)r2 ≥ r2, or |η| ≥ 2σ
and (fΦ(y) − σ)r2 ≥ |η|/2, or |η| ≤ 2σ and (fΦ(y) − σ)r2 ≥ r2. Hence, Lemma 15 shows that the
expected number of such doublets is finite. Therefore, it suffices to bound the expectation of the
number K ′ of doublets formed by x, y ∈ Φ ∩ (Q6r2(o)× [0,∞)× S).

Since α ∈ (−1, 1/(d− 1)) there exists ε > 0 such that 2α− ((α+ 1)/d− ε)(d+ 1) < −1. We note
that K ′ is at most K1 + K2, where K1 is the number of x = (ξ, τ, `) ∈ Φ such that ξ ∈ Q6r2(o),
fΦ(x) − τ ≤ τ−(α+1)/d+ε and x admits a stopping neighbor y = (η, σ, `′) with σ ≥ τ , and where
K2 is the number of x = (ξ, τ, `) ∈ Φ such that ξ ∈ Q6r2(o) and fΦ(x) − τ ≥ τ−(α+1)/d+ε. Then,
Lemma 16 implies EK1 <∞, while Theorem 6 yields EK2 <∞. ut

Remarks. Note that the distribution of the number of doublets observed in a bounded sampling
window depends on α. Intuitively, we would expect that the number of doublets increases in α.
Indeed, if the arrival rate of germs increases, then it should be more probable that a growing grain
will form a doublet with a newly arrived germ. In Figure 4 we provide numerical evidence for this
observation, where for each parameter α ∈ {−0.5, 0, 1, 2, 3} we provide a graph for one simulation
run that shows how the number of connected components evolves with the number of grains that
have been added to the system. For α ∈ {−0.5, 0} the number of clusters stabilizes already after
the first few hundred grains. For α ∈ {1, 2} it is hard to tell from the data whether the number
of connected components converges or diverges, but in either case the convergence/divergence is
rather slow. Finally, for α = 3 one can see more clearly a divergent behavior.

Next, we investigate the problem of percolation in Apollonian packings where growth is stopped
after a finite amount of time. To state the result precisely, consider the following finite-time variant
of Definition 3.
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Fig. 4: Evolution of the number of connected components with increasing number of grains for
α ∈ {−0.5, 0} (left) and for α ∈ {1, 2, 3} (right).

Definition 8 Let ϕ ∈ N∗ and assume that ϕ does not admit strong descending chains. For each
t0 > 0, we define a directed graph G(t0, ϕ) on ϕ, where for x, y ∈ ϕ an edge is drawn from x to y
if and only if the graph G(ϕ) contains the edge (x, y) and max{fϕ(x), fϕ(y)} ≤ t0. The undirected
graph G′(t0, ϕ) is defined similarly.

We now show that with probability 1 there is no percolation after a finite amount of time in the
associated stationary Apollonian packing.

Proposition 4 Let m ≥ 1 and Φ be an independently and spatially stationary marked point process
in Rd,+,S , where the underlying unmarked point process is an m-dependent point process in Rd,+ with
absolutely continuous second factorial moment measure. Furthermore, assume that with probability
1 each x ∈ Φ admits precisely one stopping neighbor y ∈ Φ. Then, for each t0 > 0, with probability
1 the graph G′(t0, Φ) does not percolate.

Proof. Similar to [9], the statement can be proven by applying the mass-transport principle. First,
observe that uniqueness of stopping neighbors implies that if x, x′, x′′ ∈ Φ are such that G(Φ)
contains an edge both from x′ to x and from x′ to x′′, then x = x′′. In particular, it suffices to
exclude the existence of a self-avoiding path γ = (xi)i≥0 where either there is an edge from xi to
xi+1 in G(Φ) for all i ≥ 0 or there is an edge from xi+1 to xi in G(Φ) for all i ≥ 0. Since Theorem 3,
shows that the directed graph G(Φ) does not percolate almost surely, it remains to exclude the
second option, where without loss of generality, we may assume that x1 ∈ Φdoub. In other words,
by stationarity, we need to show that with probability 1 there does not exist an infinite path in
G(t0, Φ) which ends inside Q1(o).

