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Palm calculus for stationary Cox processes on
iterated random tessellations

Florian Voss, Catherine Gloaguen,Member, IEEE, and Volker Schmidt

Abstract—We investigate Cox processes of random point
patterns in the Euclidean plane, which are located on the
edges of random geometric graphs. Such Cox processes have
applications in the performance analysis and strategic planning
of both wireless and wired telecommunication networks. They
simultaneously allow to represent the underlying infrastructure of
the network together with the locations of network components.
In particular, we analyze the Palm versionX∗ of stationary Cox
processesX living on random graphs that are built by the edges
of an iterated random tessellationT . We derive a representation
formula for the Palm version T ∗ of T which includes the initial
tessellationT0 and the component tessellationT1 of T as well as
their Palm versionsT ∗

0 and T ∗

1 . Using this formula, we are able to
construct a simulation algorithm for X∗ if both T0, T1 and their
Palm versionsT ∗

0 , T ∗

1 can be simulated. This algorithm for X∗

extends earlier results for Cox processes on simpler (non-iterated)
tessellations. It can be used, for example, in order to estimate
the probability densities of various connection distances, which
are important performance characteristics of telecommunication
networks. In a numerical study we consider the particular case
that T0 is a Poisson-Voronoi tessellation andT1 is a Poisson line
tessellation.

Index Terms—Point processes, Geometric modeling, Poisson
processes, Monte Carlo methods, Estimation, Mobile communi-
cation, Networks.

I. I NTRODUCTION

Real telecommunication networks are huge and complex
systems. They are deployed in a variety of settings (rural areas,
towns, indoor. . . ) and are built on technologies that depend
on the users needs and specificities. Networking studies aim
to find the best possible solutions to serve the requirements
of customers under feasibility and cost constraints for the
telecommunication operator, the latter being enhanced by the
present context of market competition. Appropriate analysis
tools are thus needed to relate possible network architecture
and characteristics as well as traffic demand and variability to
such notions as quality of service perceived by the users.

In particular, reliable and efficient tools are needed for
the global analysis of huge networks that explicitly take
into account the geometry of the territory while being able
to describe various technologies and architectures. However,
it is often impossible to do the analysis directly on real
network data, e.g., due to the enormous size and complexity
of modern telecommunication networks. A methodological
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solution of this problem is to look at the complexity of
the network from a macroscopic perspective. This can be
achieved in the framework of stochastic modeling. Spatial
stochastic modeling is a powerful approach for the purpose
of global analysis of huge networks since it provides direct
access to the statistical properties of the system. The main
principles that govern the behavior of the network to be studied
are translated via the choice of suitable random processes.
They have been proved to be useful in order to describe the
geometry of the underlying infrastructure or the locationsof
network components. Since the first applications of these tools
to global network modeling, see e.g. [1]–[6], the variety of
suitable spatial network models has been greatly enriched
using concepts from stochastic geometry, like spatial point
processes and random geometric graphs [7]–[9]. Traditionally,
the locations of network components have been described by
planar Poisson processes. The advantage of this approach is
that the resulting network models are analytically tractable to a
great extent. Unfortunately, this is not possible from end to end
for most of the random processes involved in more realistic
models, even under stationarity assumptions. However, planar
Poisson processes represent the situation of complete spatial
randomness and, therefore, seem to be inappropriate in many
applications. For instance, in this way, geographical features of
the considered region where a new network has to be deployed
cannot be taken into account.

We regard more general classes of point processes which are
able to include geographical features into the network model.
In particular, we consider Cox processes located on the edges
of random geometric graphs. Such processes can be used in
order to model, e.g., the street system inside cities together
with network components located along the streets [10]–[13].
We focus on random graphs which are constructed by the
edges of random tessellations, whose distributions dependon
a few parameters only. Anyhow, it turns out that by such
tessellation models we are able to fit basic statistical properties
of real street systems like the mean number of crossings,
segments, city blocks and the mean total length of streets all
measured per unit area. This means, for a given set of street
data, it is possible to choose an optimal tessellation type and its
parameters by the fitting techniques introduced in [14], [15].

