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Abstract The particle-particle interactions on micro scale determine the macroscopic flow 

behaviour of bulk solids as in shear testers and in industrial facilities. However, although the flow 

behaviour can be measured on macro scale and bulk solid facilities as silos can be designed 

based on reliable engineering knowledge, the microscopic physics causing the wide fluctuation 

in flow properties of the different bulk solids is still not deeply understood. Therefore, the motion 

of individual particles in shear testers was determined experimentally as well as by discrete 

element method (DEM) simulations. The experimental detection of the particle motion was 

achieved by an own-built micro torsional shear tester which can be placed into a X-ray 

tomography device (µCT) and a customized statistical analysis method to extract the individual 

trajectories of almost all particles even at large angle increments of up to 5° between the single 

tomographic measurements. The two bulk solids, borosilicate glass beads and potassium 

chloride, with particle sizes in the range of 10 to 100 µm show very different contact behaviour, 

on one side viscoelastic with constant adhesion force and on the other side elastoplastic with 

time dependent adhesion. By a careful calibration of the DEM contact model parameters using 

among others shear and nanoindentation tests the microscopic behaviour of the two different 

model materials could be simulated successfully to predict the shear bands and to determine the 

macroscopic flow properties. Moreover, a theory for the rate dependent rheology of granular 

materials showing time consolidation has been developed. 
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1. Introduction 

Cohesive particle contacts have intrinsic kinetics, even if the particles do not move: Freshly 

formed contacts mature due to accommodation in the contact area of their rough surfaces, 

intensifying atomic binding and hence lowering the interfacial free energy.  The underlying 

microscopic processes are very complex, because they can be influenced by various means, 

such as temperature, humidity, surface contaminants, or pressure. (Here we do not consider 

cementation in the sense that a foreign chemical substance forms a solid bridge between the 

particles, although the phenomenology should be similar.) All these parameters determine the 

characteristic time, on which the cohesion force between particles establishes itself. We call it 

accommodation time 𝑡c.  

 

The accommodation time can be probed in bulk powders by shearing: The idea is that shear 

localization, density inhomogeneities and anisotropic fabric reflect the microscopic competition 

between the accommodation time and the inverse shear rate. Hence a structural analysis of 

powder bulk sheared at different rates, will reveal properties of the contact mechanics. In this 

project review two model materials are considered, which represent opposite limiting cases. 

Glass spheres at room temperature have a very short accommodation time. Cohesion (due to 

van der Waals forces) is instantaneously present, when a contact forms, and does not increase 

noticeably, when it lasts (Section 4). On the other hand, KCl-particles are a clear example for 

caking contacts, where the cohesion force becomes slowly stronger (Section 2.3.3). A 

completely caked powder resembles a porous solid rather than a granular medium. Instead of a 

shear band one expects a crack, which upon continued shear grinds the adjacent material, so 

that it becomes granular-like. Section 3 explores this process theoretically. 

 

In order to investigate the bulk structure evolution, a novel experimental tool has been 

developed, the micro shear tester, combined with x-ray tomography, which allows grain-resolved 

rheological observations. The experiments are briefly reviewed in Section 2.1. Statistical particle 

tracking tools have been developed to analyze these experiments (Section 2.2). For connecting 

these results to contact mechanics, simulations with the discrete element method (DEM, see 

Section 2.3) are indispensable. Such interdisciplinary efforts are needed to shed light on the 

question, what information about contact mechanics can be extracted from shear induced bulk 

structures. 

2. Methods to study grain-resolved rheology 

2.1 Micro shear tester and tomography, requirements for model materials 

For the investigation of the particle motion and the subsequent change in powder structure a 

novel micro torsional shear tester was developed within the project. The shear tester was 

designed to be integrated into a high resolution XMT device (MicroXCT 400, Xradia, Inc., today 

Zeiss). This state of the art XMT scanner differs from the conventional scanners due to the 

implementation of special scintillators in combination with optical magnifying lenses (see e.g. 

[Str14a]). The micro shear tester has a cylindrical shear cell with inner diameters from less than 

2 mm to about 4 mm and allows a precise compaction and shear deformation of the small 



 

powder samples in the lower µL-range (typically around 10 µL) [Str14a]. Another characteristic 

of this novel shear device is the decoupled and most precise determination of the acting forces 

and torque behavior whereas the whole system is theoretically frictionless using advanced 

technology of magnetic spring and air bearing mechanisms. Due to the implemented very 

precise position and force sensors the tester can be operated in strain or stress controlled mode. 

The possible axial deformations range from micrometres to several millimetres and the resulting 

normal and shear stresses from 0.5 to 30 kPa. By the combination of µST and XMT, Fig. 1 (left), 

a stepwise manipulation of the specimen can be performed in order to acquire high resolution 

3D images in between these deformation steps. During the whole measurement the specimen 

remains in the scanning position and thus, the danger of potentially disturbing the fragile 

structure is minimized. 

The cylindrical shear cell with the powder sample is exposed to the x-ray beam. The X-ray 

source was operated with an acceleration voltage of 50 kV and a constant current intensity of 

200 µA. The specific absorption of the specimen due to its material and inner structure results in 

a characteristic radiograph, which the scintillator translates into the spectrum of visible light. The 

subsequent optical lens generates the required magnification of the image. In order to change 

the magnification the optical lens can be replaced using an objective revolver. For the usually 

applied shear cell diameter of 2 mm, a ten-fold optical magnification was adequate to image the 

entire cell with a resolution of 2.2 µm (2x binning). The 3D information is achieved by multiple 

projections while the sample rotates in small angle steps around its vertical axis. A record of 

2000 two-dimensional projections provides the basis for a precise three-dimensional 

reconstruction of the powder microstructure.  

 

     

Fig. 1: Integration of the µST into the XMT system (left), powder specimen in front of the x-ray 

source (centre), compression and shear geometry on a fingertip (right) [Str14a]. 

