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Abstract—We investigate Cox processes of random point solution of this problem is to look at the complexity of
patterns in the Euclidean plane, which are located on the the network from a macroscopic perspective. This can be

edges of random geometric graphs. Such Cox processes hav

applications in the performance analysis and strategic planing

of both wireless and wired telecommunication networks. Thg
simultaneously allow to represent the underlying infrastucture of

the network together with the locations of network componets.

In particular, we analyze the Palm version X* of stationary Cox

processesX living on random graphs that are built by the edges
of an iterated random tessellationT. We derive a representation
formula for the Palm version T* of T which includes the initial

tessellationT, and the component tessellatiori; of T as well as
their Palm versions T and T7". Using this formula, we are able to
construct a simulation algorithm for X™ if both Ty, 77 and their

Palm versions Ty, 77" can be simulated. This algorithm for X*

extends earlier results for Cox processes on simpler (nonerated)

tessellations. It can be used, for example, in order to estiate
the probability densities of various connection distanceswhich

are important performance characteristics of telecommuncation

networks. In a numerical study we consider the particular cae
that Ty is a Poisson-Voronoi tessellation and’; is a Poisson line
tessellation.

%chieved in the framework of stochastic modeling. Spatial
stochastic modeling is a powerful approach for the purpose
of global analysis of huge networks since it provides direct
access to the statistical properties of the system. The main
principles that govern the behavior of the network to beistid

are translated via the choice of suitable random processes.
They have been proved to be useful in order to describe the
geometry of the underlying infrastructure or the locatiafis
network components. Since the first applications of thesks to

to global network modeling, see e.g. [1]-[6], the variety of
suitable spatial network models has been greatly enriched
using concepts from stochastic geometry, like spatial tpoin
processes and random geometric graphs [7]-[9]. Traditigna
the locations of network components have been described by
planar Poisson processes. The advantage of this approach is
that the resulting network models are analytically traletab a
great extent. Unfortunately, this is not possible from emdrd

Index Terms—Point processes, Geometric modeling, Poissonfor most of the random processes involved in more realistic

processes, Monte Carlo methods, Estimation, Mobile commun
cation, Networks.

I. INTRODUCTION

models, even under stationarity assumptions. Howevenapla
Poisson processes represent the situation of completalspat
randomness and, therefore, seem to be inappropriate in many
applications. For instance, in this way, geographicabiess of

Real telecommunication networks are huge and complthe considered region where a new network has to be deployed
systems. They are deployed in a variety of settings (ruedsr cannot be taken into account.
towns, indoor...) and are built on technologies that dependwe regard more general classes of point processes which are
on the users needs and specificities. Networking studies aiiie to include geographical features into the network rhode
to find the best possible solutions to serve the requirememsparticular, we consider Cox processes located on thesedge
of customers under feasibility and cost constraints for thf random geometric graphs. Such processes can be used in
telecommunication operator, the latter being enhancedey rder to model, e.g., the street system inside cities tegeth
present context of market competition. Appropriate aralyswith network components located along the streets [10]}-[13
tools are thus needed to relate possible network architecte focus on random graphs which are constructed by the
and characteristics as well as traffic demand and variphdit edges of random tessellations, whose distributions depand

such notions as quality of service perceived by the users.

a few parameters only. Anyhow, it turns out that by such

In particular, reliable and efficient tools are needed faessellation models we are able to fit basic statistical gnigs

the global analysis of huge networks that explicitly takef real street systems like the mean number of crossings,
into account the geometry of the territory while being ablsegments, city blocks and the mean total length of streéts al
to describe various technologies and architectures. Hemevneasured per unit area. This means, for a given set of street
it is often impossible to do the analysis directly on realata, it is possible to choose an optimal tessellation tyyokita
network data, e.g., due to the enormous size and complexityrameters by the fitting techniques introduced in [14]].[15

of modern telecommunication networks. A methodological We emphasize that this kind of Cox processes can be
applied in the analysis of both wireless and wired telecom-
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munication networks. For fixed access networks, parametric
distance distributions of point-to-point connection distes
along the edges of random tessellations were obtained using
Palm calculus and efficient simulation algorithms for the
typical cell [11], [16]. Note that the parameters of these