Recall that hΦ maps each x ∈ Φ to its unique stopping neighbor. By Theorem 3, with probability
1, the directed graph G(Φ) does not percolate. Hence, for each x ∈ Φ the set

V (x) =
{
y ∈ Φ | hjΦ(x) = y for infinitely many j ≥ 0

}
consists of precisely two elements. Define a function ψ : Φ× Φ→ {0, 1/2} such that ψ(x, y) equals
1/2, if y ∈ V (x) and equals 0 otherwise. Furthermore, define a function ψ′ : Zd × Zd → [0,∞) by

ψ′(z1, z2) =
∑

x∈Φ∩Qt0,S1 (z1)

∑
y∈Φ∩Qt0,S1 (z2)

ψ(x, y)

and note that by stationarity,

E
∑
z∈Zd

ψ′(z, o) = E
∑
z∈Zd

ψ′(o, z) = E#(Φ ∩ (Qt0,S1 (o))) <∞.

In particular,
∑
z∈Zd ψ

′(z, o) is almost surely finite, so that with probability 1 there does not exist
an infinite path in G(t0, Φ) which ends inside Q1(o). ut
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It is expected that the percolative behavior of G′(Φ) is quite different from that of the graphs
G′(t, Φ). Indeed, in a homogeneous Poisson scenario with ball-shaped grains, Theorem 5 shows that
with probability 1, all connected components of G′(Φ) consist of infinitely many points x = (ξ, τ, `) ∈
Φ satisfying fΦ(x) > τ . Nevertheless, Theorem 4 shows that the connected components of G′(Φ) are
small in the sense that each covers only a finite volume.

Proof of Theorem 4. The proof is similar to the proof of Proposition 4. In particular, the function
V has the same meaning. Define a function ψ′ : Zd × Zd → [0,∞) by

ψ′(z1, z2) =
∑
x∈Φ

∑
y∈V (x)

1y∈(Q1(z2)×[0,∞)×S)
νd(g(x, fΦ(x)) ∩Q1(z1))

2
.

Then, by stationarity,

E
∑
z∈Zd

ψ′(z, o) = E
∑
z∈Zd

ψ′(o, z) ≤ νd(Q1(o)).

In particular, P(
∑
z∈Zd ψ

′(z, o) < ∞) = 1. Note that νd
(⋃

x∈Cy g(x, fΦ(x))
)

= ∞ for some y ∈ Φ
with V (y) ∩Q1(o) 6= ∅ would imply

∑
z∈Zd ψ

′(z, o) =∞, which completes the proof. ut

Remark. We conjecture that Proposition 4 can be sharpened in the sense that with probability 1,
for every x ∈ Φ the cluster

⋃
y∈Cx g(y, fΦ(y)) forms a bounded subset of Rd.

Finally, we prove Theorem 5. That is, we show that when measuring the size of clusters in terms
of the number of constituting germs, then percolation occurs almost surely. For this purpose, we
restrict ourselves to the special case, where Φ is an independently marked Poisson point process in
Rd,+,S such that 1) the intensity function of the underlying Poisson point process is constant both
in space and time, and 2) the marks are constant and given by the unit ball in Rd. Our idea of
proof is to consider locations where growing balls get into contact. We show that close to any such
location, there are infinitely many smaller balls attaching to one of these two balls. By the hard-core
property, the two balls in contact provide a sufficient amount of protection against interaction from
distant germs. To make this precise, we first state an elementary geometric auxiliary result. It is
used to provide (i) a lower bound for the distance of balls to the contact location of two other balls
and (ii) an upper bound for the radius of a ball subject to the non-overlapping condition with the
balls in contact.

Lemma 20 Let ξ, ξ′ ∈ Rd with ξ 6= ξ′ and put r = |ξ−ξ′|. Furthermore, let H denote the hyperplane
through ξ′ that is perpendicular to ξ− ξ′ and let η ∈ Rd \Br(ξ) be in the same half space of H as ξ.