In order to minimize the x-ray absorption the shear cell was build out of materials with low 

effective atomic number. Moreover, the thermal expansion coefficient should be as low as 

possible to avoid a geometrical change of the shear cell due to heat expansion. Therefore, for 

compression and shear tests the powder specimen is enclosed in a thin-walled borosilicate glass 

tube (wall thickness ≈ 50 µm, length 40 mm) with an effective atomic number of 10.7 and a 



 

thermal expansion coefficient of only 3.3 10-6/K. The top and bottom sides of the powder sample 

are limited by the upper and lower pistons made out of PEEK (effective atomic number of about 

6, thermal expansion coefficient of 47 10-6/K, Fig. 1 (centre, right). While compaction 

experiments are performed in between two flat pistons, shear deformation can be induced with 

structured pistons. During the test the upper piston, which is firmly connected to the glass tube, 

performs a relative movement (i.e. translation or rotation) to the lower piston. In order to prevent 

agglomeration during the preparation process, powder is sieved into the capillary. After the filling 

process, the sample is compressed to the desired normal load, usually 0.5 kPa. During shear 

deformation the sidewall and the upper piston rotates stepwise. Usually during the first 9.5° of 

shear deformation an angle increment of 0.5° is set. Afterwards, the angle increment is raised to 

usually 5° until the final shear deformation is achieved. In most experiments a total shear 

deformation of 39.5° was used. The shear deformation is performed in a quasi-static regime 

using an angle velocity  of 0.1°/s. Between the shear steps tomographic data is recorded. 

For µCT measurements the model particles have to fulfill specific requirements. On one side the 

effective atomic number should be high enough, at least in the range of 10. On the other side the 

particles should not be smaller than 10 µm in order to get good resolved pictures of the particles 

and, at the same time, a full image of the powder sample on particle level inside the 2 mm wide 

shear cell. As cohesive model material with very short accommodation times due to van der 

Waals forces massive borosilicate glass beads (BSGMS 27-32 µm, Cospheric, USA) are 

applied. Against that as model material for caking contacts potassium chlorid (KCl) particles are 

used (K+S, Germany). As depicted in Fig. 2 the BSGMS micro beads are very spherical, 

whereas the KCl particles show a prismatic to irregular shape. Moreover, the BSGMS particles 

have a very narrow particle size distribution (x10  20 µm, x50  30 µm, x90  40 µm), while the 

size distribution of the specifically milled KCl particles is relatively wide (x10  3 µm, x50  20 µm, 

x90  50 µm)  [Str14b]. The mechanical characteristics of the single particles were determined by 

nanoindentation (Triboindenter, Hysitron, Inc., USA). For BSGMS particles a Young modulus of 

14.8  7.2 GPa was achieved by fitting the deformation curve with the model of Hertz. The non-

spherical KCl particles cannot be described by the model of Hertz, so that a contact stiffness of 

9.8  3.4 kN/m was determined [Str14b] The flowabilities of the two model powders were 

characterized within a Schulze ring shear tester RST-XS: The ffc values of the BSGMS powder 

were above 10 for principal stresses higher than 8 kPa, so that the BSGMS powder can be 

characterized as free flowing. Against that for the KCl powder the ffc values are in the range 

between 1.5 at low principal stresses and 3 at high principal stresses, so that the KCl powder 

has a very cohesive to cohesive flow behavior according to the definition of Jenike. 



 

 

Fig. 2 SEM images of model particles. Left: borosilicate glass micro spheres, Right: potassium 

chloride particles [Str14b] 

2.2 Particle tracking and statistical analysis 

Starting from a series of 3D tomographic images recorded in the micro shear-tester, we aimed to 

extract as much information on particle level as possible. For method development, we focused 

on a shear experiment with spherical particles (BSGMS 27-32 μm, CoSpheric LLC, USA; 

abbreviated BSGMS) with a diameter of roughly 30 µm. The size distribution and an SEM image 

of several particles are shown in Fig. 3. However, many of the developed methods are also 

applicable to other particle sizes, shapes or materials. The experiment we studied was 

conducted quasi-statically with a normal load of 0.5 kPa. Particles were sieved into the sample 

chamber and the normal load was applied. Next, the sample was sheared, first in steps of 0.5° 

up to a cumulative shearing angle of 9.5°, then further in steps of 5° up to an overall angle of 

39.5°. Directly after applying the normal load and after each step of shearing, a tomographic 3D 

image of the entire sample chamber was recorded. The experiment and analysis methods 

described in this section were previously published in [Han16,Han17]. 

First, the particles were segmented by applying a marker-based watershed transformation. 

Markers were chosen as the local maxima of the convolution of the original image with an 

idealized particle mask as suggested in [Wen13]. This approach is ideal for spherical particles 

with a narrow size distribution and also allowed for the correct segmentation of hollow particles 



 

in most cases, which were occasionally present in the sample. Based on the segmentation, we 

could extract the center of mass and other geometric characteristics (e.g. diameter, volume, 

sphericity) for each particle. The main steps of particle segmentation are visualized in Fig.3. 

     

Fig. 3 Left: Particle size distribution (mass distribution, logarithmic density and cumulative 

distribution function) and SEM picture (inset) of BSGMS glass particles. Right: Visualization of 

the main steps of the segmentation process based on a small cutout of an image slice. 

Grayscale image obtained by XMT (A), binary image (B), convolution of grayscale image and 

particle mask used for marker selection (C) and final segmentation result after applying the 

marker-based watershed transform (D). Note that though the visualization is in 2D, all operations 

are carried out in 3D. (Reprinted from [Han17] with permission from Elsevier) 

Based on the extracted centers of mass, we computed tracks of particles over time. When 

shearing in steps of 0.5°, a comparatively simple algorithm was sufficient, which aims to 

minimize the sum of squared displacements in each step [Cro96]. In these small steps, particles 

are expected to move at most 8.72 µm (at the upper outer edge of the cylindrical sample 

chamber), which is less than a particle radius. When larger angle increments of 5° are used 

between tomographic images, this approach is no longer feasible.  

We solved this problem by deriving a first estimation of the average movement of particles in 

different areas of the shear cell directly from the 3D image data, extending an idea from [Str14b]. 

Here, an image-based local shear deformation was computed by comparing image slices at two 

consecutive points in time and a fixed height, 𝑧. For a time step (𝑡1, 𝑡2) the local angle of shear 

deformation 𝛥𝜑
𝑡1→𝑡2 at height 𝑧 was then defined as the angle by which the first slice has to be 

rotated to best match the second slice. More precisely, 

𝛥𝜑
𝑡1→𝑡2(𝑧) = argmax

𝛼∈[0°,360°]
{corr(rot𝛼(𝐼𝑡1

𝑧 ), 𝐼𝑡2

𝑧 )},       (1) 



 

where 𝐼𝑡
𝑧 denotes the image slice at time 𝑡 and height 𝑧, corr denotes the image cross-

correlation, and rot𝛼 denotes the rotation around the image center by the angle 𝛼. The image 

rotations were implemented using bilinear interpolation and maximization was carried out in 

steps of 0.1°. We extended this approach to capture also radial variations of local shear 

deformation and to measure vertical compression or dilation along with the rotational 

deformation. For this purpose, we divided each image slice into 𝑘 disjoint, concentric rings 

𝑅1, … , 𝑅𝑘  with equal area and maximized image cross-correlation with the corresponding rings of 

the next time point while simultaneously applying a rotational and a translational deformation. 