distributions explicitly depend on the considered teasielh in Section Ill, we derive a representation formula for the
model. The parametric distance distributions for the optimdistribution of the Palm versiofi* of T'. Based on this formula
tessellation model were then compared to the correspondimg introduce a new simulation algorithm fof*. Finally, in
distributions which were estimated from real data. AlthougSection IV, we demonstrate in a numerical study how our
the choice of the optimal tessellation model was restritted results can be used in order to estimate the density of variou
simple tessellations of Poisson type, the distance digtdbs distance distributions based on the typical Voronoi cellXaf
computed in [11] from the model and from real data, respec-

tiVer, were already Very Close. Since the Spatial dIStrdJUOf || COX PROCESSES ON ITERATED TESSELLATIONS

the transmitters, receivers and relaying nodes is an eéakent . . . . . :
feature for assessing the performance of wireless networksln this section we describe the kind of tessellation andtpoin

we think that such an approach, although developed for fixBHPCESS m_odels for wqeles_s and wired telecommunication ne
network analysis, could also be used in the framework rks, which we consider in the present paper. Moreover, we

wireless and mobile networks. The aim of this paper is to ma éiefly explain some necessary mathematical background and

the reader aware of the possibility to include the geomefry Botanon. Comprehensive Surveys on the usage .Of StOCha.St'C
road systems in wireless network analysis. For example, # ometry and _ran(jom geometric graphs in spanal modeling
distributions of direct (Euclidean) connection distances 0 telecommunlcathn networks can be found in [7]_[9.]' For
be computed for network components located along str&[ther details on point processes and random tessekasee
systems and belonging to different hierarchy levels of te9: [22]-{25].
network [12].

In [14] we showed that iterated tessellations [17], [18HleaA. Iterated tessellations

to much better fits regarding the underlying street systemp (planar) random tessellatiofi’ is a subdivision ofR2
than simple (non-iterated) tessellations of Poisson types, inio a sequence,, =,,... of random compact and convex

we also expect even better results for the fitting of diStanﬁ%lygons, which are not overlapping and locally finite, ,i.e.
distributions than those obtained in [11]. In the presemiepa | (* = _ R2 int=; N intZ; = 0 for i # j, and

—

we therefore extend some results, which we recently deriv%:ilz Z; N B # 0} < oo for each bounded sdt c R2. Note
for stationary Cox processes on simple (non-iteratedetessnat 7 can be identified with its edge s’ = (J°, 0%,

. . n= N
lations of Poisson type, to Cox process&s concentrated ryrthermore, we need the notion of an iterated tessellation
on iterated tessellation®. Note thatT' is then built by an (o equivalently, nested tessellation), where we comsidene
initial tessellatioril, and a component tessellati@h. For the  jnitial tessellatior}, and a sequencd, T», . . . of independent

analysis of cost functionals like the distributions of ceation component tessellations, which are independerifpfThen
distances, it is fundamental to analyze the Palm version tor eachn > 1, the nth cell 5, of T, is considered

of the Cox proces_g( . Unfortun_ately, it is ofte_n ir_npo_ssible to together with its ,inner structure’Z,, N T, where the
get closed analytical expressions for the distributionXof. intersection=,,, N 97, means that part of the edge system
However, alternatively, simulation algorithms féf* can be dT, of T, which is contained in the celEy, of T,. The

used in order to analyze various performance characterist'édge set of the iterated tessellatiah is then defined by
of the network. For example, in hierarchical network models; _ U, 9Z0n U (Eon N OT,,). A realization of an iterated
e .

it is possible to estimate distance distributions in an ffit (ogsellation is shown in Fig. 1. In particular, 5, we
way based on samples of the typical Voronoi cellofwhich  jenote the so—called zero cell at, i.e., that cell ofT,
can be constructed front*, see e.g. [10], [12]. containing the origin, where the inner structuresgf is given

