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To correlate the mechanical properties of granularporous materials with their microstruc-
ture, typically porosity is being considered as the dominant parameter. In this work, we
suggest the average coordination number, i.e. the average number of connections that
each grain of the porous material has to its neighboring grains, as additional - and pos-
sibly even more fundamental - microstructural parameter. In this work, a combination
of stochastic and mechanical modeling is applied to study microstructural influences
on the elastic properties of porous ceramics. This is accomplished by generating quasi
two-dimensional (2D) and fully three-dimensional (3D) representative volume elements
(RVE) with tailored microstructural features by a parametric stochastic microstructure
model. In the next step, the elastic properties of the RVEs are characterized by finite
element analysis. The results reveal that the average coordination number exhibits a
very strong correlation with the Young’s modulus of the material in both, 2D and 3D
RVEs. Moreover, it is seen that quasi-2D RVEs with the same average coordination num-
ber, but largely different porosities, only differ very slightly in their elastic properties
such that the correlation is almost unique. This finding is substantiated and discussed
in terms of the load distribution in microstructures with different porosities and average
coordination numbers.

Keywords: Microstructure-property relation; Stochastic modeling; Porous ceramic.

1. Introduction

Ceramic materials, like alumina or zirkonia, exhibit interesting properties such as

thermal and chemical resistance, high hardness, low electrical conductivity and good

wear resistance. Because of these positive aspects ceramic materials are of interest

for different technical applications e.g. vehicle disc brakes, coatings of turbine blades,

filters, membranes, insulators or biomedical implants. In particular, applications like
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filters and heat insulators require a certain porosity of the material. However, small

defects like pores dramatically decrease the strength of the material due to the

brittleness of ceramics. Nevertheless, porous ceramics are used as matrix materials

in fiber-reinforced ceramic composites (Göring et al., 2007; Schmücker et al., 2003)

and are analyzed both in experiments (Nanjangud et al., 1995; Zok and Levi, 2001;

Mattoni et al., 2001) and in computational materials science (Sadowski and Sam-

borski, 2003; Smolin et al., 2014). For example it has been found by Sadowski and

Samborski (2003) that the Young’s modulus also depends on whether or not pores

are interacting.

Especially in experimental work, porosity is typically considered as the main

parameter of interest. The results of several studies showed that porosity directly

affects the mechanical properties. In Nanjangud et al. (1995) a correlation between

the green densities of different specimens and the Young’s modulus of ceramics was

found, whereas in Zok and Levi (2001) and in Mattoni et al. (2001) the focus was put

on the relationship between porosity of the matrix phase and macroscopic behavior

of ceramic based composites. These investigations showed that elastic constants, as

the Young’s modulus, correlate with porosity. While a linear relationship between

porosity and Young’s modulus for porosities from 0 % to 25 % was found in Asmani

et al. (2001) and Gatt et al. (2005), a quadratic relationship for porosities greater

than 55% was found with a decreasing slope towards high porosities, see Magdeski

(2010). Moreover, the relationship between porosity, mechanical properties and frac-

ture toughness of ceramics is an ongoing discussion in the literature (Rice, 1984;

Wiederhorn, 1984; Wagh et al., 1993; Jauffres et al., 2011).

All experimental studies mentioned above investigate the relationship between

porosity and the mechanical properties of ceramics and ceramic composites, respec-

tively. However, by Roberts and Garboczi (2000) it was pointed out that mechan-

ical properties of ceramics depend not only on porosity, but also on pore shape

of the microstructure. Different scenarios of virtual pore microstructures varying

porosity and pore shape were simulated, more precisely, pores consisted of solid

spheres, overlapping spherical particles or overlapping ellipsoids. For these virtual

microstructures, the Poisson ratio and Young’s modulus were computed by means

of the finite element method (FEM). The results obtained by Roberts and Garboczi

(2000) show that for a fixed porosity, variation of pore shape leads to different values

of the computed mechanical properties. Further simulation work has also been con-

ducted for foams, where for example the influence of structural disorder (Roschning

and Huber, 2016) or the scaling with ligament size (Diebels and Steeb, 2002) has

been studied.

