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Abstract

The interplay between structure and mechanical properties of fine and cohesive granular matter is of wide interest and far from being
well understood. In order to study this relationship experimentally, it is desirable to record as much information on the particles and
their motion behavior as possible during a shear experiment — ideally, the trajectory of every single particle. Observing the particle
movements offers deep insights into changes in the mechanical behavior of the bulk (e.g., densification, loosening or formation
of failure areas) and into the behavior of single particles. However, obtaining particle-level information on the dynamics of an
entire shear-tester experiment remains a great challenge. In this paper we present an experiment and analysis methods which allow
the extraction of the trajectories of almost all particles within a shear-tester. A fully functional micro shear-tester was developed
and implemented into an X-ray microtomography device. With this combination we can visualize all particles within small bulk
volumes of the order of a few µl under well-defined mechanical manipulation. The processing of time-resolved tomographic data
makes it possible to localize and track particles despite large angle increments of up to 5° between tomographic measurements.
We apply our methods to a torsional shear experiment with spherical micron-sized particles (∼ 30 µm) and analyze the structural
evolution of the sample. In addition, particle tracks provide detailed insights into the formation and evolution of the shear band.
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1. Introduction

Shear flow of granular media is ubiquitous in nature and
of industrial importance when it comes to the handling and
processing of bulk solids (e.g., flow through hoppers [1, 2],
bunkers and silos [3, 4]). In the physics of granular matter [5],
among many other interesting phenomena, understanding the
flow properties, i.e., the stress response to an applied strain
rate, has been in the focus of research [6]. At slow, quasi-
static deformation, there arises a strain rate independent creep
regime [7, 8]. The localization of strain within the bulk, often
referred to as failure zone or shear band, represents a unique
feature of this quasi-static regime, which was addressed by
many researchers in the past [9, 10, 11, 12] and can be observed,
e.g., in glassy systems [13] and solidifying metals [14] as well.
However, the interplay of structure and mechanical properties
of the bulk solid is still not deciphered sufficiently, especially
when it comes to cohesive granular matter.

Experimental investigations of this interplay are challeng-
ing because they require detailed information on particle prop-
erties, packing structure and dynamics over the course of a
shear experiment — ideally, down to single-particle trajecto-
ries. Sophisticated experimental setups are capable of deter-
mining the properties of individual micron-sized particles [15]
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and of imaging the inner structure of a bulk solid nondestruc-
tively, e.g., via computer tomography [16, 17]. However, de-
tailed experimental information on the dynamics of small-size
particles and on their trajectories in 3D is still particularly rare.

An alternative route of investigation is offered by numerical
simulations with the discrete element method (DEM), which
provide valuable insight into the mechanical behavior of gran-
ular matter [18, 19, 20]. Although DEM simulations output
fine-grained information on particle trajectories and even forces
acting between them, the accuracy of the physical behavior in
the models is limited by computational constraints and the high
complexity in contact mechanics of micron-sized particles [21].
Consequently, even when following the DEM approach, exper-
imental data on the trajectories of micron-sized particles under
shear is highly needed for model validation.

The main challenge of tracking all particles within a bulk vol-
ume is that it requires 3D image data in a sufficiently high spa-
tial and temporal resolution. Standard methods, which rely on
one or more 2D cameras to analyze the dynamics in a flow, pro-
vide only aggregated information or are restricted to transparent
liquids containing a relatively small number of tracer particles
(e.g., particle image velocimetry [22, 23, 24] or particle track-
ing velocimetry [25, 26]). Moreover, to our knowledge, these
techniques have not yet been applied to micron-sized particles.
An alternative approach is presented in [27], where confocal
laser microscopy is used to obtain 3D images of particles un-
der lateral shear. While this imaging technique allows for a
high temporal resolution, it limits the size of the sample in z-
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direction and requires particles to be surrounded by a fluid with
matching refractive index. This is not possible for all particle
materials or when investigating dry powders. Interestingly, par-
tial photobleaching of individual particles enables the detection
of particle rotations.

In this paper we use a fully functional micro-sized shear-
tester [16], which can be fitted into an X-ray microtomography
(XMT) device. In contrast to [16], we conduct and analyze a
torsional shear experiment with constant normal load and ana-
lyze the motion of almost all micron-sized spherical particles
on particle level. Using the XMT, a series of 3D images is
recorded in the course of the experiment. While the XMT pro-
vides high-quality 3D images at very high spatial resolution,
each measurement is time consuming. Therefore, only a lim-
ited temporal resolution can be realized. To overcome the prob-
lem of tracking particles despite the low temporal resolution,
we propose a method to estimate the average particle move-
ment at any location in the shear cell directly from the image
data, building on ideas from [28]. Our approach is data-driven
and explores the rotational symmetry of the shear cell. Based
on this first estimate, we are able to extract the trajectories of
almost all individual particles in the shear cell. We utilize this
data to examine the initial shear band formation and its evolu-
tion over time in full detail. In addition, we analyze structural
inhomogeneities in the sample over time.

Our dataset is extraordinary in that it provides experimen-
tal particle-level information on the dynamics within the en-
tire shear cell. Thus, our methods allow to fully analyze and
compare experiments both on particle level and macroscopi-
cally. Similar information is usually only obtained by DEM
simulations. Therefore, our methods offer an increased valida-
tion depth for DEM simulations and a reliable basis for model
calibration, although a direct comparison of our experiment to
DEM simulations exceeds the scope of this paper. In contrast
to [27], our methods are applicable to dry powders and to al-
most all particle materials. Finally, the micro shear-tester is also
well suited for determining shear flow properties of powders
which are only available in small quantities, e.g. for screening
processes.