Note that each ring is rotated independently and shifted vertically now, not the image slice as a 

whole. This yields the 2D optimization problem 

(𝛥𝜑
𝑡1→𝑡2(𝑧, 𝑟𝑖), 𝛥𝑧

𝑡1→𝑡2(𝑧, 𝑟𝑖)) = argmax
𝛼∈[𝛼min,𝛼max]

ℎ∈[ℎmin,ℎmax ]

{corr(𝑟𝑜𝑡𝛼(𝐼𝑡1

𝑧,𝑅𝑖), 𝐼𝑡2

𝑧+ℎ, 𝑅𝑖)},   (2) 

where 𝑖 ∈ {1, … , 𝑘},  𝑟𝑖 is the central radius of ring 𝑅𝑖, and 𝐼𝑡
𝑧,𝑅𝑖 denotes ring 𝑖 on the image slice 

at time 𝑡 and height 𝑧. We used 𝑘 = 10 rings and chose the range for the optimization of the 

vertical deformation based on the sizes of the 3D image stacks in 𝑧-direction, 𝑧max
𝑡1  and 𝑧max

𝑡2 , as 

[ℎmin, ℎmax ] = [min{𝑧max
𝑡2 − 𝑧max

𝑡1 , 0}, max{𝑧max
𝑡2 − 𝑧max

𝑡1 , 0}].     (3) 

To speed up calculations, 𝛼 was not optimized over the full range of 360° but was restricted to a 

realistic range, where 𝛼min = −1° and 𝛼max was set to the actual angle of shearing applied to the 

sample between times 𝑡1 and 𝑡2 plus 1°. Using bilinear interpolation in the coordinates 𝑧 and 𝑟𝑖, 

this method can be used to obtain an estimate of the local shear deformation at any location in 

the sample. A similar approach can also be used to measure the rotation of upper and lower 

piston (see Section 4). We will refer to the left-hand sides of Eq. 1 and 2 as 1D and 2D image-

based local shear deformation, respectively. An example for the results of the image-based local 

shear deformation is shown in Fig. 4.  

We used the 2D image-based local shear deformation as prior information for tracking particles 

in shearing steps of 5°. For each particle at time 𝑡1 we computed the hypothetical position where 

it would be expected at time 𝑡2 if it perfectly followed the average movement summarized in the 

image-based local shear deformation. Then, instead of minimizing the sum of squared 

displacements, we minimized the sum of squared distances between hypothetical and actual 

particle positions at time 𝑡2. In both cases, with the simple algorithm for steps of 0.5° and the 

adapted one for steps of 5°, optimization was carried out on a reduced problem as suggested in 

[Cro96], discarding possible assignments if the displacement (or distance between hypothetical 

and actual position) exceeded a predefined threshold. 



 

 

Fig. 4 Image-based local shear deformation in 1D and 2D in the steady state of the experiment. 

The 1D case (left) shows the shear deformation as a function of the height in the sample with 

almost congruent states. The 2D deformation, which is shown for the last time step as an 

example (right), reveals that the shear band geometry is curved close to the wall. (Reprinted 

from [Han17] with permission from Elsevier) 

Using this approach, we computed a particle tracking for all steps starting at 𝜔𝑡 = 3.5°.In 

previous time steps, the distance between upper and lower piston decreased considerably, from 

2.12 mm to 1.93 mm, leading to large vertical displacements of particles. This densification was 

spatially inhomogeneous, even in 𝜑-direction, so that it could not be estimated with the 2D 

image-based local shear deformation and reliable tracks could not be identified. In all other time 

steps, we achieved tracking efficiencies of at least 99.5% for angle increments of 0.5° and at 

least 97% for angle increments of 5°. Here, tracking efficiency is defined as the percentage of 

particles in the segmented image, which were successfully assigned to a particle track. We 

additionally validated our algorithm for tracking in steps of 5° using the first part of the 

experiment, where image data in steps of 0.5° is available. When comparing the results of the 

5°-step tracking (without considering intermediate time points) and the 0.5°-step tracking (using 

all available time points), we could show that more than 98.5% of the identified tracks were 

identical. 

Based on the particle tracking, we first computed absolute particle velocities, measured as the 

distance a particle traveled in a time step per degree of shearing (µm/°). Particle velocities on 

the same height but at two different points in time are visualized in Fig. 5. As clearly visible in 

this figure, the axis of rotation does not always perfectly coincide with the central axis of the 

cylindrical sample chamber. This may be caused by small inaccuracies in the alignment of the 

upper and lower piston and the glass capillary. Since assuming a wrong axis of rotation would 

have led to significant errors in angular velocities, which are of major interest for shear band 

analysis, we estimated the actual axis of rotation from the data. This was achieved by fitting 

circles to particles with approximately the same height and absolute velocity at each time point 

using weighted least squares, and averaging the circle centers estimated at each 𝒛-coordinate. 

Note that the resulting estimated axis of rotation is not necessarily a straight line but may be 



 

curved. Since no rotation occurs at the bottom of the sample, all particles at this height have 

velocities close to zero and fall into the same velocity class, so the estimated axis of rotation will 

automatically be close to the center of the sample chamber in this region. 

   

Fig. 5 Slice of the binary image at two different points in time. Each particle is colored according 

to the distance it travels in the subsequent time step, blue indicates small and red indicates large 

values. In the first time step (left) the center of rotation is slightly above and in the second time 

step (right) it is below and left of the center of the sample. The image centers are marked with a 

red cross. (Reprinted from [Han17] with permission from Elsevier) 

 

2.3 Discrete element method: Contact force models and boundary conditions  

The simulations reported here are done with the discrete element method (DEM) using soft 

spherical particles, i.e. all particle trajectories are calculated by numerically solving Newton’s 

equation of motion. Particles interact via pairwise forces and torques, dictated by the chosen 

contact model, which is a function of the particle diameters (𝑑𝑖 , 𝑑𝑗), their relative position (𝑟𝑖𝑗 =

𝑟𝑖 − 𝑟𝑗), velocity, angular velocity, and their contact history to account for friction. As usual, 

normal (𝐹n = 𝐹⃑𝑖𝑗 ∙ 𝑟𝑖𝑗/ |𝑟𝑖𝑗|) and frictional forces are treated separately [Lud08]. For the normal 

contact force three different models will be discussed in detail below. Coulomb friction, as well 

as rolling and torsional friction (in case of 3D simulations) are implemented with a model similar 

to the one presented in [Lud08]: Each contact mobilization mode (sliding, rolling and twisting) is 

suppressed individually by using a linear spring-dashpot model until a particular threshold is 

exceeded. This threshold as well as the friction force and torque, when a contact is mobilized 

are proportional to the absolute value of normal plus adhesion force |𝐹n + 𝐹adh|.   