This result gives rise to the assumption that there are further microstructural

parameters than porosity, which are relevant for the mechanical properties of ceram-

ics. In the present paper, a parametric stochastic microstructure model (PSMM)

is used for generating representative volume elements (RVEs) of virtual granular

porous microstructures. When generating the RVEs, the idea is that assemblies of
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overlapping spherical grains provide a good geometric representation of a wide class

of sintered ceramics. Porosity as well as average coordination number of sintered

grains can be systematically varied by parameters of the stochastic model. The

quasi-2D microstructures considered in this work are clearly not representative of

real materials. However, we found that the possibility they offer to study larger

systems makes them quite attractive such that it is of some interest to study the

differences between 2D and 3D structures. In fact, our results reveal that some of

the properties of quasi-2D microstructures are comparable to realistic 3D struc-

tures, while others are not, as will be discussed in detail later. In a further step,

FEM is used to simulate mechanical loading of the structures. Using homogeniza-

tion techniques, the stiffness tensor and hence the homogenized Young’s modulus

are calculated. This makes it possible to analyze the influence of microstructural

parameters on mechanical properties of sintered porous ceramics.

It is noted here, that the term RVE is used in the sense that the considered

volume elements are representative for all microstructures generated with the same

parameters. We verified that using larger volumes does not reduce the scatter in the

calculated properties significantly. Hence, the considered RVEs are large enough to

represent a given set of microstructural parameters. However, we do not claim that

the considered RVEs represent the properties of a specific material.

The present paper is organized as follows. In Section 2, the PSMM and the sim-

ulation of mechanical loading by FEM are described. In Section 3, the results of the

performed simulations are presented and the relationship between microstructural

parameters and mechanical properties is discussed. Finally, Section 4 concludes the

paper.

2. Methods

In this section the method to generate representative volume elements describing the

microstructures of porous sinter ceramics is described. Subsequently, the meshing

of the RVEs is explained which enables the study of the mechanical response of

different microstructures with FEM. Periodic boundary conditions are applied to

the RVE and homogenization of the results yields effective elastic properties of the

different microstructures.

Since the microstructure of porous ceramics is considered here as a network of

overlapping spherical grains, the connectivity in this network is quantified by the

average coordination number of the grains. Throughout the present paper, the coor-

dination number NC of an individual grain is defined as the number of neighboring

grains that exhibit an overlap with the grain under consideration (German, 2014).

The average coordination number ÑC is consequently defined as the average value

of the coordination numbers of all grains in the RVE.
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2.1. Microstructure generation

To generate RVEs with varying porosity and connectivity, a parametric stochastic

microstructure model (PSMM) is developed based on ideas of stochastic geometry

(Chiu et al., 2013). By the aid of the PSMM virtual 2D and 3D microstructures

consisting of ceramic and pore phase are generated. The ceramic phase is modeled

as a union of moderately overlapping spheres with equal radii. The midpoints of

the spheres are arranged such that the resulting network of overlapping spheres is

completely connected. Moreover, the model allows us to control porosity, the degree

of pairwise overlapping of spheres, which is formally defined in Equation (1), and

the average coordination number. In the following a brief description of the PSMM

is given.

The main idea of the PSMM is to generate an initial sphere system at first

and then to rearrange the midpoints of the initial sphere system iteratively. The

rearrangement is organized such that the resulting sphere system is completely

connected with probability 1 while a certain criterion of pairwise overlapping be-

tween spheres is minimized. The PSMM is defined within an observation window

[0, w]d, w > 0 and d ≥ 2. For the application considered in the present paper, d = 2

and d = 3 are the relevant cases.

Sphere systems with constant radius r = 0.04µm are considered. The midpoints

of the initial sphere system, denoted by {Si}Ni=1, are modeled by a homogeneous

Poisson point process (Chiu et al., 2013) in the sampling window W with intensity

λ > 0. This means that the random number of spheres N is Poisson distributed

with parameter λνd(W ) and under the condition that the system consists of N = n

spheres, the locations of their midpoints S1, . . . , Sn are distributed completely at

random in W . Here νd(W ) = wd denotes the d-dimensional volume of W . The

porosity of the resulting RVE can be controlled by λ. Note that the sphere system

in W is defined with respect to periodic boundary conditions, see Figure 1. This

means that if a sphere sticks out of W at one side, the part of the sphere sticking

out of W is included on the opposite side of W, see the right-hand side of Figure 1.

For the rearrangement of sphere midpoints, a definition of the criterion of pair-

wise overlap COρ is needed. Therefore, the degree of overlap Oi,j between two

spheres Si and Sj is introduced by Oi,j = 2− δ(Si, Sj)/r, where δ(·, ·) denotes the

distance in W with respect to periodic boundary conditions. For a model parameter

ρ ∈ [0, 1], the criterion of pairwise overlap is then defined by

COρ =

n∑
i=1

n∑
j=i+1

(Oi,j − ρ)1{ρ < Oi,j} (1)

which is the sum over all degrees of overlaps corresponding to point pairs with an

degree of overlap greater than ρ. Here 1{·} denotes the indicator function.