The paper is structured as follows. Sections 2.1 and 2.2 are
devoted to the model material and experimental setup. The
methodology of image segmentation, image-based measure-
ment of local shear deformation and particle tracking is de-
scribed in Section 2.3. Results of a detailed analysis of struc-
tural inhomogeneity as well as shear band formation and evolu-
tion are presented in Section 3 and discussed in Section 4.

2. Material and methods

2.1. Material

In this study we use a fine and slightly cohesive pow-
der which consists of solid borosilicate glass microspheres
(BSGMS 27-32 µm, CoSpheric LLC, USA; BSGMS in the fol-
lowing). An image of several microsphere particles taken on a
scanning electron microscope (SEM) is presented in Figure 1
(inset). The figure emphasizes the almost uniform spherical
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Figure 1: Particle size distribution (mass distribution, logarithmic density and
cumulative distribution function) and SEM picture (inset) of BSGMS glass par-
ticles.

shape and similar size of the particles, but also shows a non-
negligible surface roughness. We measured the particle size
distribution using laser diffraction (Helos, Sympatec GmbH,
Germany) after dispersing the particles with ultrasound for 30 s
in an aqueous environment. The results, which are shown in
Figure 1, indicate a narrow mono-disperse size distribution of
the glass particles with median value x50,3 ≈ 30 µm.

Particle stiffness and adhesion forces were determined in [28]
using nanoindentation and atomic force microscopy (AFM), re-
spectively. Nanoindentation was carried out with the Triboin-
denter (Hysitron, Inc, USA), placing single particles between a
glass object slide and a flat punch. They were deformed using
a force-controlled approach with a maximum loading force of
2 mN. Then, Young’s modulus has been calculated from the re-
sulting stress-strain curve taking Hertz theory as a basis. The
AFM measurements have been realized by the XE 100 (Park
Systems, Korea) using the colloidal probe method for pairs of
particles. One of the two particles was attached to the apex of
a tip-less cantilever with UV-hardened glue. The other one was
attached to the object slide with nail varnish. Then, both parti-
cles were brought into contact and the force needed to break
this contact was determined. Since both measurement tech-
niques are subject to strong fluctuations, nanoindentation has
been repeated for 58 particles and AFM has been applied to
100 pairs of particles. The mean values and standard deviations
reported in [28] are E = 15 ± 7 GPa for the elastic modulus
and Fc = 82 nN ± 60 nN for adhesion forces. From a method-
ological point of view we do not expect a major influence of the
variability on our results.

2.2. Experiment

2.2.1. X-ray microtomography (XMT)
The fundamental component for a detailed microstructural

investigation is the nondestructive examination with the XMT,
which enables an image-based analysis. We use a high-
resolution tomography device (MicroXCT-400, Zeiss (Xradia),
Germany). For this study an acceleration voltage of 50 kV and
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a current intensity of 200 µA were applied at the X-ray source.
These parameters result in the best outcome for high-contrast
images. According to the sample diameter of 2 mm, a ten-fold
optical magnification is used to ensure a reproduction of the en-
tire sample diameter with a resolution of 2.2 µm (1.1 µm before
binning). A single detector collected the X-rays which were
emitted from the source and passed through the sample, result-
ing in an intensity grayscale image. In order to get an accurate
3D reconstruction afterwards, we measured 2000 of these pro-
jections for various angles of rotation around the central axis
of the sample. The reconstructed data is stored in stacks of 2D
images for later analysis with regard to structure and dynamics.
Depending on the device resolution and the particle size, inves-
tigations on mesoscale as well as on particle scale are possible.
Thus, the detailed data on particle scale qualifies for finding re-
lations between particle parameters (e.g., size, shape and aspect
ratio) and mesoscale or bulk behavior (e.g., shear zone charac-
teristics).

2.2.2. Micro shear-tester
The torsional micro shear-tester with cylindrical shear cell

geometry was developed to handle very small sample volumes
in the range of 6-15 µl [28]. In combination with the XMT,
the samples can easily be manipulated in terms of compression
and shear deformation on the one hand, and imaged in 3D at
a very high resolution on the other hand. A cylindrical sample
chamber with a radius of R = 1 mm allows for an (in princi-
ple) infinite torsional shear movement. The sample chamber is
a very fine borosilicate glass capillary with a side wall thick-
ness of 50 µm and is confined by an upper and lower piston in
vertical direction. The pistons can be flat for simple compres-
sion tests or structured with six vanes arranged in a regular star
shape for shear tests like presented in this work. A schematic
image of the shear cell can be found in Figure 2. During shear,
the upper piston and outer wall move whereas the lower piston
measures the normal force and torque. For this purpose, a mag-
netic spring was included at the lower piston as well as a fric-
tionless air suspension to prevent or at least minimize friction.
A major advantage of this system is the decoupled determina-
tion of force and torque. Loads in the range of 0.1-20 kPa can
be applied by the micro shear-tester.

The sample is prepared by sieving the particles into the glass
capillary in order to avoid agglomeration. The normal load is
increased up to σ = 0.5 kPa and kept constant in the following
shear process. During shear, the upper piston and wall are ro-
tated in steps of 0.5° up to 9.5°. After 9.5° the angle increment
is increased to 5° until an entire rotation of 39.5° is achieved.
The experiment is carried out quasi-statically with an angular
velocity of ω = 0.1 °/s. Directly after densification and after
each step of shearing an XMT measurement of the entire shear
cell is recorded. The resulting 3D image stacks are aligned and
cut to the size of the sample chamber, so that they have the same
dimension in x- and y-direction but different sizes in z-direction
(depending on dilation/densification during shear). The maxi-
mum z-coordinate of the image stack recorded at time t is de-
noted by zt

max, where t is the time of shearing — i.e., we neglect
the pauses necessary for XMT measurements.