(i) If |η − ξ′| > r/2, then |η − ξ′| − (|η − ξ| − r) ≥ r/4.
(ii) If |η − ξ′| ≤ r/2, then |η − ξ| − r ≤ |η|/4.

Proof. Without loss of generality, let ξ′ = o and assume that |η − ξ| ≥ r. First, we deal with claim
(i). If the distance of η from H is at least r/2, then |η| ≥ |η − ξ|. Otherwise, let η′ denote the
projection of η on H. Then, since max{3|η′|, |η′ − ξ|} ≥ r,

|η| − |η − ξ| ≥ |η′| − |η′ − ξ| = − r2

|η′|+ |η′ − ξ|
≥ −3r

4
.

Next, consider claim (ii). Again, write η′ for the projection of η to H. Then,

|η − ξ| − r ≤ |η′|2

|η′ − ξ|+ r
≤ |η|

2

2r
≤ |η|

4
,

which proves the second claim. ut
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Proof of Theorem 5. We show a stronger statement in the sense that if we consider any two balls
that are in contact with each other, then there exists an infinite number of balls attaching to the
union of those balls. Let t0 > 0 be arbitrary and let x1 = (ξ1, τ1, `1), x2 = (ξ2, τ2, `2) ∈ Φ∩Rd,t0,S be
two germs whose associated balls are in contact, i.e., max{fΦ(x1), fΦ(x2)} ≤ t0 and g(x1, fΦ(x1))∩
g(x2, fΦ(x2)) = {ξ12} for some ξ12 ∈ Rd. Put r1 = fΦ(x1)−τ1, r2 = fΦ(x2)−τ2,B = Br1(ξ1)∪Br2(ξ2)
and assume that r1, r2 > 0. Choose any s1 ∈ (0,min{1, r1/4, r2/4}) such that Φ∩(Bs1(ξ12)× [0, t0]×
S) = ∅. Let y1 = (η1, σ1, `

′
1) be chosen as the germ in Φ ∩ ((Bs1(ξ12) \B)× [0,∞)× S) whose time

coordinate is minimal. We claim that if |η1−ξ12| ≤ s1/2 and Φ∩(Bs1(ξ12)×(σ1, (σ1 +s1))×S) = ∅,
then the ball at y1 attaches to the set B. Indeed, part (ii) of Lemma 20 shows that the radius of the
ball (i.e., the growth duration) at y1 is at most s1/4, so that the ball is contained in B3s1/4(ξ12). Parts

(i) and (ii) of Lemma 20 show that no balls corresponding to germs in (Rd\Bs1(ξ12))×[0,∞) that are
different from x1 and x2 intersect B3s1/4(ξ12). Finally, using Φ∩ (Bs1(ξ12)× (σ1, (σ1 + s1))×S) = ∅
shows that the ball at y1 can only be in contact with the ball at x1 or the ball at x2.

Now, proceed recursively as follows. For i ≥ 2 choose any si ∈ (0, si−1) such that Φ∩ (Bsi(ξ12)×
[0, σi−1+si−1]×S) = ∅. Let yi = (ηi, σi, `

′
i) be chosen as the germ in Φ∩((Bsi(ξ12)\B)× [0,∞)×S)

whose time coordinate is minimal. Then, again Lemma 20 can be used to see that if |ηi−ξ12| ≤ si/2
and Φ ∩ (Bsi(ξ12)× (σi, σi + si)× S) = ∅, then the ball at yi attaches to the set B.

Hence, we conclude that conditioned on Φ ∩ Rd,σi−1+si−1×S the probability that the ball at yi
attaches to the set B is at least

νd(Bsi/2(ξ12) \B)

νd(Bsi(ξ12) \B)
exp
(
− λνd(Bsi(ξ12) \B)si

)
.