In _Th(_eore_m 3.1, we derive a representation _formula f(yy Zo1 N OTy. For brevity, we writeT = (T | T1,Ts, . . .)
the distribution of the Palm versidfi* of 7" which includes tq, an iterated tessellation induced By andT}, Ty, . ... Note
the initial tessellatiorﬂ“o and the .component tessgllatidi’? thatT = 7(Tp | Ty, T, .. .) is stationary ifTy is stationary and
of 7" as well as their Palm versiorig; and 77" Using this it 7, 7, .. are identically distributed and stationary. Then,
formula,_ we are able to con_struct a am_ulaﬂon algorlthrgy Yo = By (0Tp N [0, 1]2) andy; = Evy (971 N [0, 1]2) we
for X if both To, Ty and their Palm versiond, 77" can genote the intensities &, and Ty, respectively, where, is

be simulated. This algorithm foX ™ extends earlier results ihe one-dimensional Hausdorff measure®kif. Moreover. the
for Cox processes on simpler (non-iterated) tessellattm‘nsintensitw = Evy (8T N[0, 1]?) of T is given byy = ~o + 1.
Poisson type. Note that so far simulation algorithms Xot

were available only for Cox processes on Poisson-Delaunay

tessellations (PDT), Poisson-Voronoi tessellations (P\aid B+ COX processes

Poisson line tessellations (PLT), respectively [12], [12D]. Let Ty, 71,75, ... be independent stationary tessellations,

Other extensions are also possible, e.g., to Cox processesmherel’, Ts, ... are identically distributed, but the distribution

modulated Poisson-Voronoi tessellations [21] which yiald of T, can be different from that ¢f}, 75, . . .. In the following

suitable model for nationwide networks. we assume that the point proce¥s= {X,} is a stationary
The paper is organized in the following way. First, irCox process inR? with random intensity measur& given

Section II, we briefly explain some mathematical backgroundy A(B) = X\, v1(0T N B) for each Borel setB C R?

introducing the notion of iterated random tessellatithand and some), > 0, whereT = 7(Ty | T1,1%,...). Note

defining Cox processek on their edge se®T'. Subsequently, that givenT the pointsXi, Xs,... of X are then placed as



to corresponding results for Cox processes on simpler (non-
iterated) tessellations.

IIl. PALM DISTRIBUTIONS

In this section we consider the Palm version of the statipnar
Cox processX, which is a point proces(* in R? whose
distribution is given by

1
En(X*) =L E > ({Xa} - X)), (n.1)
i: X;€[0,1]2

whereh : N — [0, 00) is an arbitrary measurable function and
N denotes the family of all locally finite se{s:,,} C R?. Note
that P(o € X*) = 1 by definition, where the distribution of
X* is called the Palm distribution oX. It can be interpreted
as conditional distribution oX given that there is a point at
Fig. 1. Cox process (black points) on an iterated tesseflatiith PVT the origin. Furthermore, it can be shown that the so—called
(black) and PLT (Grey) a3y and T reduced Palm versioX * \ {o} of X is a Cox process, too.
The random intensity measure* of X* \ {0} is given by
A*(B) = A\ v1(9T* N B) for each Borel seB C R?, where

T* is a random tessellation whose distribution is given by

linear Poisson processes on the edge% oFurthermore, the
(planar) intensity\ = E#{n : X,, € [0,1]*} of X is given
by X = X\, where~ is the intensity ofl” and )\, can be . 1 /
: . . i . Eh(T*)=-E h(T — d 1.2
interpreted as the (linear) intensity of the conditionaisBon () Y Jrnoa)e ( @) (de), (-2)
processes on the edges’Bf A realization of a Cox process

together with the underlying iterated tessellation is kiged where /. : T — [0,00) is an arbitrary measurable function

andT denotes the family of all tessellations RF. Note that

nFig. 1. P(o € OT*) — 1 by definition, where the distribution df*
o ] o is called the Palm distribution df’. It can be interpreted as
C. Scaling invariance and scaling limits conditional distribution ofl’ given that the origin belongs to
Recall that the intensities &fy, and7; are denoted by, an edge off".
and v, respectively. If we scald’ by a constantt > 0, Palm distributions are important objects in the analysis of

then ¢ < T', where T’ is an iterated tessellation withtelecommunication networks. For instance, we can associat
initial tessellation}; and component tessellatidif such that to each pointX,, of X its Voronoi cell =,. If we assume
T d Ty and T} 4 cTy. The intensitiesy, and~/ of T} and that X, represents a network component, theép can be