2 mm

1.95 mm

0.15 mm

0.2 mm

glass capillarypistons

Figure 2: Schematic view of the shear cell of the micro shear-tester.

2.3. Analysis

2.3.1. Image-based local shear deformation
A first approximation of the local shear deformation is com-

puted directly from the image data in a similar way as proposed
in [28]. The idea of this approach is to compare the image slices
at two successive points in time and a fixed height z. The local
shear angle at height z is the angle by which the first slice has
to be rotated so that it best matches the second slice. This ap-
proach relies on a strong similarity between the particle struc-
tures at two consecutive points in time. Thus, it requires a suf-
ficiently high spatial and temporal resolution.

The quality criterion used in this study to determine how
closely the two slices match is the image cross-correlation,

corr(I, J) =

∑
x,y(I(x, y) − Ī)(J(x, y) − J̄)

σI · σJ
, (1)

where I = {I(x, y)} and J = {J(x, y)} are digital 2D images, Ī and
J̄ are the mean values, andσI andσJ are the standard deviations
of gray values taken over all pixels in I and J, respectively. For
a time step (t1, t2) the local angle of shear deformation at height
z is estimated by computing

∆t1→t2
ϕ (z) = arg max

α∈[−1°, ∆ϕs(t1,t2)+1°]

{
corr

(
rotα(Iz

t1 ), Iz
t2

)}
, (2)

where Iz
t denotes the slice at height z and time t, rotα denotes the

rotation around the image center by the angle α, and ∆ϕs(t1, t2)
is the angle increment used in time step (t1, t2). Theoretically,
optimization over the full range α ∈ [0, 360] would be de-
sirable. For computational reasons we restrict it to a realistic
range in Equation (2). The image rotations are carried out us-
ing bilinear interpolation and the maximization is implemented
in discrete steps of 0.1°. Applying the same procedure for all
available z-coordinates yields a spatially resolved local shear
deformation over the full height of the sample.
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The same methodology can be used to measure the rotation
of the upper and lower piston in the image data. This is neces-
sary because there may be differences between the targeted and
actual movements of the pistons, which will be discussed in
more detail later (cf. Section 3.2). We simply average ∆

t1→t2
ϕ (z)

over the range of z-coordinates in which the upper and lower
piston, respectively, are visible. Since an exact measurement of
these movements is crucial for a correct normalization of parti-
cle velocities later on (and less computationally expensive than
estimating ∆

t1→t2
ϕ (z) over the full height of the sample), opti-

mization is carried out in steps of 0.01°.
The idea of estimating shear deformation locally from the

image data can be extended further to capture radial variations
of the local deformation and to estimate local compression or
dilation along with the rotational deformation. For this pur-
pose, each image slice is subdivided into k disjoint and concen-
tric rings of equal area, R1, . . . ,Rk, and a rotational and transla-
tional deformation are applied simultaneously. This means that
instead of rotating the image slice as a whole, each ring is ro-
tated independently and shifted vertically so that it best matches
the corresponding region of the next image stack. We then ob-
tain the 2D maximization problem(
∆t1→t2
ϕ (z, ri), ∆t1→t2

z (z, ri)
)

= arg max
h∈[hmin,...,hmax]

α∈[−1°, ∆ϕs(t1,t2)+1°]

{
corr

(
rotα(Iz,Ri

t1 ), Iz+h,Ri
t2

)}
,

(3)
where ri is the central radius of Ri, Iz,Ri

t denotes the ring Ri of the
image slice at height z and time t, and i ∈ {1, . . . , k}. The result
is a local angle of shear and a local vertical deformation for each
z-coordinate and ring, Ri. Using bilinear interpolation we can
calculate values for the deformation at arbitrary locations in the
sample. In this study k = 10 rings are used and the range for the
vertical shift is chosen based on the stack sizes in z-direction,
zt1

max and zt2
max, as

[hmin, . . . , hmax] =
[
min{zt2

max − zt1
max, 0}, . . . ,max{zt2

max − zt1
max, 0}

]
.

In the following, we will refer to the left-hand sides of Equa-
tions (2) and (3) as 1D and 2D image-based local shear defor-
mation, respectively. Both methods are applied and discussed
in this paper.

2.3.2. Image segmentation
In order to extract information on single particles from the

image data, 3D images are segmented using a marker-based
watershed transformation [29]. First, the grayscale images are
smoothed using a Gaussian filter with a small standard devi-
ation of 1 voxel side length, and binarized using the IsoData
algorithm implemented in ImageJ [30]. Subsequently, small
disconnected pores are filled with solid. This step is needed
because a small percentage of the particles is hollow. The nega-
tive of the Euclidean distance transform (distances from particle
voxels to the pore phase) forms the relief on which the water-
shed transformation is run.

A common choice for the markers is to select the local max-
ima of the Euclidean distance transform [29]. However, this
choice tends to promote over-segmentation since minor surface

A B

C D

Figure 3: Visualization of the main steps of the segmentation process based
on a small cutout of an image slice. Grayscale image obtained by XMT (A),
binary image (B), convolution of grayscale image and particle mask used for
marker selection (C) and final segmentation result after applying the marker-
based watershed transform (D). Note that though the visualization is in 2D, all
operations are carried out in 3D.

roughnesses can lead to multiple local maxima within one par-
ticle. In the present study this problem is avoided by using an
approach presented in [27], where the original grayscale images
are convolved with a mask resembling the appearance of a par-
ticle. After convolution, the particle centers appear as smooth
and isolated local intensity maxima. These maxima are ex-
tracted from the convolved images and used as markers for the
watershed transformation. The convolution technique is ideal
for spherical particles with a narrow size distribution as used
in this study, although it can be adapted for broader size distri-
butions as shown in [27]. The main steps of the segmentation
process are visualized in Figure 3.