We emphasize that this kind of Cox processes can be
applied in the analysis of both wireless and wired telecom-
munication networks. For fixed access networks, parametric
distance distributions of point-to-point connection distances
along the edges of random tessellations were obtained using
Palm calculus and efficient simulation algorithms for the
typical cell [11], [16]. Note that the parameters of these
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distributions explicitly depend on the considered tessellation
model. The parametric distance distributions for the optimal
tessellation model were then compared to the corresponding
distributions which were estimated from real data. Although
the choice of the optimal tessellation model was restrictedto
simple tessellations of Poisson type, the distance distributions
computed in [11] from the model and from real data, respec-
tively, were already very close. Since the spatial distribution of
the transmitters, receivers and relaying nodes is an essential
feature for assessing the performance of wireless networks,
we think that such an approach, although developed for fixed
network analysis, could also be used in the framework of
wireless and mobile networks. The aim of this paper is to make
the reader aware of the possibility to include the geometry of
road systems in wireless network analysis. For example, the
distributions of direct (Euclidean) connection distancescan
be computed for network components located along street
systems and belonging to different hierarchy levels of the
network [12].

In [14] we showed that iterated tessellations [17], [18] lead
to much better fits regarding the underlying street system
than simple (non-iterated) tessellations of Poisson type.Thus,
we also expect even better results for the fitting of distance
distributions than those obtained in [11]. In the present paper,
we therefore extend some results, which we recently derived
for stationary Cox processes on simple (non-iterated) tessel-
lations of Poisson type, to Cox processesX concentrated
on iterated tessellationsT . Note thatT is then built by an
initial tessellationT0 and a component tessellationT1. For the
analysis of cost functionals like the distributions of connection
distances, it is fundamental to analyze the Palm versionX∗

of the Cox processX . Unfortunately, it is often impossible to
get closed analytical expressions for the distribution ofX∗.
However, alternatively, simulation algorithms forX∗ can be
used in order to analyze various performance characteristics
of the network. For example, in hierarchical network models
it is possible to estimate distance distributions in an efficient
way based on samples of the typical Voronoi cell ofX which
can be constructed fromX∗, see e.g. [10], [12].

In Theorem 3.1, we derive a representation formula for
the distribution of the Palm versionT ∗ of T which includes
the initial tessellationT0 and the component tessellationT1

of T as well as their Palm versionsT ∗
0 and T ∗

1 . Using this
formula, we are able to construct a simulation algorithm
for X∗ if both T0, T1 and their Palm versionsT ∗

0 , T ∗
1 can

be simulated. This algorithm forX∗ extends earlier results
for Cox processes on simpler (non-iterated) tessellationsof
Poisson type. Note that so far simulation algorithms forX∗

were available only for Cox processes on Poisson-Delaunay
tessellations (PDT), Poisson-Voronoi tessellations (PVT), and
Poisson line tessellations (PLT), respectively [12], [19], [20].
Other extensions are also possible, e.g., to Cox processes on
modulated Poisson-Voronoi tessellations [21] which yielda
suitable model for nationwide networks.

The paper is organized in the following way. First, in
Section II, we briefly explain some mathematical background,
introducing the notion of iterated random tessellationsT and
defining Cox processesX on their edge set∂T . Subsequently,

in Section III, we derive a representation formula for the
distribution of the Palm versionT ∗ of T . Based on this formula
we introduce a new simulation algorithm forX∗. Finally, in
Section IV, we demonstrate in a numerical study how our
results can be used in order to estimate the density of various
distance distributions based on the typical Voronoi cell ofX .

II. COX PROCESSES ON ITERATED TESSELLATIONS

In this section we describe the kind of tessellation and point-
process models for wireless and wired telecommunication net-
works, which we consider in the present paper. Moreover, we
briefly explain some necessary mathematical background and
notation. Comprehensive surveys on the usage of stochastic
geometry and random geometric graphs in spatial modeling
of telecommunication networks can be found in [7]–[9]. For
further details on point processes and random tessellations see
e.g. [22]–[25].