T/ are given byy, = ~o/c and+, = 71 /c, respectively. regarded as the domain it has to serve. The typical Voronoi
1” X is a Cox r())rocess ot With linear intensity\, and X cell of X,, is then defined as the Voronoi cell at the origin with

is a Cox process off” with linear intensity\, = \¢/c, then respect taX *. Note that the distribution of the typical cell can

d . ;o . ¢ . be regarded as the limit of the empirical distributions df al
X = X, Thus, if 5o/ = 7o/71 and if the scaling factors Voronoi cells in a family of unboundedly increasing samglin
k =/ andx’ = +'/X} coincide, wherey = v, + v, and y y 9 9

v = 74+, then the Cox processes and X’ have the same windows.

distributions up to a scaling. This observation can be used i _

order to do numerical computations only for a single paramet® Representation formula for 7™

triplet (70,71, A¢) with given ratiovy/+1 and scaling factor ~ Assume that the random intensity measiiref the station-

k = (v + m)/Ae. For other parameter tripletsy),~;,\;) ary Cox proces is the one-dimensional Hausdorff measure
with the same scaling factor and with~,/vy1 = +(/~; we concentrated on the edge s’ of a (stationary) iterated
can then obtain the corresponding results from the alreagsellationT = 7(Ty | T1,T>,...), where Ty, Ty, 1>, . ..

computed ones by an appropriate scaling, see [15]. Thus,aire independent stationary tessellations &nd7s:,... are
our numerical computations, we fix= 1 and only varyy, € identically distributed.
[0,1] and )\, > 0, wherey; =1 — ~,, see Sections IV. In Section IlI-B we present a simulation algorithm for the

Furthermore, the following convergence results can hgpical Voronoi cell ofX, or, equivalently, for the Voronoi cell
proved. On the one hand, one can show tiatconverges of X* with respect to the origin. This algorithm is based on
weakly to a (planar) Poisson process with intensitif x — the following representation formula faf*, which includes
oo and A,y (= A) is fixed. Thus, it is interesting to comparethe Palm versiongd and T} of T, and T}, respectively. In
numerical results for Cox processes @hto corresponding particular, the iterated tessellation$7; | T1,7%,...) and
results for Poisson processes with the same intensity. ©n #{(7y | 17, 72,75,...) are considered, where, in the latter
other hand, one can show tHAtconverges weakly td, and case, the zero-celky; of T, has the component tessellation
T, if 1 — 0 andyy — 0, respectively. Thus, we can compard’’, and the other cells dfy have the component tessellations
numerical results for Cox processes on iterated tesswiti 75, T3, ..., respectively.



Theorem 3.1: For any measurable functidn: T — [0, c0),
it holds that

Eh(T*) = % EA(r(T; | Ty, T, . ..))
+% Eh(r(Ty | T, To, T, ...)) . (I11.3)

Proof: Using (111.2), we can writéEh(T*) as

[/Tﬁ[o_;]z hT —x)1y (da:)}

1
—E
v

Eh(T*)

: %(%E[/m(zﬁ—@*“zﬂ)
'Yl 71 Z‘/Tmum 01]2—1' Vl(dl')})7

where=o1, Z02, . . .
that

1
—E
Yo

are the cells ofly. Furthermore, we get

[/Toﬁ[O,lp hT — 2) 11 (d:c)}

[/ h(r(To—z | Ty
TyN[0,1)2

|:/ h(T(T()—I|T1,T2,..
ToN[0,1]2
J).

Note that the independence and stationaritylpf7y, 75 . ..
have been used in the last but one equality, whereas the
equality is obtained from (l11.2), replacing and T* by Tj
and7}, respectively. It remains to show that

)1 (d:c)} .