2.3.3. Particle tracking
Based on the centroids of the particles in the segmented bi-

nary images, a particle tracking is performed. The tracking al-
gorithm used in this study for time steps with an angle incre-
ment of 0.5° has been proposed in [31] and aims to minimize
the sum of squared displacements in each time step. For com-
putational reasons the optimization is not carried out directly
in [31], but on a reduced problem. Assignments between parti-
cles of two consecutive points in time are discarded if the dis-
tance between the particles exceeds a certain threshold, s. This
simplification typically leads to a decomposition of the opti-
mization problem into a number of smaller problems, which
can be solved independently and much faster. The threshold
value has been set to s = 19.8 µm in the current study.

Minimizing the sum of squared displacements is feasible as
long as very little movement occurs within a time step. In par-
ticular, particle movements in one step have to be less than the
threshold value, s. This is most likely true for shearing steps of
0.5° since a particle will be displaced by at most 8.72 µm the-
oretically (arc length at the upper, outer edge of the cylinder).
However, when shearing in steps of 5°, particle displacements
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of ten times the size, i.e., of up to 87.2 µm, have to be expected.
In this case a tracking computed by minimizing displacements
will clearly be wrong and it is impossible to obtain satisfying
results without prior information on the dynamics in the parti-
cle system.

The 2D image-based local shear deformation (cf. Sec-
tion 2.3.1) essentially describes the average movement of par-
ticles depending on their location in the sample — and this is
used as prior information for tracking particles in steps with an
angle increment of 5°. For every particle at time t1, a hypo-
thetical position for where it is expected to be at time t2 is cal-
culated based on the 2D image-based local shear deformation,
(∆t1→t2

ϕ ,∆t1→t2
z ). This is done by rotating each particle center

(rp, ϕp, zp) around the central axis of the cylinder by the angle
∆

t1→t2
ϕ (zp, rp) and shifting it vertically by ∆

t1→t2
z (zp, rp). Then,

the sum of squared distances between the hypothetical and ac-
tual particle positions at time t2 is minimized, where now all
assignments leading to a larger distance between hypothetical
and actual position than some threshold, s̃, are discarded. Here
we obtained good results for s̃ = 17.6 µm.

This approach for tracking in steps of 1° or more is validated
using the data from 3.5° to 9.5° of shearing, which is available
in steps of 0.5° and where no more major compression occurs.
For this whole period, a particle tracking has been computed
based on all available data and the original method described
in [31]. This will be referred to as reference tracking in the fol-
lowing. In order to validate the tracking method based on the
local shear deformation, it has been applied to each of the inter-
vals from 3.5° to 4°, from 3.5° to 4.5°, ..., and from 3.5° to 9.5°
of shearing, taking into account only the first and last point in
time, respectively. In particular, no information on intermedi-
ate time steps is used. The resulting tracks have been compared
to the ground truth, i.e., each track is considered correct if its
starting and end point belong to the same track in the reference
tracking. The fraction of correct tracks decreases slowly with
increasing angle increment. For an angle increment of 5° (or
smaller) more than 98.5 % of the computed tracks agree with
the reference tracking. Even with an angle increment of 6°,
more than 98 % of the tracks are correct.

2.3.4. Estimating the axis of rotation
When analyzing the tracked particle data it becomes apparent

that the empirical axis of rotation does not necessarily coincide
with the central axis of the cylindrical sample (see Figure 4).
The deviations can be caused by small inaccuracies in the align-
ment of the glass capillary and the upper and lower piston in the
experiment, cf. Section 2.2.2, and lead to an overestimation of
angular velocities on the one side and to an underestimation on
the other side of the cylinder. In order to adjust for these effects,
the axis of rotation is estimated from the data.

If rotation around a roughly vertical axis occurs, particles
with the same height and horizontal distance from the axis of
rotation will have approximately the same velocity. This means
that the center of rotation at a given height can be estimated by
fitting a circle to the particles at this height which have simi-
lar velocities. Note that the velocity of a particle is measured
as the distance it travels per degree of shearing, i.e., it has the

Figure 4: Slice of the binary image at two different points in time. Each particle
is colored according to the distance it travels in the subsequent time step, blue
indicates small and red indicates large values. In the first time step (left) the
center of rotation is slightly above and in the second time step (right) it is below
and left of the center of the sample. The image centers are marked with a red
cross.

unit µm/°. For a grid of heights and velocities the correspond-
ing particles are collected and a circle parallel to the xy-plane
is fitted to their centers using weighted least squares, where the
weight of each particle is determined by how closely it matches
the velocity and z-coordinate of interest. More precisely, the
weight of a particle p in the circle fitting for height z and veloc-
ity v is given by

wp(z, v) = exp
(
−

(z − zp)2

2h2
z
−

(v − vp)2

2h2
v

)
, (4)

where zp and vp are the z-coordinate and velocity of p, and
hz and hv are smoothing parameters. The center of rotation at
height z is then determined by calculating the average of the
circle centers fitted for height z, i.e., over all velocities in the
grid. Note that the axis of rotation estimated in this way does
not necessarily need to be a straight line but can be curved. In
addition, the (curved) axis depends on the time step for which
velocities have been computed, so it can change over time.

The smoothing parameters hz and hv control how many par-
ticles are relevant for each circle fitting. They should be large
enough so that the circle fitting yields stable results, and small
enough to allow the estimated circle centers to vary with height
and velocity. In the present study they have been set to hz =

11 µm and hv = 0.66 µm/°. For these parameters, the resulting
axis is a smooth but flexible 3D curve.