The second factor is at least exp(−λκd), whereas elementary geometry shows that the first can be
bounded from below by a constant depending only on the radii r1 and r2. Therefore, with probability
1, for infinitely many i ≥ 1 the ball at yi attaches to the set B. ut

6.3 Uniqueness of stopping neighbors

In the previous subsection, we have seen that the question of uniqueness of stopping neighbors
is important for proving the absence of percolation. This uniqueness property has already been
investigated in literature. If there exists some t0 > 0 such that Φ ⊂ Rd,t0,S , then the latter property
has been considered in [9]. It should be possible to adapt the arguments presented in that paper
to the case Φ ⊂ Rd,+,S , but to keep our presentation self-contained we provide a different proof for
the Poisson case with non-rotated grains. First, we discuss the effects on the growth-stopping times
when removing one germ from the process. To state this result precisely, we need to introduce some
notation.

Let ϕ ∈ N∗ be locally finite and assume that the marks of ϕ are constant and given by the unit
ball A with respect to a certain norm on Rd. Let f : ϕ → [0,∞) a family of ϕ-growth-stopping
times. Furthermore, let x0 = (ξ0, τ0, `0) ∈ ϕ be such that ξ0 6∈

⋃
x∈ϕ\{x0} int g(x,min{τ0, f(x)}) and

put t0 = f(x0) < ∞. Also put ϕ′ = ϕ ∩ Rd,t0,S \ {x0} and define ψ = ϕ′ ∩ ϕx0 as the set of all
x = (ξ, τ, `) ∈ ϕ′ with ξ ∈ int g(x0, τ). Finally, let f ′ : ψ → [0, t0] be a family of (t0, ψ)-growth-
stopping times and define the function f ′′ : ϕ′ → [0, t0] by f ′′(x) = min{f(x), t0} if x ∈ ϕ′ \ ψ and
f ′′(x) = f ′(x) if x ∈ ψ.

Lemma 21 The function f ′′ defines a family of (t0, ϕ
′)-growth-stopping times.

Proof. First, observe that if x = (ξ, τ, `) ∈ ϕ′ is such that ξ ∈ g(x0, τ), then g(x, t) ⊂ g(x0, t) for
all t ≥ τ . Indeed, for any ζ ∈ Rd we note that ζ ∈ g(ξ, t) is equivalent to ζ − ξ ∈ (t − τ)A. From
ξ− ξ0 ∈ (τ − τ0)A and from the assumption that A describes the unit ball with respect to a certain
norm on Rd, we conclude ζ − ξ0 ∈ (t− τ0)A, i.e., ζ ∈ g(ξ0, t). To check the hard-core property of f ′′

we have to verify that for every x ∈ ϕ′ and y ∈ ϕ′ \ ϕ′x,

(int g(x, f ′′(x))) ∩ g(y,min{f ′′(x), f ′′(y)}) = ∅. (16)
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The cases where x, y ∈ ψ or x, y ∈ ϕ′ \ ψ are immediate. Next, assume x ∈ ψ and y ∈ ϕ′ \ ψ. Then,
the argument at the beginning of the proof yields g(x, f ′(x)) ⊂ g(x0, t0). Since f defines a family
of ϕ-growth-stopping times, we have (int g(x0, t0)) ∩ g(y, f(y)) = ∅. Finally, assume that x ∈ ϕ′ \ ψ
and y ∈ ψ. Then,

(int g(x,min{f(x), t0})) ∩ g(y, f ′(y)) ⊂ (int g(x,min{f(x), t0})) ∩ g(x0, t0),

where the right-hand side is empty, since f defines a family of ϕ-growth-stopping times. This
completes the proof of (16).

It remains to verify existence of stopping neighbors. If x ∈ ψ is such that f ′(x) < t0 and y ∈ ψ
forms a stopping neighbor of x with respect to f ′, then it is easy to see that y also forms a stopping
neighbor of x with respect to f ′′. So let x ∈ ϕ′ \ ψ be such that f ′′(x) < t0 and let y ∈ ϕ denote
a stopping neighbor of x with respect to f . Then, we distinguish two cases and first assume that
ξ ∈ int g(y,min{τ, f(y)}). In particular, our assumption x ∈ ϕ′ \ ψ implies y ∈ ϕ′ \ ψ, so that y
is also a stopping neighbor of x with respect to f ′′. Now assume ξ 6∈ int g(y,min{τ, f(y)}). Then,
f(y) ≤ f(x) < t0 so that it suffices to show y 6∈ ψ. However, y ∈ ψ would imply

∅ 6= g(x, f(x)) ∩ g(y, f(y)) ⊂ g(x, f(x)) ∩ g(x0, f(y)).