A. Iterated tessellations

A (planar) random tessellationT is a subdivision ofR2

into a sequenceΞ1, Ξ2, . . . of random compact and convex
polygons, which are not overlapping and locally finite, i.e.,⋃∞

i=1 Ξi = R
2, int Ξi ∩ int Ξj = ∅ for i 6= j, and

#{i : Ξi ∩ B 6= ∅} < ∞ for each bounded setB ⊂ R
2. Note

that T can be identified with its edge set∂T =
⋃∞

n=1 ∂Ξn.
Furthermore, we need the notion of an iterated tessellation
(or, equivalently, nested tessellation), where we consider some
initial tessellationT0 and a sequenceT1, T2, . . . of independent
component tessellations, which are independent ofT0. Then,
for each n ≥ 1, the nth cell Ξ0n of T0 is considered
together with its „inner structure”Ξ0n ∩ ∂Tn, where the
intersectionΞ0n ∩ ∂Tn means that part of the edge system
∂Tn of Tn which is contained in the cellΞ0n of T0. The
edge set of the iterated tessellationT is then defined by
∂T =

⋃∞
n=1 ∂Ξ0n ∪ (Ξ0n ∩ ∂Tn). A realization of an iterated

tessellation is shown in Fig. 1. In particular, byΞ01 we
denote the so–called zero cell ofT0, i.e., that cell ofT0

containing the origin, where the inner structure ofΞ01 is given
by Ξ01 ∩ ∂T1. For brevity, we writeT = τ(T0 | T1, T2, . . .)
for an iterated tessellation induced byT0 andT1, T2, . . .. Note
thatT = τ(T0 | T1, T2, . . .) is stationary ifT0 is stationary and
if T1, T2, . . . are identically distributed and stationary. Then,
by γ0 = Eν1(∂T0 ∩ [0, 1]2) and γ1 = Eν1(∂T1 ∩ [0, 1]2) we
denote the intensities ofT0 andT1, respectively, whereν1 is
the one-dimensional Hausdorff measure inR

2. Moreover, the
intensityγ = Eν1(∂T ∩ [0, 1]2) of T is given byγ = γ0 +γ1.

B. Cox processes

Let T0, T1, T2, . . . be independent stationary tessellations,
whereT1, T2, . . . are identically distributed, but the distribution
of T0 can be different from that ofT1, T2, . . .. In the following
we assume that the point processX = {Xn} is a stationary
Cox process inR2 with random intensity measureΛ given
by Λ(B) = λℓ ν1(∂T ∩ B) for each Borel setB ⊂ R

2

and someλℓ > 0, where T = τ(T0 | T1, T2, . . .). Note
that givenT the pointsX1, X2, . . . of X are then placed as
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Fig. 1. Cox process (black points) on an iterated tessellation with PVT
(black) and PLT (Grey) asT0 andT1

linear Poisson processes on the edges ofT . Furthermore, the
(planar) intensityλ = E#{n : Xn ∈ [0, 1]2} of X is given
by λ = λℓ γ, whereγ is the intensity ofT and λℓ can be
interpreted as the (linear) intensity of the conditional Poisson
processes on the edges ofT . A realization of a Cox process
together with the underlying iterated tessellation is displayed
in Fig. 1.

C. Scaling invariance and scaling limits

Recall that the intensities ofT0 andT1 are denoted byγ0

and γ1, respectively. If we scaleT by a constantc > 0,
then cT

d
= T ′, where T ′ is an iterated tessellation with

initial tessellationT ′
0 and component tessellationT ′

1 such that

T ′
0

d
= cT0 andT ′

1
d
= cT1. The intensitiesγ′

0 andγ′
1 of T ′

0 and
T ′

1 are given byγ′
0 = γ0/c andγ′

1 = γ1/c, respectively.
If X is a Cox process onT with linear intensityλℓ andX ′

is a Cox process onT ′ with linear intensityλ′
ℓ = λℓ/c, then

cX
d
= X ′. Thus, if γ0/γ1 = γ′

0/γ′
1 and if the scaling factors

κ = γ/λℓ andκ′ = γ′/λ′
ℓ coincide, whereγ = γ0 + γ1 and

γ′ = γ′
0+γ′

1, then the Cox processesX andX ′ have the same
distributions up to a scaling. This observation can be used in
order to do numerical computations only for a single parameter
triplet (γ0, γ1, λℓ) with given ratioγ0/γ1 and scaling factor
κ = (γ0 + γ1)/λℓ. For other parameter triplets(γ′

0, γ
′
1, λ

′
ℓ)

with the same scaling factorκ and with γ0/γ1 = γ′
0/γ′

1 we
can then obtain the corresponding results from the already
computed ones by an appropriate scaling, see [15]. Thus, in
our numerical computations, we fixγ = 1 and only varyγ0 ∈
[0, 1] andλℓ > 0, whereγ1 = 1 − γ0, see Sections IV.