Note that no rotation occurs at the bottom of the sample.
Here, all particles have a velocity close to zero and therefore
approximately the same weight in the circle fitting. Due to the
cylindrical shape of the domain, the estimated axis of rotation
will automatically be dragged towards the center of the sample
in these regions.

3. Results

In order to analyze the shear induced structural heterogeneity
of cohesive granular matter, we conducted a torsional shear ex-
periment under constant normal load (cf. Section 2.2). As the
ratio of cohesion force to normal stress is η = Fc/(σx2

50,3) ≈
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Figure 5: Global solids volume fraction in the shear cell over time, i.e., to-
tal particle volume divided by the volume enclosed between upper and lower
piston.
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Figure 6: Radial density profiles (w = 8.8 µm) of the initial configuration (ωt =

0°), a compacted configuration (ωt = 4°) and a configuration towards the end of
the experiment (ωt = 34.5°). The values are averaged over the region between
upper and lower piston in vertical direction.

0.2, only a minor influence of cohesion is expected [20]. The
following analysis serves to demonstrate the capability of our
methods in general and provides insights into structural hetero-
geneity as well as shear band formation and evolution in cohe-
sive granular matter. Starting from a consolidated configura-
tion, a total shear strain of ωt ≈ 39.5◦ is analyzed. To describe
the distribution of the powder within the shear cell, we ana-
lyze the spatially-resolved number density of particle centers
(cf. Section 3.1). In the following, we present different meth-
ods to identify the shear band, based on tomographic images
and particle tracking, respectively. The findings are presented
in Sections 3.2 and 3.3 and allow for detailed characterization
of shear band shape and location over time.

3.1. Segmentation and structural analysis

To extract particle positions from the experimental configu-
ration, tomographic data was segmented as explained in Sec-
tion 2.3.2. Particle positions and radii have been determined by
calculating the center of mass and the volume-equivalent radius
(i.e., the radius of a ball with the same volume) of the voxel rep-
resentation of each particle. Particles with a diameter smaller
than 13.2 µm or larger than 53.0 µm have been excluded from
the analysis. Very small particles cannot be segmented reliably,
while unrealistically large particles may occur due to bright,
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Figure 7: Axial density profiles (w = 8.8 µm) of the same configurations as
used for the radial profiles (Figure 6). Due to densification and dilation, the
height of the sample changes over time. In all plots z = 0 marks the upper edge
of the vanes on the bottom piston.

star-like artifacts, which seem to be caused by single particles
of a different material present in the sample. Note that the ex-
cluded particles correspond to less than 0.1 % of the whole par-
ticle volume at each point in time.

The distribution of particle diameters extracted from the seg-
mented image data is unimodal and slightly skewed to the left
with a median of x50,3 = 30.7 µm and an interquartile dis-
tance of x75,3 − x25,3 = 3.7 µm. The size distribution has
also been measured using laser diffraction (cf. Section 2.1),
where a very similar median of x50,3 = 29.8 µm was ob-
served. The interquartile distance obtained from laser diffrac-
tion is x75,3 − x25,3 = 11.0 µm, i.e., considerably larger than the
value based on the image data. This is most likely due to the
back calculation algorithm used for laser diffraction measure-
ments, which is known to overestimate the width of extremely
narrow particle size distributions [32]. Importantly, the particle
size distribution estimated based on the image data is almost
identical for all XMT measurements, indicating consistent seg-
mentation results.

By estimating the total particle volume based on the binary
images and normalizing with the volume of the sample cham-
ber, we can track the global solids volume fraction over time,
shown in Figure 5. An initial densification occurs up to ωt ≈ 4°
and is followed by a dilation until a steady state volume fraction
is reached at a shear strain of ω t ≈ 10◦. We notice, however,
that the fluctuations in the experimental data do not support a
final statement on when exactly the steady state is reached. The
analysis of shear localization will lead to further insight (cf.
Section 3.3).

Based on the centers of the segmented particles, we compare
the number density n(r, z), i.e., the number of particles per cu-
bic millimeter, as a function of height (z) and distance to the
central axis of the cylindrical sample chamber (r). The results
are shown in Figures 6-8. Rotational invariance is assumed,
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Figure 8: 2D density profiles (w = 14.9 µm) of the initial configuration (ωt = 0°; left), a compacted configuration (ωt = 4°; center) and a configuration towards the
end of the experiment (ωt = 34.5°; right). The black frame in the bottom right corner marks the location of the vanes on the lower piston.

hence all data is averaged over ϕ. To obtain continuous fields,
we coarse-grain the data with a Gaussian kernel (with standard
deviation w).

Figure 6 shows radial number density profiles of the ini-
tial configuration, a compacted configuration and a configura-
tion towards the end of the experiment, using a coarse-graining
length of w = 8.8 µm. The radial density profiles reveal
wall-induced layering, noticeable for all depicted configura-
tions (r > 0.9 mm). This obvious signature of granular mi-
crostructure is known from shear experiments [9]. Moreover,
all radial density profiles show the lowest number density at
r ≈ 0.7 mm. It increases very slightly towards the center of the
shear cell and shows a more pronounced increase close to the
wall. Judging by the radial density profiles, shearing leads to
compaction.