Since the right-hand side is contained in (int g(x0, t0)) ∩ g(x, f(x)) = ∅, this completes the proof of
Lemma 21. ut

In Lemma 22, we assume additionally that A is strictly convex, i.e., A is convex and the topo-
logical boundary of A does not contain any line segments of positive length.

Lemma 22 Let α > −1, λ > 0 and Φ be an independently marked Poisson point process in Rd,+,S
whose marks are constant equal to A and whose underlying Poisson point process has a spatially
constant intensity function λ : Rd,+ → [0,∞). Then, with probability 1, for each x ∈ Φ there exists
precisely one stopping neighbor y ∈ Φ with respect to fΦ.

Proof. Since λ is spatially constant, we can write λ(τ) instead of λ(ξ, τ). The statement is easy
if there exists y ∈ Φ such that ξ ∈ int g(y, fΦ(y)). Therefore, from now on we assume ξ 6∈⋃
y∈Φ\{x} int g(y, fΦ(y)). To show that with probability 1, any such x does not admit two distinct

stopping neighbors y1, y2 ∈ Φ, we distinguish several cases.

Case 1: max{fΦ(y1), fΦ(y2)} < fΦ(x). Before we begin with the proof, it is convenient to recall
some geometric notions from [16]. For x ∈ Rd and B ⊂ Rd a strictly convex body with o ∈ intB
we write h′B(x) = min{r ≥ 0 : x ∈ rB}. Furthermore, if additionally K ⊂ Rd is closed, put
ΠB(K,x) = {y ∈ K : dB(K,x) = h′B(y − x)} and define the exoskeleton exoB(K) of K with
respect to B by exoB(K) =

{
x ∈ Rd \K : #ΠB(K,x) ≥ 2

}
(recall from Section 3.2 that we write

dB(K,x) = min{r ≥ 0 : (x+ rB) ∩K 6= ∅}). It is shown in [16, Lemma 2.1] that νd(exoB(K)) = 0
if B ⊂ Rd is strictly convex and K ⊂ Rd defines a closed subset of Rd. Note that if x ∈ Φ is such
that x admits two different stopping neighbors y1, y2 ∈ Φ, then

ξ ∈ exoA
(
g(y1, fΦ(y1)) ∪ g(y2, fΦ(y2))

)
.

By Lemma 21, we compute

fΦ(yi) = min{fΦ(x), fΦ(yi)} = min{fΦ(x), fΦ\{x}(yi)} = fΦ\{x}(yi),

for all i ∈ {1, 2}, so that

E
∑

x,y1,y2∈Φ
x,y1,y2 pw. disjoint

1ξ∈exoA(g(y1,fΦ\{x}(y1))∪g(y2,fΦ\{x}(y2)))

=

∫
Rd,+,S

λ(σ1)

∫
Rd,+,S

λ(σ2)

∫ ∞
0

λ(τ)

Eνd
(
exoA

(
g(y1, fΦ∪{y1,y2}(y1)) ∪ g(y2, fΦ∪{y1,y2}(y2))

))
dτdy2dy1

= 0.
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Case 2: fΦ(x) = fΦ(y1) > fΦ(y2). As before, we may use Lemma 21 to deduce that

fΦ\{y1}(y2) = min{fΦ(y2), fΦ(y1)} = fΦ(y2).

Hence, by the hard-core property, fΦ\{y1}(x) ≤ fΦ(x) and another application of Lemma 21 yields

fΦ\{y1}(x) = min{fΦ(x), fΦ(y1)} = fΦ(x).