 



 

2.3.1 Contact model for 2D caking simulations 

To understand, how the contact accommodation time 𝑡c affects the bulk’s rheology, we use 2D 

simulations and a simple linear spring-dashpot model. Hence, particles experience a viscoelastic 

force, which increases linearly with their overlap 𝜉 = (𝑑𝑖 + 𝑑𝑗)/2 − |𝑟𝑖𝑗| and their relative normal 

velocity 𝜉̇. A contact is assumed to form, when 𝜉 becomes positive, and to last (even for negative 

overlap, see Fig.6 (left)), until the normal force drops below a threshold −𝐹adh(𝑡k), which 

depends on the contact’s age 𝑡k , 

𝐹adh(𝑡k) = 𝐹adh
(max) 4 𝑟eff

〈𝑑〉
(1 − 𝑒−𝑡k 𝑡c⁄ )  . (4) 

While the contact exists, the adhesion force grows from zero to the saturation value 

𝐹adh
(max)

4 𝑟eff 〈𝑑〉⁄ . The parameter 𝑟eff = 1 2⁄ 𝑑𝑖 𝑑𝑗 (𝑑𝑖 + 𝑑𝑗)⁄  denotes the reduced radius, and 〈𝑑〉 

the average particle diameter. 𝐹adh
(max)

 is a given constant. This age dependence of the adhesion 

force is inspired by the formation of solid bridges between particles (see [Tom97, Weu15]). With 

respect to the average  contact time, which in case of quasi-static deformations is approximately 

given by the inverse shear rate 𝛾̇−1 [Weu17], two regimes can be identified. If 𝑡c ≪ 𝛾̇−1, the 

maximum adhesion force acts immediately as soon as the contact is established, defining an 

adhesion dominated flow regime. For 𝑡c ≫ 𝛾̇−1, no significant adhesion force is built up during 

the duration of a contact, and the bulk’s behavior is determined by the preparation procedure 

prior to the shear, defining a cementation dominated regime [Cuc99, Weu13] . The theoretical 

results for the whole range of the dimensionless parameter 𝛾̇𝑡c will be discussed in Section 3. 

These simulations were done for plane shear under constant normal load 𝑃. The coordinate 

system was chosen such that x is the direction of shear and y the direction of normal pressure. 

Periodic boundary conditions were used in x-direction. In order to study shear banding in the 

bulk without perturbations by walls [Rie17,Rog15,Sho12a,Sho12b], Lees-Edwards boundary 

conditions [Cam05] were implemented in y-direction. However, in order to account for the non-

affine nature of quasistatic shear [Fen04,Tig12], we refrained from prescribing a homogeneous 

shear deformation. As we are interested in shear-banding rather than calculating linear transport 

coefficients, we induce the deformation purely by the boundaries in y-direction. Hence, these 

boundaries become well defined layers in space and break translational invariance in y-direction 

(see also [Sod03]). The normal load 𝑃 was regulated to a constant value by a variable system 

height. It responded to a deviation of the stress component 𝜎𝑦𝑦 from the desired value 𝑃 with a 

rate proportional to (𝜎𝑦𝑦 − 𝑃) 𝑃⁄ . The corresponding control constant was set larger than 20 ∙ 𝛾̇ 

to assure constant pressure during shear deformation. Following [MiD04], we used a shear rate 

of 𝛾̇ = 5 ∙ 10−4√𝑃 𝑚⁄  with 𝑚 being the average particle mass, which in the adhesion dominated 

flow regime can be regarded as quasi-static deformation. 

We used the normal load 𝑃, the particle diameter average 〈𝑑〉 and the particle mass density 𝜚 as 

natural units. To avoid crystallization effects, a moderate polydispersity was utilized by evenly 

distributed particle diameters 0.5 ≤ 𝑑/〈𝑑〉 ≤ 1.5. Table 1 summarizes the parameter choice, 

where the same notation as in [Lud08] was used. 

Table 1: Parameters for 2D simulations 



 

Parameter 𝑘n 𝑃⁄  𝛾n

√𝑘n 𝑚eff

 𝑘t, 𝑘r 
𝛾t

√𝑘t 𝑚eff

 𝐹adh
(max)

𝑃〈𝑑〉⁄  𝜇 𝜇r 𝑟eff⁄  

Value 105 1 𝑘n 2⁄  2 10 0.5 0.1 

 

2.3.2 Contact model for micro-sized glass beads 

Micro-sized borosilicate glass particles at room temperature serve as a model material for the 

limit 𝛾̇𝑡c → 0. Experimental results will be analyzed in Section 4. They compare favorably [Tor17] 

with simulations done with the contact model described in the following: 

Due to the spherical shape of the glass particles, modelling demands a Hertzian contact model. 

While literature offers a variety of sophisticated contact models for spherical particles, which 

include elastoplastic response [Tho98, Tom97] or different formulations of the damping term 

[Ant11, Bri96], we intentionally keep the model as well as the parameter choice as simple as 

possible. For the normal part of the contact force, we use the viscoelastic model combined with 

a  non-zero, constant adhesion force 𝐹adh for positive overlap, 

𝐹n(𝜉, 𝜉̇) = (
4 𝐸el √𝑟eff

3
𝜉

3
2 + 𝛾n√𝜉𝜉̇ − 𝐹adh

𝑟eff

〈𝑟eff〉
) 𝛩(𝜉)   , (5) 

with the effective elastic modulus 𝐸el, a viscosity coefficient 𝛾n and the Heaviside function 𝛩(ξ). 