The initial sphere system is rearranged in order to obtain a completely connected

sphere system, in which Oi,j is close to ρ for each pair of overlapping spheres Si
and Sj . During the iterative rearrangement of the sphere system, repulsion and
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Fig. 1. Sketch of periodicity of RVEs generated by the PSMM: Left: Periodic extension of sphere
system in Euclidean plane. Right: The midpoints of spheres {S1, . . . , S5} are located in W and
periodic boundary conditions are applied to the sphere system. The spheres with midpoints S1

and S4 represented in black and orange, respectively, overlap with the boundary of W . Thus, for
both spheres, the parts that stick out of W at one side are included on the opposite side.

attraction of midpoints is applied alternately according to a modified version of the

avoidance algorithm presented by Hirsch et al. (2015), which goes back to the force-

biased algorithm introduced by Mosćiński et al. (1989). For attraction of sphere

midpoints a parametric random graph G is modeled such that midpoints connected

by an edge in the graph are attracted to each other. A formal definition of the model

graph G and a detailed description of the rearrangement algorithm is given in the

Appendix.

Using the PSMM virtual RVEs in 2D and 3D with various constellations of

porosity and average coordination number are generated, while the parameter ρ

controlling pairwise overlap is fix with ρ = 0.2. Virtual RVEs generated by the

PSMM are visualized in Figures 11, 12 and 13 for the 2D case and in Figure 8 for the

3D case. The influence of microstructure characteristics on mechanical properties

for these virtual sphere systems is discussed in Section 3.

2.2. Assessment and homogenization of elastic properties

The microstructures generated by the PSMM described above have to be meshed

appropriately such that they can be used as RVEs for finite element (FE) simula-

tions. To accomplish this, the domain of the RVEs (Figure 2) is partitioned into

500× 500 quadratic subdomains with an edge length of 8 nm. A careful mesh sen-

sitivity analysis revealed that the maximum difference of the Young’s modulus to

simulations with a 1000 × 1000 mesh is below 10%, whereas coarsening the mesh

to a 375 × 375 grid results in deviations of more than 25%. Then, a subdomain

is considered as part of the ceramic phase if its center is located within a ceramic

grain. Only in this case a finite element of the size of the subdomain is created,

while otherwise the subdomain is considered as part of a pore and no element is

created. This procedure results in a regular mesh of the considered RVE (Figure 2

(c)). Note that this results in a quasi-2D mesh, where the extension of the model
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in z-direction is only one element wide and thussmall compared to the x- and y-

dimension of the model. Throughout the present paper isotropic linear elastic ma-

terial behavior is assumed for the ceramic phase. The Young’s modulus of the dense

ceramic phase amounts to E0 = 360 GPa and the Poisson ratio is ν = 0.3. To assess

the elastic stiffness tensor of the RVE small strains of ε = 0.1% are applied to the

box and the resulting global stresses are calculated by assuming periodic boundary

conditions as described below. The FE calculations have been performed using the

commercial software product Abaqus (ABAQUS, 2012) using hexagonal elements

of type C3D8, with linear shape functions and full integration. This implies that

the numerical solution of the problem is 3D in nature.

Fig. 2. Schematic of the meshing of a RVE, demonstrated on a slice through a 3D RVE: (a)
structure with overlapping spheres generated by the stochastic model; (b) partitioning of the
sampling window into subdomains; (c) creation of finite elements representing the ceramic phase.
Note that the quasi-2D RVEs are discretized into 500 × 500 elements, to provide a reasonable
resolution of the microstructures.

The use of RVEs in material simulations usually yields best results if periodic

boundary conditions (PBCs) are applied, because free boundary conditions tend

to cause a too compliant response, whereas fixed boundary conditions oftentimes

result in a too stiff response. The concept is based on the work by Smit et al.

(1998), covering the pure 2D case. The basis is that two opposite boundaries must be

compatible in their deformation such that they always possess the same shape while

the stresses are of opposite sign. Thus the displacement field is periodic leading to

a continuous stress field over the RVE boundaries, see Smit et al. (1998). To satisfy

these conditions, the degrees of freedom of equivalent nodes on opposite boundaries

have to be coupled. This is done by equating the displacements of such nodes with

the global strain, thus

uRx − uLx = εxx · lx (2)

for the x-direction and

uTy − uBy = εyy · ly (3)
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for the y-direction, where uRx is the x-displacement of the right-hand-side node, uLx
the x-displacement of the left-hand-side node, uBy the y-displacement of the bottom

node and uTy the y-displacement of the top node. The global elastic strain tensor

is denoted by ε and lx and ly are the extensions of the simulation domain in the

respective directions. To achieve a full periodicity of the RVE, these relations have

to be valid for every pair of nodes on opposite boundaries. To extend the concept of

PBCs into the third dimension, it is necessary to formulate an equivalent relation

for the degrees of freedom in the z-direction of the boundaries nodes, i.e.

uFz − uRz = εzz · lz (4)

where uFz is the z-displacement of the front node and uRz the z-displacement of the

rear node. In this way, both the quasi-2D as well as the 3D structures are fully

periodic in all three Cartesian dimensions.