This misconception can be cleared up by the axial density
distribution, which is shown in Figure 7 for the same configura-
tions. Displayed is the range between upper and lower piston,
where z = 0 marks the upper edge of the lower piston. Com-
paring the configurations at the beginning and end of the exper-
iment, a dilation (0 ≤ z ≤ 0.2 mm) as well as a densification
zone (z > 0.2 mm) can be identified. Taking into account the
intermediate profile, it can be observed that the densification
is strongest and almost homogeneous before ωt = 4°. After-
wards, the sample is only slightly further compressed between
0.3 mm ≤ z ≤ 0.8 mm, which is a direct consequence of the
strong dilation in the lower part of the shear cell. The dilation
suggests a shear localization close to the lower piston, which
will be analyzed in more detail in Sections 3.2 and 3.3.

The 2D number density plots (Figure 8) emphasize the spa-
tial inhomogeneity of the density distribution, which was al-
ready revealed by the 1D profiles. As seen before, from bottom

to top, a dilation zone is located directly above the lower piston,
followed by a more densely packed zone, above which a homo-
geneous zone is located. A higher number density close to the
wall can be observed as well. Ignoring the inhomogeneity in-
duced by the capillary wall, the 2D density plots suggest a cone
like densification zone on top of the lower piston. This unex-
pected feature can already be spotted in the initial configuration
and may therefore be a relict of the preparation procedure, as
discussed later (Section 4.1).

3.2. Image-based local shear deformation

The image-based local shear deformation was determined in
1D and 2D as described in Section 2.3.1, based on the tomo-
graphic grayscale image stacks. Results for the final four time
steps are shown in Figure 9. We obtain an angle of local defor-
mation as a function of the height in the sample (z) in 1D, and
as a function of the height (z) and the distance from the cen-
tral axis of the cylinder (r) in 2D. Note that based on the image
data we only obtain a coarse radial resolution: The number of
radial coordinates for which the local shear deformation is eval-
uated corresponds to the number of rings rotated independently
(cf. Section 2.3.1). This number cannot be very large, because
we need a certain number of voxels on each ring in order to get
reliable results.

Shear strain localizes close to the lower piston, as already
suggested by the density profiles. The 1D deformation (Fig-
ure 9, top) shows that the extension of the shear band still varies
after ωt ≈ 10°, although the volume fraction already remains
constant after this point (see Figure 5). Starting at ωt ≈ 25◦

no significant changes in the deformation behavior can be ob-
served. In the 2D deformation (Figure 9, bottom) we obtain
more details about the geometric shape of the shear band. In
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Figure 9: Image-based local shear deformation in 1D and 2D in the steady state
of the experiment. The 1D case (top) shows the shear deformation as a function
of the height in the sample with almost congruent states. The 2D deformation,
which is shown for the last time step as an example (bottom), reveals that the
shear band geometry is curved close to the wall.

addition to its location and width, the 2D deformation reveals
that the shear band is curved downwards where the vanes on
the lower piston meet the cylinder wall. This means that di-
rectly above the lower piston particles close to the wall have a
higher angular velocity than particles in the center of the sam-
ple. Again, the effect can be explained by the influence of
the outer rotating wall because outer particles are more easily
dragged along than particles in the center of the sample. We
observe a vertical extension of the shear band of up to 250 µm
after ωt ≈ 25°, which corresponds to approximately 8 median
particle diameters. This agrees well with data from literature,
where ratios between 7 and 18 have been found [11, 14, 28, 33].
The 2D deformation additionally suggests that the shear band is
broader towards the center of the sample than close to the outer
wall.

The 1D image-based local shear deformation can also be
used to measure the rotation of the upper and lower piston (see
Section 2.3.1). In principle, the movement of the pistons should
be known from the setup of the experiment: the upper piston
should rotate in steps of 0.5° and later 5°, while the lower pis-
ton should be held perfectly still. However, we observe that the
actual movement of the pistons deviates from this ideal. The
mean absolute difference between the actual and target angle
of rotation is 0.02° for the upper and 0.19° for the lower pis-
ton, respectively. Taking into account both, the mean absolute
difference between the actual and target angle of shear is 0.20°.

This imperfection in the rotational movement is likely caused

by the compensation unit, which is supposed to keep the con-
tactless mounted lower piston in place while tracking shear
stress. However, interlocking of particles between piston and
wall may counteract this mechanism, dragging the lower piston
partially during shear deformation and resulting in implausible
high peaks in the shear stress. A solution for this problem can
be obtained by decreasing the piston diameter (and thus increas-
ing the gap) to reduce the effects of interlocking. However, this
is accompanied by the more disadvantageous effect of loosing
sample material, which may be pushed through the gap and out
of the sample chamber during shear. Moreover, we can only
control the rotation of the upper piston and hence of the glass
capillary in this shear-tester setup. Unfortunately, it is not pos-
sible to observe the rotation of the lower piston in the range of
≈ 0.01° during shear deformation to achieve the desired relative
rotation.

3.3. Tracking and shear bands

Particle tracking allows for an even more detailed analysis
of strain localization in the experiment compared to the image-
based analysis of Section 3.2.

Particle tracks were computed for all steps of shearing start-
ing at ωt = 3.5° using the methods described in Section 2.3.3.
Before this point we observe a considerable decrease in the
distance between upper and lower piston, from 2.12 mm to
1.93 mm, which leads to considerably high vertical displace-
ments of particles in the upper part of the cylinder. This shear-
induced densification, which is even spatially inhomogeneous,
renders the identification of reliable tracks in the first time steps
impossible. After ωt = 3.5° we obtained very good tracking
results. The tracking efficiency (measured as the number of
particles assigned to valid tracks divided by the total number of
particles) is larger than 97 % in each step of 5°, and even larger
than 99.5 % in each step with an angle increment of 0.5°.

On the basis of particle tracks, it is possible to calculate ve-
locities of single particles in the experiment. For reasons of
comparability, all particle velocities are described as angular
velocities with respect to the axis of rotation (cf. Section 2.3.4),
and normalized to the interval [0, 1] using the movements of
upper and lower piston, which are estimated as described in
Section 2.3.1.