The particle stiffness and adhesion force are set according to the experimentally determined 

values. Tangential stiffness is set to 𝑘t = 2 7⁄ 𝑘n with 𝑘n = 4 3⁄ 𝐸el 𝑥50,2 2⁄  (see [Tor17] for 

details). In the quasi-static deformation regime, viscous forces play a minor role [MiD04], so that 

one is free to enforce a high dissipation rate by setting 𝛾n =  √4 3⁄ 𝐸el 𝑚eff  , where 𝑚eff is the 

reduced mass. The same argument applies to Coulomb friction implemented by damped linear 

springs with a damping constant of 2√𝑘t𝑚eff. The torsion friction coefficient is linked to the 

Coulomb friction coefficient by setting 𝜇tor = 𝑟eff 𝜇, and we employ a load dependent rolling 

friction coefficient 𝜇rol = √2 𝑟eff 𝜉. The Coulomb friction coefficient is calibrated by comparing the 

macroscopic friction coefficient of plane shear simulations under a constant normal load of 𝜎 = 

5 kPa with the experimental findings [Tor17]. 

2.3.3 Elastoplastic contact model for potassium chloride 

Micro-sized KCl particles serve as model material for the limit 𝛾̇𝑡c → ∞. It shows load dependent 

caking on a time scale of 10 – 20 min. For this material we developed a protocol that allows a 

complete calibration (and independent validation) of an elastoplastic contact model, based on 

nanoindentation results and macroscopic shear experiments as described in [Weu15]. Here, just 

a brief explanation of the main concepts will be given.  



 

        

Fig. 6 Left: Normal force of the linear viscoelastic contact model with time dependent adhesion, 

see Section 2.3.1. Collision with adhesive capture (black), or with particle bounce back (red). 

Right: Elastoplastic contact model with time dependent adhesion, see Section 2.3.3, suited for 

potassium chloride (Reprinted with permission from [Weu17]). 

 

Although the KCl particles have facets with rounded edges, they are represented as spheres in 

the simulation. Nanoindentation experiments reveal an approximately piecewise linear relation 

[Weu15] between the contact force and the particle deformation that is represented in the 

simulation model by the overlap 𝜉 between the particles. Fig. 6 (right) depicts the idealized 

normal force between two colliding particles as a function of their overlap. It consists of a loading 

branch, which apart from an initial small elastic part describes plastic deformation at yield stress 

𝜎pl, and an elastic unloading / reloading branch governed by an effective elastic modulus 𝐸el. For 

dimensional reasons, the two linear branches must have the form 

𝐹n(𝜉) = 𝜎pl𝐿pl𝜉              for loading, 

𝐹𝑛(𝜉) = 𝐸e𝑙𝐿e𝑙(𝜉 − 𝜉pl)    for unloading, 

(6) 

where 𝜉pl is the residual plastic deformation after complete unloading. The length scales 𝐿pl and 

𝐿el characterize the geometry, while the stress scales are material constants, and the overlap 

stands for the deformation. For undeformed spheres the only length scale is the radius, hence 

𝐿pl ∝ 𝑟eff. However, the unloading takes place at an irreversibly flattened contact area after 

plastic deformation. Hence, in addition to 𝑟eff, the contact geometry depends also on the 

maximum overlap 𝜉max . Guided by the scaling of the radius of the circular contact area of 

overlapping spheres, we postulate 𝐿el ∝ √𝑟eff𝜉max. Because of the scaling of the unloading 

stiffness with the square root of the maximum overlap, a realistic velocity dependence of the 

restitution coefficient can be expected [Tho17].  

Due to adhesion, the elastic branch persists at tensile forces, as long as the threshold −𝐹adh is 

not exceeded, at which the contact opens abruptly. The threshold combines a cementation as 

well as an adhesive component phenomenologically:  



 

𝐹adh(𝑡k) = 𝜎adh𝐴adh𝑒−𝑡k 𝑡c⁄ +  𝜎cem𝐴cem(1 − 𝑒−𝑡k 𝑡c⁄ )  , (7) 

i.e. contact crystallization leads to a replacement of the adhesive part 𝜎adh𝐴adh by a cementation 

term 𝜎cem𝐴cem on a timescale 𝑡c. We find that the bulk’s load dependence in the adhesive limit is 

best described by 𝐴adh = 𝜒adh𝑟eff
2(1 + 𝜉max 𝑟eff⁄ ) and leave 𝜎adh𝜒adh as a calibration parameter 

[Weu15, Weu17]. The tensile strength in the cementation limit is given by the plastic yield stress 

of KCl and a load dependent contact area 𝐴cem = 𝜒cem 𝑟eff 𝜉max, where 𝜎cem𝜒cem is used as a fit 

parameter.  

The materials yield stress was determined with nanoindentation tests. Furthermore, we assumed 

the unloading and reloading branch to be viscoelastic and included a moderate damping 

coefficient. As in Section2.3.2, torsion friction is linked to Coulomb friction. The influence of 

particle shape was taken into account by a rolling friction coefficient that was determined with 

SEM images and an approach presented in [Est11]. The Coulomb friction coefficient 𝜇, as well 

as the parameters for tensile forces 𝜎adh𝜒adh and 𝜎cem𝜒cem where calibrated by comparing the 

stress response in plane shear experiments and simulations. 

2.3.4 Boundary conditions 

Calibration of the contact models (Sections 2.3.2 and 2.3.3) was done by wall-driven plane shear 

simulations. Specifically, frictional walls structured by vanes (see Fig. 1 (right)) and periodic 

boundaries in the directions perpendicular to y were used. The motion of the upper wall was 

velocity controlled in shear direction and force controlled in y-direction. 

Simulations of the micro-shear tester [Tor17] were done with the same torsional shear cell 

geometry but a slightly smaller diameter (1.78 mm), i.e. a cylinder for particle confinement in 

horizontal direction and two structured pistons (one movable, one fixed) in vertical direction. 

Since we neglect plastic deformation, a small gap of 0.1 mm between the outer edge of the 

piston and the cylinder wall was introduced to avoid jamming of single particles. Particle-wall 

interaction is described by the viscoelastic part of the contact model in Eq. 5, using the same 

material parameters. 

 

3 Rheology of caking granular matter: A 2D simulation study  

Here we answer the fundamental question, how a finite contact accommodation time 𝑡c affects 

rheology. The simulations are performed in 2D with the contact force model described in Section 

2.3.1. The results are compared with theoretical predictions obtained from the principle of 

minimal energy dissipation.  Starting point is always a completely accommodated bulk, i.e. 