Furthermore, the following convergence results can be
proved. On the one hand, one can show thatX converges
weakly to a (planar) Poisson process with intensityλ if κ →
∞ andλℓγ (= λ) is fixed. Thus, it is interesting to compare
numerical results for Cox processes onT to corresponding
results for Poisson processes with the same intensity. On the
other hand, one can show thatT converges weakly toT0 and
T1 if γ1 → 0 andγ0 → 0, respectively. Thus, we can compare
numerical results for Cox processes on iterated tessellations

to corresponding results for Cox processes on simpler (non-
iterated) tessellations.

III. PALM DISTRIBUTIONS

In this section we consider the Palm version of the stationary
Cox processX , which is a point processX∗ in R

2 whose
distribution is given by

Eh(X∗) =
1

λ
E

∑

i: Xi∈[0,1]2

h({Xn} − Xi) , (III.1)

whereh : N → [0,∞) is an arbitrary measurable function and
N denotes the family of all locally finite sets{xn} ⊂ R

2. Note
that P(o ∈ X∗) = 1 by definition, where the distribution of
X∗ is called the Palm distribution ofX . It can be interpreted
as conditional distribution ofX given that there is a point at
the origin. Furthermore, it can be shown that the so–called
reduced Palm versionX∗ \ {o} of X is a Cox process, too.
The random intensity measureΛ∗ of X∗ \ {o} is given by
Λ∗(B) = λℓ ν1(∂T ∗ ∩ B) for each Borel setB ⊂ R

2, where
T ∗ is a random tessellation whose distribution is given by

Eh(T ∗) =
1

γ
E

∫

T∩ [0,1]2
h(T − x) ν1(dx) , (III.2)

where h : T → [0,∞) is an arbitrary measurable function
andT denotes the family of all tessellations inR2. Note that
P(o ∈ ∂T ∗) = 1 by definition, where the distribution ofT ∗

is called the Palm distribution ofT . It can be interpreted as
conditional distribution ofT given that the origin belongs to
an edge ofT .

Palm distributions are important objects in the analysis of
telecommunication networks. For instance, we can associate
to each pointXn of X its Voronoi cell Ξn. If we assume
that Xn represents a network component, thenΞn can be
regarded as the domain it has to serve. The typical Voronoi
cell of Xn is then defined as the Voronoi cell at the origin with
respect toX∗. Note that the distribution of the typical cell can
be regarded as the limit of the empirical distributions of all
Voronoi cells in a family of unboundedly increasing sampling
windows.

A. Representation formula for T ∗

Assume that the random intensity measureΛ of the station-
ary Cox processX is the one-dimensional Hausdorff measure
concentrated on the edge set∂T of a (stationary) iterated
tessellationT = τ(T0 | T1, T2, . . .), where T0, T1, T2, . . .
are independent stationary tessellations andT1, T2, . . . are
identically distributed.

In Section III-B we present a simulation algorithm for the
typical Voronoi cell ofX , or, equivalently, for the Voronoi cell
of X∗ with respect to the origin. This algorithm is based on
the following representation formula forT ∗, which includes
the Palm versionsT ∗

0 and T ∗
1 of T0 and T1, respectively. In

particular, the iterated tessellationsτ(T ∗
0 | T1, T2, . . .) and

τ(T0 | T ∗
1 , T2, T3, . . .) are considered, where, in the latter

case, the zero-cellΞ01 of T0 has the component tessellation
T ∗

1 , and the other cells ofT0 have the component tessellations
T2, T3, . . . , respectively.



4

Theorem 3.1: For any measurable functionh : T 7→ [0,∞),
it holds that

Eh(T ∗) =
γ0

γ
Eh(τ(T ∗

0 | T1, T2, . . .))