In particular, we conclude that

σ1 = fΦ(y1)− dA
(
g(x, fΦ(x)), η1

)
= fΦ\{y1}(x)− dA

(
g(x, fΦ\{y1}(x)), η1

)
,

where y1 = (η1, σ1, `
′
1). Furthermore,

E
∑

x,y1∈Φ
x,y1 pw. disjoint

1σ1=fΦ\{y1}(x)−d
A(g(x,fΦ\{y1}(x)),η1)

=

∫
Rd,+,S

λ(τ)

∫
Rd

E
∫ ∞
0

λ(σ1)1σ1=fΦ∪{x}(x)−dA(g(x,fΦ∪{x}(x)),η1)dσ1dη1dx

= 0.

Case 3: fΦ(x) = fΦ(y1) = fΦ(y2). As x and y2 are mutual stopping neighbors, we obtain that

σ1 = fΦ(y1)− dA
(
g(x, fΦ(x)), η1

)
= f{x,y2}(x)− dA

(
g(x, f{x,y2}(x)), η1

)
,

where y1 = (η1, σ1, `
′
1), so that as in Case 2,

E
∑

x,y1,y2∈Φ
x,y1,y2 pw. disjoint

1σ1=f{x,y2}(x)−d
A(g(x,f{x,y2}(x)),η1)

=

∫
Rd,+,S

λ(τ)

∫
Rd,+,S

λ(σ2)

∫
Rd

∫ ∞
0

λ(σ1)1σ1=f{x,y2}(x)−d
A(g(x,f{x,y2}(x)),η1)

dσ1dη1dy2dx

= 0. ut

7 Open problems and topics of further research

In the present paper, we provided the basis for a rigorous mathematical treatment of random
Apollonian packings and rotational random Apollonian packings which constitute popular grain
packing models in physics. The results discussed in Sections 3 to 6 provide a hint to the rich
mathematical structure of stationary Apollonian packings and we conclude this paper by advertising
two conjectures as starting points for future research. Let λ > 0, α > −1, A ∈ S and Φ be an
independently marked Poisson point process in Rd,+,S that is constructed as in Theorem 7. We
have seen in Section 5 that AP(Φ) is space-filling in the sense that νd

(
Rd \ AP(Φ)

)
= 0 a.s. More

precisely, the random closed set Rd \AP(Φ) is expected to be of fractal nature in the following sense.

Conjecture. P
(
d− 1 < dimHausdorff Rd \ AP(Φ) < d

)
= 1.

The problem of determining the Hausdorff dimension has already been considered for deter-
ministic Apollonian packings of disks in dimension d = 2. In [2] it has been shown that the latter
dimension is at least 1.1 and at most 1.4. To estimate the Hausdorff dimension for planar random
Apollonian packings with α = 0 and disk-shaped grains, we performed Monte Carlo simulations
whose results support the conjecture that the Hausdorff dimension is not an integer. To be more
precise, Figure 5 shows a plot of log δ versus log aδ, where aδ = P

(
Qδ(o) ∩ AP(Φ) 6= ∅

)
. Estimating

the slope based on the last two data points suggests that, approximately, aδ ∈ O(δ0.43), regardless
of the value of α. It is well-known that aδ ∈ O(δ0.43) implies dimHausdorff AP(Φ) ≤ 2 − 0.43 with
probability 1, see e.g. [18, 22]. Hence, we obtain sound evidence that the Hausdorff dimension is
strictly smaller than 2.

30



Fig. 5: − log2 δ versus log2 aδ for α = −1/2 (black), α = 0 (green),
α = 1 (red), α = 2 (blue) and α = 3 (orange).

A second research question concerns connectivity in rotational random Apollonian packings. In
Section 3.3, we provided an existence result for stationary approximations to rotational Apollonian
packings and we conjecture that in distribution these approximations converge to a limiting object
whose configurations inside a bounded sampling window would be similar to ordinary rotational
random Apollonian packings, as illustrated in Figure 6. Moreover, we conjecture that in contrast to
the results obtained in Section 6 the analogue of the graph G′(Φ) for stationary rotational Apollonian
packings consists of a single connected component with probability 1.

Fig. 6: Realization of a rotational random Apollonian packing
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