𝑡k 𝑡c⁄ → ∞ in Eq. 4. Depending on the dimensionless parameter 𝛾 ̇ 𝑡c, qualitatively different shear 

heterogeneities emerge. As the average contact time is given by the inverse shear rate, 

𝛾 ̇ 𝑡c characterizes the competition between opening and forming of caked contacts. For 𝛾 ̇ 𝑡c ≪ 1, 

we expect the behavior of a normal cohesive granular bulk, while 𝛾 ̇ 𝑡c ≫ 1 defines the 

cementation dominated regime where adhesion forces vanish, when a contact fails, and never 

recover to their former value, because the contacts don’t live long enough. Therefore, shear 

banding in the cementation dominated regime is conceptually similar to fracture. Upon further 



 

shear, the initial crack is expected to widen, grinding up the adjacent caked material. This 

mechanism needs to be understood first, because it is at the core of the rheology of caking 

granular matter. 

Inspired by the sample preparation in common shear tests [Sch03, Sch09], we prepare a well-

defined, reproducible initial state by driving the cohesive bulk, setting 𝑡c = 0, into steady state 

shear [Rot04,Woo90]. This choice avoids over-consolidation and hence the resulting dilatancy 

under shear, for all 𝑡c > 0, as the same normal pressure 𝑃 is applied for preparation and shear 

simulations. Different (average) system heights were implemented at a fixed system width (=

88 〈𝑑〉) in shear direction, in order to check finite size effects for the shear bands. System size is 

given in terms of total particle number 𝑁. 

  

Fig. 7: Portion of caked contacts as a function of shear deformation for 𝛾̇𝑡𝑐 = 80 (left) and as a 

function of 𝛾̇𝑡𝑐 after a total shear deformation of 𝛾̇𝑡 = 30 (inset). Snapshots of the local shear 

rate as a function of y, fitted by Eq. 8 (right). (Reprinted with permission from [Weu17])  

 

Fig. 7 (left) illustrates for 𝛾̇𝑡c = 80 and different system sizes, how  the initially caked 

configuration is ground up in the cementation dominated regime. We call contacts caked, if they 

have existed longer than the accommodation time 𝑡c. Their number decreases roughly 

exponentially within the simulated time span. The two small systems (𝐿𝑦 𝐿𝑥⁄  ≲  1) loose all 

caked contacts and become a homogeneously sheared, weakly cohesive material on a 

timescale 𝛾̇−1. There is a qualitative difference compared to the two larger systems, where the 

timescale of the exponential decay of caked contacts is approximately 𝑡c = 80𝛾̇−1, instead.  

We repeated this kind of simulation many times for a whole range of 𝛾̇𝑡c-values and system 

sizes. Evaluating only those runs, which reached a steady state by the time 𝑡 ≈ 30𝛾̇−1, the 

fraction of contacts with 𝑡k > 𝑡c is shown in the inset of Fig. 7 (left). In the adhesion dominated 

regime (𝛾̇𝑡c ≪ 1), we observe no structural or mechanical change with respect to the initial 

configuration. Thus, the two limits of vanishing and infinite accommodation time tend towards the 

steady states of a cohesive or a non-cohesive bulk, respectively. In the intermediate regime 

between these limiting cases, the sheared system remains partially caked. 



 

We examined this regime more closely by measuring the local shear rate Γ̇(𝑦) = 𝜕v𝑥 𝜕𝑦⁄ , which 

was calculated from the coarse-grained velocity field, averaged in x-direction. Shearing is 

localized between two caked slabs. The shear bands can be fitted by 

𝛤̇(𝑦) = 𝛾̇  
𝐿𝑦

√2𝜋 𝑤sb erf(𝐿𝑦 2√2𝑤sb⁄ )
 𝑒

−
(𝑦−𝑦sb)

2

2𝑤sb     , 
(8) 

as displayed in the right graph of Fig. 7. As the averaged contact time within these shear bands  

is less than 𝑡c, adhesion forces are suppressed, which is why the shear bands turn out to be 

more densely packed than the average bulk [Weu17]. Because of shear weakening due to 

reduced adhesion inside the shear band, its position 𝑦sb, once established randomly, is rather 

stable. Only rare spontaneous jumps of the position were observed. 

In the following we will present a qualitative explanation for these shear heterogeneities based 

on the principle of minimal energy dissipation [Ons31a,Ons31b] which was previously used in 

the context of granular matter for the prediction of shear band 

configurations [Moo13,Ste11,Ung04]. Under the assumption that the work done is fully 

dissipated, the dissipated power density equals the product of shear stress 𝜏 and shear rate 

𝛾̇ [DaC05]. For dense granular flow the shear stress depends on the shear rate in the following 

way: 

𝜏(𝛾̇) =  𝜏min(𝜂) + 𝑏(𝜂) √𝑚 𝑃 𝛾̇  , (9) 

where the threshold 𝜏min(𝜂) as well as the coefficient 𝑏(𝜂) are functions of the dimensionless 

cohesion number 𝜂 = 𝐹adh 𝑃𝑑⁄  [Rog08]. According to Eq. 4 one must consider a local cohesion 

number, which depends on the average lifetime of contacts 

𝜂 = 𝜂max(1 − 𝑒〈𝑡k〉 𝑡c⁄ )  . (10) 

The combination of Eq. 5 and 9 yields to first order in 𝜂 

𝜏(𝛾̇) =  𝜏0 + 𝜏1(1 − 𝑒〈𝑡k〉 𝑡c⁄ ) + (𝑏0 + 𝑏1(1 − 𝑒〈𝑡k〉 𝑡c⁄ )) 𝛾̇  . (11) 

The constants 𝜏0 and 𝜏1 were measured in simulations of the steady state flow of the adhesion 

dominated limit. 𝑏0 and 𝑏1 can be estimated with literature values [Rog08]. To proceed further, 

we switch to the concept of local rheology. By neglecting the time dependence of the local shear 

rate, we assume translational invariance in shear direction and set 〈𝑡k〉 = 〈𝑡k〉(𝑦) = 1/ Γ̇(𝑦), 

hence the contact time of each layer within the bulk is proportional to the inverse local shear 

rate. Combining these equations, we get the dissipation rate 

𝐸̇dis [𝛤̇] = 𝐿𝑥 ∫ 𝜏 (𝛤̇(𝑦), 𝜂(𝛤̇(𝑦), 𝑡𝑐))
𝐿𝑦 2⁄

−𝐿𝑦 2⁄

𝛤̇(𝑦) 𝑑𝑦  , (12) 

as a functional of the local shear rate Γ̇. Inserting Eq. 3 for Γ̇(𝑦), the dissipation rate becomes a 

function of shear band width and accommodation time 𝐸̇dis(𝑤sb, 𝑡c). In the limits 𝑡c → 0 and 𝑡c →