+
γ1

γ
Eh(τ(T0 | T ∗

1 , T2, T3, . . .)) . (III.3)

Proof: Using (III.2), we can writeEh(T ∗) as

Eh(T ∗) =
1

γ
E

[ ∫

T∩[0,1]2
h(T − x) ν1(dx)

]

=
γ0

γ

( 1

γ0
E

[ ∫

T0∩[0,1]2
h(T − x) ν1(dx)

])

+
γ1

γ

( 1

γ1
E

[ ∞∑

i=1

∫

Ti∩Ξ0i∩[0,1]2
h(T − x) ν1(dx)

])
,

whereΞ01, Ξ02, . . . are the cells ofT0. Furthermore, we get
that
1

γ0
E

[ ∫

T0∩[0,1]2
h(T − x) ν1(dx)

]

=
1

γ0
E

[ ∫

T0∩[0,1]2
h(τ(T0−x | T1−x, T2−x, . . .)) ν1(dx)

]

=
1

γ0
E

[ ∫

T0∩[0,1]2
h(τ(T0−x | T1, T2, . . .)) ν1(dx)

]

= Eh(τ(T ∗
0 | T1, T2, . . .)) .

Note that the independence and stationarity ofT0, T1, T2 . . .
have been used in the last but one equality, whereas the last
equality is obtained from (III.2), replacingT and T ∗ by T0

andT ∗
0 , respectively. It remains to show that

Eh(τ(T0|T
∗
1,T2,T3,. . .))=

1

γ1
E

[ ∞∑

i=1

∫

Ti∩Ξ0i∩[0,1]2
h(T−x) ν1(dx)

]
.

(III.4)
In the following we writeETi

, ET0,Ti
and E{Tj} to indicate

that the expectation is taken with respect to a single tessellation
Ti, two tessellationsT0 and Ti, or an infinite sequence
of tessellations{Tj}, respectively. SinceT0, T1, T2, . . . are
independent and stationary, we get that

E

[ ∞∑

i=1

∫

Ti∩Ξ0i∩[0,1]2
h(T − x) ν1(dx)

]

=

∞∑

i=1

ET0,Ti

[∫

Ti∩[0,1]2
E{Tj}j 6=i

[
1IΞ0i

(x)h(τ(T0−x|{Tj−x}))
]
ν1(dx)

]

=

∞∑

i=1

E

[∫

T1∩[0,1]2
1IΞ0i−x(o)h(τ(T0−x |T1−x,{Tj}j≥2)) ν1(dx)

]
,

where in the last expressionT1 − x denotes the component
tessellation which subdivides the zero cell ofT0 − x for each
x ∈ Ξ0i. Furthermore, we have
∞∑

i=1

E

[∫

T1∩[0,1]2
1IΞ0i−x(o)h(τ(T0−x |T1−x, {Tj}j≥2)) ν1(dx)

]

= E

[∫

T1∩[0,1]2

∞∑

i=1

1IΞ0i
(x)h(τ(T0−x|T1−x,{Tj}j≥2)) ν1(dx)

]

= E

[∫

T1∩[0,1]2
h(τ(T0 − x | T1 − x, {Tj}j≥2)) ν1(dx)

]
,

since
∑∞

i=1 1IΞ0i
(x) = 1. Finally,

E

[ ∫

T1∩[0,1]2
h(τ(T0 − x | T1 − x, {Tj}j≥2)) ν1(dx)

]

= E{Tj}j≥1

[∫

T1∩[0,1]2
ET0

[
h(τ(T0−x|T1−x, {Tj}j≥2))

]
ν1(dx)

]

= E{Tj}j≥1

[∫

T1∩[0,1]2
ET0

[
h(τ(T0 |T1−x, {Tj}j≥2))

]
ν1(dx)

]

= ET0,{Tj}j≥2
ET1

[∫

T1∩[0,1]2
h(τ(T0|T1−x, {Tj}j≥2))ν1(dx)

]

= γ1E
[
h(τ(T0 | T ∗

1 , {Tj}j≥2))
]
,

where the last equality is obtained from (III.2), replacingT
andT ∗ by T1 andT ∗

1 , respectively. Thus, (III.4) is proved.
Note that the random tessellationsτ(T ∗

0 | T1, T2, . . .) and
τ(T0 | T ∗

1 , T2, T3, . . .) occurring in (III.3) can be considered
as conditional versions ofT ∗ under the condition that the
origin belongs to an edge of the initial tessellation resp.
the component tessellations, which occur with the probability
γ0/γ resp.γ1/γ.