We computed 2D profiles of average normalized angular ve-
locity, vϕ̃(r̃, z), as a function of height (z) and (horizontal) dis-
tance to the axis of rotation (r̃), where the average is in ϕ̃-
direction and (r̃, ϕ̃, z) denote cylindrical coordinates with re-
spect to the axis of rotation. A (time-averaged) example is
shown in Figure 10 on the right-hand side. Note that the axis of
rotation has been estimated from the data as described in Sec-
tion 2.3.4 and rotational velocities are calculated with respect
to this estimated axis. This change of the coordinate system is
necessary because the dynamics in the sample clearly depend
on the distance from the axis of rotation rather than the dis-
tance from the central axis of the cylinder. Without adjusting
the cylindrical coordinates, the experimental particle velocities
would not be independent of ϕ and averaging in azimuthal di-
rection would not be feasible. For coarse-graining we chose the

8



same bandwidth as for the 2D density profiles in Section 3.1,
w = 14.9 µm.

In order to describe the shear bands quantitatively, we fitted
a parametric function to the velocity profiles. For a fixed radial
distance, r̃, the velocity profile is described well by the function

vϕ̃(z) =
1
2

+
1
2

erf
(

z − zsb

wsb

)
, (5)

where erf denotes the error function, and zsb and wsb are the fit-
ted parameters describing the local height and (semi) width of
the shear band, respectively. This function is attractive because
of its simplicity with only two parameters and has also been
used in [10] to describe symmetric shear zones. Discretizing
r̃ with a bin size of 0.03 mm and fitting this function to the z-
coordinates and (normalized) velocities of the particles in each
bin, we obtain estimates of zsb = zsb(r̃) and wsb = wsb(r̃) as
functions of the radial distance r̃, leading to a r̃-dependent ve-
locity profile, vϕ̃(z) = vϕ̃(r̃, z). Here, we define the shear band
as the interval zsb±wsb, which covers approximately the central
84 % of the velocity range in the data. Of course, any other rea-
sonably large percentage could be chosen to separate shear band
and homogeneous zones in principle. Since the main purpose of
the fit is to quantitatively compare the experimental shear band
width and location between different points in time, we stick to
this simple choice.

An example of actual and fitted velocity profiles as well as
the time-averaged velocity profile obtained for the data after
ωt = 10° is reached are shown in Figure 10. The fitted shear
band is indicated as zsb±wsb in the graph on the right-hand side.
Both graphs show a very good agreement of the fitted profiles
with experimental data. The 2D profile shows that the shear
band is close to the lower piston, on average (over r̃) its center
is at a height of z = 0.12 mm. The shear band has a width
of 2wsb = 0.23 mm on average, which corresponds to roughly
8 median particle diameters. It is slightly curved downwards
where it comes close to the outer wall of the cylinder.

Figure 11 shows the development of zsb and wsb over time,
averaged over r̃. It seems that a steady state is reached at
ωt ≈ 10°, as already indicated by the solids volume fraction
shown in Figure 5. Before ωt ≈ 10° the shear band width and
height are (on average) larger, and both values fluctuate much
more strongly. The shear band rises from zsb ≈ 0.15 mm to
zsb ≈ 0.37 mm in this period and drops back to its lower posi-
tion at a shear strain of ωt ≈ 9°. However, even after ωt ≈ 10°
the shear band width fluctuates perceptibly, wsb takes values be-
tween 0.08 and 0.16 mm here. Smaller fluctuations have to be
expected since we consider (and implicitly average over) much
larger time intervals in each step here. There seems to be a sec-
ond drop in the variability of zsb and wsb at ωt ≈ 25°. Whether
this is a coincidence or the steady state is actually only reached
in the last three steps of the experiment is unclear and cannot
be judged based on the present data. Therefore, we assume that
the steady state is reached at ωt ≈ 10° in our analysis.

4. Discussion

The analysis in Section 3 demonstrated that our methods
allow to extract valuable information on particle dynamics in
space and time. In the following, we discuss several interest-
ing effects revealed by the analysis and compare the presented
methods for shear band analysis in terms of computational cost
and level of detail.

4.1. Segmentation and structural analysis
Analysis of the static configurations revealed an inhomoge-

neous packing density within the sample (cf. Figures 6-8). The
axial number density profiles show a prominent gradient in z-
direction in the lower part of the shear cell, which is caused by
wall friction and demonstrates the stress-flux between piston
and capillary. At the beginning of the experiment, the number
density directly below the upper piston is much lower than in
the rest of the shear cell (cf. Figures 7 and 8). This happens
most likely because particles do not fill the top part of the shear
cell uniformly after they are sieved into the sample chamber.
Apparently, uniaxial compression (as applied prior to shearing)
is not sufficient to spread these particles out evenly. The number
density in this region normalizes only after shearing has started
(ωt = 4°).

In addition, the 2D number density profiles (Figure 8) show
that an almost cone-shaped densification zone is present in the
center of the shear cell. This seems puzzling at first, but may
also originate from the preparation procedure. As described
in Section 2.2.2, the preparation process is a gravitation driven
deposition. The first portion of dumped particles piles onto the
structured bottom piston (e.g. vanes arranged in a star shape),
which quite likely dictates the densification zone’s shape. Of
course this interpretation needs further investigation.