∞ this function can be calculated analytically. For finite 𝑡c the dissipation rate is determined by 



 

numerical integration (Fig. 8, left). In the cementation as well as in the adhesion dominated 

regime, the dissipation rate decreases monotonically as a function of shear band width. Hence, 

the theory predicts 𝑤sb → ∞ as the state of least dissipated power and therefore homogenous 

shear. However, for intermediate values of 𝛾̇𝑡c, a local minimum at finite 𝑤sb exists, and the state 

of least energy dissipation predicts inhomogeneous flow and shear bands. The right graph in 

Fig. 8 shows the measured shear band width (median) as a function of 𝛾̇𝑡c (symbols) as well as 

the predicted 𝑤sb utilizing Eq. 12  for various system sizes 𝐿𝑦. (Shaded areas quantize 

fluctuations when fitting Eq. 8.) As predicted by theory, simulation results confirm shear zones 

with finite 𝑤sb, which increases sub-linearly as a function of 𝛾̇𝑡c. As we argued in the framework 

of a local rheology, it is not surprising, that theory underestimates the measured shear band 

width (see e.g. [MiD04] or [Rie16] for a more detailed discussion). Still the functional 

dependence in the regime 𝛾̇𝑡c ≈ 1 is captured qualitatively correct. Furthermore, within the 

framework of a local rheology, the finite shear-band width is predicted as another length scale 

besides the particle diameter. 

  

Fig. 8: Dissipation rate as a function of shear band width for different 𝛾̇𝑡c (left). Median of 

measured shear band width together with interval between quantiles 0.1-0.9 as shaded 

region, and the theoretical prediction according to Eq. 12 as solid lines (right).  (Reprinted with 

permission from [Weu17]) 

 

4 Complex shear localization in the micro-shear tester  

We analyzed the experiment described at the beginning of Section 2.2 to assess shear induced 

structural heterogeneity as well as shear band formation and evolution over time. This was a 

micro-sized torsional shear experiment with spherical glass particles and a constant normal load. 

As the cohesion forces between particles are small compared to the normal stress 

(𝜂 = 𝐹𝑐 (𝜎𝑥50,3
2 )⁄ ≈ 0.2), they are expected to have only a minor influence. A total shear strain of 

𝜔𝑡 = 39.5° was analyzed based on tomographic images, which were taken in steps of 0.5° 

degrees for the first 9.5° of shearing, and in steps of 5° for the remaining experiment. The results 

summarized in this section were previously published in [Han16,Han17]. 



 

 

Fig. 9 2D density profiles (coarse-graining length 𝑤 = 14.9 µm) of the initial configuration (𝜔𝑡 =

0°; left), a compacted configuration (𝜔𝑡 = 4°; center) and a configuration towards the end of the 

experiment 𝜔𝑡 = 34.5°; right). The black frame in the bottom right corner marks the location of 

the vanes on the lower piston. (Reprinted from [Han17] with permission from Elsevier) 

We first analyzed the spatial structure of the sample and its evolution over time. Particles were 

segmented in all tomographic images as detailed in Section 2.2 and the centers of mass were 

computed based on their voxel representations. Extremely small and extremely large particles 

were excluded since they likely occur due to artifacts or segmentation errors, though the volume 

of excluded particles was less than 0.1% of the sample volume at all time points. Based on the 

extracted centers of mass, we computed the number density, i.e., the expected number of 

particles per cubic millimeter, as a function of height (𝑧) and radial coordinate (𝑟). We coarse-

grained the data with a Gaussian kernel with standard deviation 𝑤 to obtain continuous fields 

and averaged over 𝜑, assuming rotational invariance. Fig. 9 shows the number density profiles 

for the initial configuration, a consolidated configuration and a configuration towards the end of 

the experiment. The profiles reveal that the sample is compressed during the first steps of 

shearing (𝜔𝑡 = 0° to 𝜔𝑡 = 4°) and that the number density is larger in the bottom of the sample 

than on top. The compression and low density at the top of the sample indicate that applying the 

uniaxial normal load after sieving the particles into the sample chamber is not sufficient to 

spread the particles on top out evenly. This process is completed during the first steps of 

shearing. Moreover, Fig. 9 shows that there is an almost cone-shaped, denser zone in the lower 

center of the shear cell. This might also be caused by the preparation procedure, e.g. by 

particles piling on top of each other at the beginning of sieving, which are later compressed by 

other particles on top. However, this interpretation needs further investigation. A dilation can only 

be observed after 𝜔𝑡 = 4° and occurs directly above the lower piston, suggesting that this is the 

location of the shear zone. 



 

In addition, we computed particle tracks, estimated the axis of rotation from the data and 

computed angular velocities of all particles with respect to this estimated axis as described in 

Section 2.2. We also used the 1D image-based local shear deformation (see Section 2.2) to 

accurately measure the movements of upper and lower piston by maximizing image cross-

correlation in slices where the pistons are visible using a very small step size of 0.01°. In 

principle, this movement should be exactly as dictated by the experiment, i.e., 0.5° or 5° per step 

for the upper piston and no movement for the lower piston. However, we measured deviations 

from this ideal, mostly at the lower piston. The mean absolute differences between target and 

actual movements were 0.02° and 0.19° at the upper and lower piston, respectively. The reason 

for this deviation in rotational movement probably lies in the experimental setup. The 

compensation unit tracks shear stress and is supposed to keep the lower piston in place, but 

particles interlocked between piston and wall might counteract this mechanism so that the lower 

piston gets partially dragged along. This problem could be solved by increasing the gap between 

lower piston and wall, yet this would simultaneously lead to more loss of sample material, which 

might be pushed out of the sample chamber through the gap. Moreover, only the rotation of the 

upper piston and glass capillary can be controlled in the micro shear-tester. Rotations of the 

lower piston can unfortunately not be observed with an accuracy of 0.01° during shear 

deformation. To ensure comparability of angular velocities between time steps, we normalized 

them to the interval of [0,1] based on the movements of upper and lower piston measured in the 

image data. 