B. Simulation algorithm

The representation formula (III.3) forT ∗ derived in Theo-
rem 3.1 enables us to simulateT ∗ if both T0 andT1 as well
as their Palm versionsT ∗

0 and T ∗
1 can be simulated. IfTj

for j = 0, 1 is a PVT, PLT or PDT, respectively, then the
simulation ofTj is straightforward and simulation algorithms
for T ∗

j are also available [12], [19], [20]. Moreover, (III.3)
and the remark at the end of Section III-A yield a simulation
algorithm for the Palm versionX∗ of the stationary Cox
processX , which consists of the following main steps.

1) SimulateU ∼ U [0, 1]. If U < γ0/γ, go to step 2, else
go to step 3.

2) SimulateT ∗
0 and subdivide the cellsΞ∗

01, Ξ
∗
02, . . . of T ∗

0

by T1, T2, . . ., respectively, which givesT ∗.
3) SimulateT0, subdivide the zero cellΞ01 of T0 by T ∗

1

and subdivide the cellsΞ02, Ξ03, . . . of T0 by T2, T3, . . .,
which givesT ∗.

4) ConstructX∗ = {o}.
5) For k = 1, 2, . . ., generateNk ∼ Poi(λℓν1(Sk)), where

Sk denotes thekth segment of∂T ∗; if Nk = nk, gen-
eratenk pointsXk1, . . . , Xknk

, which are conditionally
independent and uniformly distributed onSk; add the
pointsXk1, . . . , Xknk

to X∗.
From a practical point of view, we always want to simulate
X∗ in a given (bounded) sampling windowW ⊂ R

2. Then,
in many cases, it is reasonable to simulateT0 andT1 as well
asT ∗

0 andT ∗
1 radially, where we have to choose appropriate

stopping criteria depending on the type of the tessellations
T0 and T1. This kind of algorithm has many applications in
the analysis and planning of (wired and wireless) telecom-
munication networks. For instance, it can be used in order to
simulate the typical cellΞ∗ of the Voronoi tessellation induced
by X , where we merely have to construct the Voronoi cell ato
with respect toX∗. Furthermore, various distance distributions
in such networks can be estimated based on samples of the
typical cell Ξ∗, see e.g. [11], [12], [16] and Section IV.
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Fig. 2. Realizations ofT ,H andL together with the connection distances

IV. N UMERICAL RESULTS AND APPLICATIONS

We now focus on the case of an iterated tessellationT =
τ(T0 | T1, T2, . . .), where T0 is a PVT andT1, T2, . . . are
PLT. Note that other nestings based on PVT, PDT and PLT,
respectively, can be analyzed similarly.

A. Typical Voronoi cell of Cox processes

The locations of network components in hierarchical
telecommunication networks are often modeled by two station-
ary point processesH = {Hn} andL = {Ln} in R

2, where
H represents the locations of high-level components andL
represents the locations of low-level components. Supposethat
each point ofL is connected to its nearest point ofH , i.e., a
point Ln of L is connected to the pointHkn

of H if Ln is
located in the Voronoi cell ofHkn

, see [4], [15]. The Voronoi
cell of Hkn

is then called the serving zone of the high-level
component located at this point. Thus the typical Voronoi
cell of H is an important object in the global analysis and
planning of telecommunication networks, see also Section III.
Furthermore, samples of the typical Voronoi cell can be used
in order to estimate the density of typical connection distances
in hierarchical telecommunication networks, see Section IV-B.