=5 HL
(I11.4)

In the following we writeEr,, Er, . and E¢r,; to indicate
that the expectation is taken with respect to a single tiesisel
T;, two tessellations7, and T;, or an infinite sequence
of tessellations{7}}, respectively. Sincely,Ty,Ts,... are
independent and stationary, we get that

Z /70_01 0 1]2 —z)1 (dx)}
S

1
—E
Yo

—x,To—2x,...)) 11 (d:c)}
1
—E
o
Eh(r(T§ | 11, T2, - -

) vi(da)|

Eh(T(T0|T1*,T2,T3,. . h(T—

ﬂEoiﬁ[O,l]z

{ st {]I (x)h(T(To— I|{Tj—x}))} V1(d£€):|

T;N[0,1]2
_ E[ | tey o) b T T {T3)5) Vl(da?)] ,
= LJmnpo.a?

sinced_*, I=,,(x) = 1. Finally,

E [ /Tm[o . h(r(To —x | Th — z,{Tj}j>2) Vl(da:)]
)] a)|

|

=Emy,m [/ Ex, [M(r(To—2|T1—=, {T}} ;>
T1N[0,1]
=E{1},51 [/ Er, [(7(To | Ti— 2, {T}};22)] v1(dw)
~ LJ1in]o,1)2
—Bny ()] [ WD (T (o)
T:M[0,1]2
=nE[h(T(To | T{, {T;};>2))] ,
where the last equality is obtained from (l11.2), replacifg
andT™ by T, andTy, respectively. Thus, (Ill.4) is proveda
Note that the random tessellation§I | 71,7z, ...) and
7(Ty | Ty, T2, Ts,...) occurring in (111.3) can be considered
as conditional versions of * under the condition that the

origin belongs to an edge of the initial tessellation resp.
the component tessellations, which occur with the proligbil

Yo/ resp.y1/7.

B. Smulation algorithm

The representation formula (111.3) féaF* derived in Theo-
rem 3.1 enables us to simulaf& if both Ty andT; as well
as their Palm versiong;; and 7} can be simulated. I}
for j = 0,1 is a PVT, PLT or PDT, respectively, then the
Eistulation ofT}; is straightforward and simulation algorithms
for T are also available [12], [19], [20]. Moreover, (lI1.3)
and the remark at the end of Section IlI-A yield a simulation
algorithm for the Palm versionlX* of the stationary Cox
processX, which consists of the following main steps.

1) SimulateU ~ UJ[0,1]. If U < 7y /7, go to step 2, else

go to step 3.

2) SimulateT; and subdivide the cellS§,, =, ... of T§
by T1,Ts, .. ., respectively, which giveg™.
3) SimulateTy, subdivide the zero celEy; of Ty by TF

and subdivide the cell8ys, Zo3, . . .
which givesT™.

ConstructX* = {o}.

Fork =1,2,..., generateV; ~ Poi(A,v1(Sk)), where
S; denotes théith segment oDT™*; if Ny = ng, gen-
eraten;, points X1, ..., Xxn,, Which are conditionally
independent and uniformly distributed of).; add the
points X1, ..., Xgn, t0 X*

From a practical point of view, we always want to simulate
X* in a given (bounded) sampling windoW c R2. Then,

of 1o by 15,15, ...,

4)
5)

where in the last expressidfi, — = denotes the componentin many cases, it is reasonable to simul&teand T as well

tessellation which subdivides the zero celllgf— = for each

x € ;. Furthermore, we have
Tz, (0) (r(Ty—a| i~ (T3 22)) 1 )

iE[/Tm[o 12
T(To—z/Thi—z,{T;};j>2)) 11 (dw)}

= |:/Tlﬂ 0,12 Z]LO?
B[ M= | Ty (T ).

asTy and Ty radially, where we have to choose appropriate
stopping criteria depending on the type of the tessellation
Ty, andTy. This kind of algorithm has many applications in
the analysis and planning of (wired and wireless) telecom-
munication networks. For instance, it can be used in order to
simulate the typical celE* of the Voronoi tessellation induced

by X, where we merely have to construct the Voronoi ceb at
with respect taX *. Furthermore, various distance distributions

in such networks can be estimated based on samples of the
typical cell=*, see e.g. [11], [12], [16] and Section IV.
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IV. NUMERICAL RESULTS AND APPLICATIONS
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We now focus on the case of an iterated tessellafion
T(To | Th,To,...), whereT, is a PVT andTy, Ty, ... are g | 2
PLT. Note that other nestings based on PVT, PDT and PLT, &+ & « = = o m o w ow
respectively, can be analyzed similarly.