We found that for a fixed radial distance from the axis of rotation, the normalized angular velocity 

profiles could well be described by the parametric function 

𝑣𝜑(𝑧) =
1

2
+

1

2
erf (

𝑧−𝑧𝑠𝑏

𝑤𝑠𝑏
),          (13) 

where erf denotes the error function. The fitting parameters, 𝑧𝑠𝑏 and 𝑤𝑠𝑏, can be determined with 

the least squares method and offer a quantitative description of the vertical location and width of 

the shear band (as a function of the radial coordinate). The parametric function given in Eq. 13  

has previously been used in [Fen04] to describe a symmetric shear zone and is attractive 

because of its simplicity. We defined the shear band as the interval 𝑧𝑠𝑏±𝑤𝑠𝑏, which covers 

roughly 84% of the velocity range in the data. Different choices to define shear band width would 

be possible, yet since we mainly want to quantitatively compare the experimental shear band 

characteristics between different time points, we stick to this simple choice. Fig. 10 shows 

examples of actual and fitted 1D velocity profiles for different radial coordinates and the time-

averaged, coarse-grained (𝑤 = 14.9 µm) 2D velocity profile after 𝜔𝑡 = 10° with fitted shear band. 



 

    

Fig. 10 Example of actual and fitted velocity profiles for one time step (29.5° to 34.5° of 

shearing) and different distances from the axis of rotation (left), and 2D velocity profile after 

𝜔𝑡 =  10° with the fitted shear band indicated in black as 𝑧𝑠𝑏±𝑤𝑠𝑏 (right). (Reprinted from 

[Han17] with permission from Elsevier) 

The velocity profiles show that shear strain localizes directly above the lower piston, as was 

already indicated by the number density. Its center is at an average height of 𝑧 = 0.12 mm. The 

2D profile additionally reveals that the shear band is slightly wider in the center of the shear cell 

and curved downwards near the cylinder wall. The latter is probably due to the fact that the outer 

cylinder wall rotates together with the upper piston, and particles close to it are more easily 

dragged along and achieve higher angular velocities than particles in the center. We observe an 

average shear band width of 2𝑤𝑠𝑏 = 250 µm, which corresponds to roughly 8 median particle 

diameters and agrees well with values reported in literature [Gou07,Guo12,Nem01,Str14b]. 

Using the parametric shear band representation, we analyzed the development of shear band 

width and location over time. A plot of 𝑧𝑠𝑏 and 𝑤𝑠𝑏 over time (averaged over the radial 

coordinate) is shown in Fig. 11. Shear band location and width fluctuate strongly at the 

beginning of the experiment, until a steady state seems to be reached at 𝜔𝑡 ≈ 10°. Lower 

fluctuations are expected after this point, since we implicitly average over much larger time 

intervals (5° instead of 0.5° per step). In the initial phase of the experiment, the shear band is 

(on average) wider and rises from 𝑧𝑠𝑏 ≈ 0.15 mm to 𝑧𝑠𝑏 ≈ 0.37 mm before dropping back to its 

position right above the lower piston. Even in the more steady period after 𝜔𝑡 ≈ 10° the shear 

band width fluctuates perceptibly, taking values between 𝑤𝑠𝑏 ≈ 0.8 mm to 𝑤𝑠𝑏 ≈ 0.16 mm. There 

could be a second drop in variability at 𝜔𝑡 ≈ 25° but with the present data we cannot judge if the 

steady state is actually only reached at this point or if the second drop is merely a coincidence. 

Therefore, based on our analysis, we assume that the steady state is reached at 𝜔𝑡 ≈ 10°. 



 

 

Fig. 11 Development of the fitted shear band width and location over time, averaged over the 

radial coordinate. (Reprinted from [Han17] with permission from Elsevier) 

 

5 Conclusion and Outlook 

The interplay between particle contact properties, bulk structure and mechanical behaviour of 

fine, adhesive granular matter is of wide interest. In particular, time consolidation effects, i.e. 

time dependent adhesion, are far from being well understood, although they are of eminent 

importance for the handling of powders after storage. This chapter reviewed some recent 

progress in this respect.  

Recording as much experimental information as possible on the particle motion during a shear 

experiment is vital for gaining insight into the relationship between bulk structure and mechanical 

behaviour. Ideally, observing the trajectory of every single particle offers information on local 

densification, loosening or formation of failure areas. Before we started our project this was only 

possible virtually by discrete element method (DEM) simulations.  

We came very close to this ideal by developing a novel micro torsional shear tester which 

enables to measure yield loci of extremely small powder samples in the range of only 10 µl with 

high accuracy in force and displacement measurements and which can be integrated into a high 

resolution X-ray tomography device (µCT). Moreover, we developed the necessary statistical 

analysis methods which allow the extraction of the trajectories of almost all particles. The 

processing of time-resolved data makes it possible to localize and track particles despite large 

angle increments of up to 5° between tomographic measurements. 

With this device and analysis tool stepwise compression and shear of powder samples were 

monitored in detail using particles in the size range between 10 and 100 µm. In this chapter we 

reported results for two powder materials, borosilicate glass spheres and potassium chloride 

particles. The reason for this choice of model materials was that they represent very different 

particle contact properties, validated by simulations with the discrete element method (DEM). 

Contacts between the glass spheres could be described by a viscoelastic Hertz model shifted by 



 

a constant adhesion force. Using a geometry comparable to the shear tester, the width and 

position of shear bands and the radial and axial particle density distribution could be reproduced.  

Potassium chloride, on the other hand can be described by an elastoplastic model with a time 

dependent adhesion force that approaches a load dependent maximal value on a time scale of 

𝑡c ≈ 15  min, called accommodation time. A method to calibrate the DEM model was developed 

and proved. It is based on nanoindentation and shear tests. (This calibration strategy can also 

be applied to adhesion dominated materials, where 𝑡c ≈ 0 . ) After calibration, the simulation 

model could be independently validated. 

For potassium chloride, accommodation happens very slowly compared to typical inverse shear 

rates, for the glass beads very fast. In this sense, the model materials represent extreme cases 

of cementation dominated, respectively adhesion dominated powders. In general, adhesive 

materials, when sheared, are expected to show behaviour in between these extreme cases. A 

systematic theoretical prediction of shear banding for finite accommodation times, and its 

qualitative support by DEM simulations has been given. The theory is based on the principle of 

minimal dissipation power and takes the shear weakening into account, which originates from 

the fact, that the average adhesion force reached during the lifetime of a particle contact 

decreases with increasing 𝛾̇𝑡c. Starting from a completely accommodated bulk, this leads to 

stable shear bands of finite width that increases with 𝛾̇𝑡c. Compared to the values obtained from 

simulation, the theory underestimates the shear band width. A possible reason is that the theory 

is based on local rheology. Creep effects are not taken into account. A nonlocal extension of the 

theory would be a promising future project. 
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