Assume thatH is a Cox process on the edge set of a
PVT/PLT nesting. In order to determine distributional prop-
erties of the typical Voronoi cell ofH , we simulated the Palm
versionH∗ of H for different values ofκ, γ0 and γ1 with
γ0 + γ1 = 1. Based on these samples, we then computed
the distribution of cell characteristics like perimeter and area.
The results are displayed in Fig. 3. As one can see, we can
move from PVT towards PLT ifγ0 decreases and henceγ1

increases. Thus, we can interpolate between the distributions
of the typical cell of the extremal cases whereT is a PVT and
PLT, respectively, by choosing PVT/PLT nestings for values
of γ0 from 1 to 0.

B. Distribution of connection distances

In [12] estimators for the density and distribution function
of the typical (Euclidean) connection distanceD∗ from the
typical point ofL to its nearest point ofH have been intro-
duced for two different scenarios. Note that the distribution
of D∗ is formally defined via Palm distributions, but again
it can be regarded as the limit of the empirical distributions
of the Euclidean connection distances from all points ofL
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Fig. 3. Histograms for area (top) and perimeter (bottom) of the typical cell

in a family of unboundedly increasing sampling windows.
Thus, the distribution ofD∗ is also an important object in the
global analysis and planning of telecommunication networks.
In both scenarios considered in [12],H is a Cox process on
T , whereasL is either a planar Poisson process independent
of H or a Cox process on the same tessellationT which is
conditionally independent ofH givenT . Then, in both cases,
estimators for the density and distribution function ofD∗ can
be constructed based on samples of the typical Voronoi cell
of H .

Let H be a Cox process onT with intensityλ = λℓγ. If L
is a planar Poisson process, then

f̂D∗(x; n) =
λℓ γ

n

∑n

i=1
ν1(Ξ

∗
i ∩ ∂B(o, x)) (IV.5)

can be used to estimate the probability density ofD∗. Here
Ξ∗

1, . . . , Ξ
∗
n is an i.i.d. sample of the typical Voronoi cell of

H and ν1(Ξ
∗
i ∩ ∂B(o, x)) denotes the intersection length of

the circle∂B(o, x) with radiusx centered ato insideΞ∗
i . If

L is a Cox process onT , then an estimator̂FD∗(x; n) for the
distribution functionFD∗(x) is given by

F̂D∗(x; n) =
λℓ

n

∑n

i=1
ν1(S

∗
i ∩ B(o, x)) , (IV.6)

whereS∗
1 , . . . , S∗

n denotes an i.i.d. sample of segment systems
of the underlying tessellationT ∗ inside Ξ∗

1, . . . , Ξ
∗
n, respec-

tively. Based onF̂D∗ we can then get an estimator̂fD∗ for
the density ofD∗ by computing difference quotients. The
numerical results obtained from simulations of the typicalcell
of the Cox processesH are displayed in Fig. 4.

We again see that the distributions ofD∗ for PVT and
PLT occur as extremal cases and that we can move from
PVT to PLT if γ0 goes from1 to 0. Thus, considering a
more flexible class of (iterated) tessellations, we now are in a
position to arrive at a more flexible class of different distance
distributions. This extension is useful in applications toreal
networks, whereas, so far, we were only able to use simpler
(non-iterated) tessellation models.
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Fig. 4. Density ofD∗ if L is a Poisson process (top) or Cox process (bottom)

V. CONCLUSIONS

We investigate the Palm versionX∗ of stationary Cox
processesX on iterated random tessellationsT . In particular,
we derive a representation formula for the Palm versionT ∗ of
T which includes the initial tessellationT0 and the component
tessellationT1 of T as well as their Palm versionsT ∗

0 and
T ∗

1 . Using this formula, we are able to construct a simulation
algorithm forX∗ if both T0, T1 and their Palm versionsT ∗

0 , T ∗
1

can be simulated.
Since simulation algorithms for PVT, PLT and PDT and

their Palm version are available, we are now able to simulate
the Palm version of Cox processes on iterated tessellations
based on these three basic tessellation models. The new sim-
ulation algorithm can be used in the analysis of telecommuni-
cation networks. Based on simulations ofX∗ we can estimate
the distributions of direct connection distances for wireless
network models and the distributions of connection distances
along the underlying street systems for access network models.
This is an important extension of our earlier work since we can
now use iterated tessellations as street models which are more
flexible than the simpler (non-iterated) tessellation models
PVT, PLT and PDT considered so far.
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