Fig. 3. Histograms for area (top) and perimeter (bottom)hef tiypical cell

A. Typical Voronoi cell of Cox processes

The locations of network components in hierarchicdl @ family of unboundedly increasing sampling windows.

telecommunication networks are often modeled by two statio! hUS, the distribution oD" is also an important object in the

ary point processe#f = {H,} andL = {L,} in R2, where global anaIyS|s. and plapnlng qf teleco.mmumcatlon network

H represents the locations of high-level components &nd!n Poth scenarios considered in [12], is a Cox process on

represents the locations of low-level components. Supipase 1> Whereasl is either a planar Poisson process independent

each point ofL, is connected to its nearest point &, i.e., a Of #/ or @ Cox process on the same tessellafionvhich is

point L, of L is connected to the pointi,, of H if L, is cor_1d|t|onally mdepende_nt off givenT'. '_I'hen, in _both cases,

located in the Voronoi cell off;, , see [4], [15]. The Voronoi €stimators for the density and distribution fungtlonlbf can

cell of Hj, is then called the serving zone of the high-levé?e constructed based on samples of the typical Voronoi cell

component located at this point. Thus the typical Voron&f - o )

cell of H is an important object in the global analysis and L€t H be a Cox process off with intensity A = A,y. If L

planning of telecommunication networks, see also Section 1S @ planar Paisson process, then

Furthermore, samples of the typical Voronoi cell can be used - Aoy n .

in order to estimatg the densityygf typical connection dists fp-(in) = n Zizl v1(E; N 9B(o, 1)) (IV.5)

in hierarchical telecommunication networks, see SectiéB.l can be used to estimate the probability densitylof Here
Assume thatH is a Cox process on the edge set of &+ =* is an i.i.d. sample of the typical Voronoi cell of

PVT/PLT nesting. In order to determine distributional propy and v, (2 N 9B(o,z)) denotes the intersection length of

erties of the typical Voronoi cell off, we simulated the Palm the circle 9B (o, ) with radiusz centered ab inside =. If

version i/* of H for different values ofx, 7o and~, with [ is a Cox process offf, then an estimatoFp- (z; n) for the

7 +m = 1. Based on these samples, we then computggktribution functionF- (z) is given by

the distribution of cell characteristics like perimetedaarea. \ .

The results are displayed in Fig. 3. As one can see, we can ﬁD*(x;n) =2 Z (S N B(o,z)), (Iv.6)
move from PVT towards PLT ify, decreases and hence n =t

increases. Thus, we can interpolate between the diswitmti Wheresy, . .., S; denotes an i.i.d. sample of segment systems
of the typical cell of the extremal cases whétés a PVT and ©f the underlying tessellatioi™ inside =7, ..., =7, respec-

PLT, respectively, by choosing PVT/PLT nestings for valudé/ely. Based onFp. we can then get an estimatgy,- for
of o from 1 to 0. the density of D* by computing difference quotients. The

numerical results obtained from simulations of the typizll
o ] _ of the Cox processeH are displayed in Fig. 4.

B. Distribution of connection distances We again see that the distributions 6f for PVT and

In [12] estimators for the density and distribution funatio PLT occur as extremal cases and that we can move from
of the typical (Euclidean) connection distanée from the PVT to PLT if 7y goes from1 to 0. Thus, considering a
typical point of L to its nearest point oHf have been intro- more flexible class of (iterated) tessellations, we now are i
duced for two different scenarios. Note that the distrimuti position to arrive at a more flexible class of different dista
of D* is formally defined via Palm distributions, but agairdistributions. This extension is useful in applicationsréal
it can be regarded as the limit of the empirical distribusiometworks, whereas, so far, we were only able to use simpler
of the Euclidean connection distances from all pointsiof (non-iterated) tessellation models.
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