4.2. Tracking and shear bands
In Sections 3.2 and 3.3 we presented the results of differ-

ent methods to analyze shear bands in the experiment. Though
they are in good agreement in principle, the methods vary in
computational efficiency, flexibility and the level of detail of
the information they provide. The 1D image-based local shear
deformation is relatively fast to compute and provides a good
first overview over the deformation as a function of the height
in the sample. An extension of this method is the 2D image-
based local shear deformation. Here, each image slice is not
rotated as a whole — instead, the disk-shaped cross section
of the cylinder is subdivided into disjoint rings, which are ro-
tated independently (see Section 2.3.1). This extension is more
computationally expensive (depending on the number of rings
used), but in return provides 2D information: the local angle
of shear deformation as a function of height and radial coor-
dinate in the sample. In particular, it reveals that the shear
band in our data is slightly curved and not exactly parallel to
the xy-plane (cf. Figure 9, bottom). We believe that the curved
shape of the shear band is predominantly provoked by the influ-
ence of the outer glass wall. Such effects are concealed by the
1D deformation, which is similar to an average over r. If the
shear band properties depend strongly on the radial coordinate,
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Figure 11: Development of the fitted shear band width and location over time,
averaged over r̃.

the 1D information might even be misleading. For example, a
shear band which is actually narrow and strongly curved (which
might, e.g., be caused by a strong sample heterogeneity) would
seem like a wide shear band in the 1D deformation. In our
case the shear band is only slightly curved and we obtain sim-
ilar shear band widths with both methods. On that account the
observed shear band width in our experiment agrees well with
data in literature for noncohesive granular matter. With the ratio
Fc/(σx2

50,3) ≈ 0.2, this is expected [34].
The results presented in Section 3.3 were computed based on

a particle tracking. Obtaining this particle tracking requires sig-
nificant additional effort during the experiment as well as from
a computational and analytic perspective. First, the XMT mea-
surements are time consuming and a sufficient temporal resolu-
tion is needed. Although we present a method to track the par-
ticles even in steps with an angle increment of 5°, much smaller
angle increments are needed at least for part of the experiment
to validate the method (see Section 2.3.3). Furthermore, the
tracking itself requires a preceding segmentation of high qual-
ity and the 2D image-based local shear deformation discussed
in the previous paragraph. In return, it provides unique and
valuable information on the motion of single particles based on

experimental data, which allows for a most accurate shear band
analysis (cf. Figures 10 and 11). It is much more precise than
purely image-based methods and revealed, for example, vari-
ations of the axis of rotation (cf. Figure 4). Effects like this
cannot be captured and accounted for by the image-based local
shear deformation. Moreover, particle tracking bridges the gap
between experimental data and discrete element simulations re-
garding particle motion behavior and hence, allows for a direct
comparison of both worlds. It enables the estimation of contin-
uous velocity fields and a parametric fit of the shear band pa-
rameters in very fine radial resolution. Though not performed
in this study, the particle tracking additionally allows for the
comparison of single particle trajectories and their properties,
which will be subject of future work.

The Gaussian function given in Equation (5), which we used
for fitting the shear bands, proved to provide very good fits
for shear bands in a modified Couette shear cell [10]. These
shear bands develop distant from a wall, resulting in a sym-
metric shape. When shear bands develop close to a wall, such
perfectly symmetric shapes are not typical. For example, a mix-
ture of a Gaussian and an exponential component in the velocity
profile was observed in a study of shear bands localized close to
the side wall in a similar shear cell geometry [8, 9]. The expo-
nential decay was attributed to slippage between layers of the
monodisperse particles used in [9]. In our data the velocity pro-
files appeared approximately symmetric, thus we consider only
the purely Gaussian fitting function. If an exponential compo-
nent is present in our data, it is very small. This is plausible
because we cannot have layers of particles at the bottom of the
cylinder due to the structured pistons. A wider particle size dis-
tribution might be another reason why we do not observe layers
of particles slipping over each other at the bottom of the shear
cell in this study.

5. Conclusions and outlook

In this study we demonstrated that a torsional shear experi-
ment can be realized on a very small scale. We used spherical
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particles made of borosilicate glass. The combination of mi-
cro shear-tester and XMT allows to capture the evolution of the
sample in a series of high-resolution 3D images. In addition, we
presented a toolbox of methods to analyze a shear experiment
based on time-resolved tomographic image data. Particle posi-
tions and radii could be extracted consistently from the image
data and have been used to compute spatially resolved number
density profiles of the particle centers, revealing structural in-
homogeneities. Furthermore, we presented methods to assess
the local shear deformation based on image data. We demon-
strated how this information can be used to identify tracks of
single particles even when a large angle increment of up to 5°
is used for shearing between XMT measurements. Our analysis
showed that the shear band developed close to the lower pis-
ton and was slightly curved downwards at the outer wall of the
cylinder. Using a Gaussian function to fit profiles of rotational
velocities, we could quantitatively describe the development of
shear band width and location in time and space.

The main benefit of this study is that it paves the way for a
direct comparison of experiments and DEM simulations, and
hence, provides an improved basis for the calibration and vali-
dation of numerical models. A next step for future research is
to simulate the same experiment and to use the data provided by
our methods for a comparison of both approaches. On the ex-
perimental side, an extension of the parameters measured dur-
ing shear is possible. Here, a shear stress logging during de-
formation and an investigation of the effect of larger stress lev-
els on the packing and deformation behavior is desirable. An-
other raising question, which cannot be answered in detail by
the current study, is how the sample preparation process affects
the initial packing behavior. Finally, additional scenarios with
varied particle properties should be addressed to describe their
effect on the structure and dynamics of fine granular matter ex-
perimentally. Possible variations include nonspherical particle
shapes (e.g. rods and irregular shapes), particle surface mod-
ifications (e.g. to vary cohesion forces) and broader or multi-
modal particle size distributions. For nonspherical particles, it
would additionally be possible to follow the rotation of individ-
ual particles.
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