By applying such PBCs to the RVE it becomes possible to calculate the average

Cauchy stress tensor σRV E as the volume integral over the local Cauchy stresses σ

normalized by the total volume of the RVE in the current configuration VRVE, such

that

σRVE =
1

VRVE

∫
p∈VRVE

σ(p)dV (5)

is obtained (Smit et al., 1998). For the quasi-2D case with an RVE of unit thickness,

Equation (5) can be rewritten as

σRVE =
1

VRVE
sym

[(
xV 4 − xV 1

)
⊗ fV 4 +

(
xV 2 − xV 1

)
⊗ fV 2

]
(6)

where x is the position vectors of the node given in the superscript and f is the force

vector of the corresponding corner node. The function sym(A) = 1/2
(
A + A>

)
represents the symmetric part of a second-order tensor A, and the symbol ⊗ repre-

sents the dyadic tensor product of two vectors as A = a⊗b or Aij = aibj , in index

notation. See Figure 3 for the definitions of the corner nodes.

In Figure 3 a three dimensional cell is shown, where the front face with nodes

V 1−V 4 corresponds to the definition in Equation (6). Dependent and independent

nodes are highlighted by different greyscales. Boundary conditions are only applied

on the independent nodes. With these definitions, Equation (6) can be extended to

the 3D case in the following way:

σRVE =
1

VRVE
sym

[(
xV 4 − xV 1

)
⊗ fV 4 +

(
xV 2 − xV 1

)
⊗ fV 2 +

(
xH1 − xV 1

)
⊗ fH1

]
.

(7)

Using this approach it is possible to homogenize the 4-rank elastic stiffness tensor C,

defined by Hooke’s law σ = C ε. The RVE does not obey any particular symmetry

relation, such that the stiffness tensor has 21 independent components, cf. Figure 4

where the stiffness tensor is represented in the Voigt notation. These independent

components are calculated by applying six different load cases to the RVE in such
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Fig. 3. Periodic cell with corner node definitions; independent nodes are marked in light grey,
whereas dependent nodes are marked in dark grey.

a way that five of the six independent components of the strain tensor are zero.

Hence uniaxial tensile strain in x, y and z-directions as well as pure shear strain in

xy, yz and xz-shearing directions is applied, see Figure 4. With each load case it

is possible to determine one column of the Voigt stiffness matrix that can then be

transformed in the 4-rank stiffness tensor. Note that the Voigt stiffness matrix must

be symmetric, which is however not enforced by our method, such that the validity

of this condition provides a measure for the accuracy of the numerical procedure.

Fig. 4. Six different load cases which are used to determine the elastic stiffness matrix given in
the Voigt notation here. Note that the stiffness tensor is symmetric.

Using the relation

E =
1

S1111
. (8)

between the Young’s modulus E and the compliance tensor S = C−1, it is possible

to calculate the Young’s modulus of the quasi-2D RVE. Due to the finite size of

the RVE, this procedure might result in a Young’s modulus that is anisotropic,

i.e. that depends on the choice of the loading direction. To remove this anisotropy,

the Young’s modulus of the quasi-2D RVE is calculated by rotating the stiffness
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tensor with a step size of 1 degree before Equation (8) is applied and averaging over

all resulting values is performed. This average value of E represents the Young’s

modulus of a quasi-isotropic material. Equation (8) can also be used for 3D RVEs.

Using the described rotation with respect to all three axes within the 3D space,

can lead to the problem, that not every possible combination of angles might be

covered. In order to avoid this, an integral method, utilizing the Haar measure as

shown in Hackl (1999), is applied to calculate an isotropic mean stiffness tensor and

subsequent calculate the Young’s modulus and the Poisson’s ratio.

3. Results and Discussion

In this section, the influence of microstructural parameters, such as porosity fp and

the average coordination number ÑC , on mechanical properties of porous structures

is evaluated. This is accomplished by calculating the normalized Young’s modulus

E/E0 of each structure and comparing it to both microstructural parameters. We

start with introducing the average coordination number as microstructural param-

eter. The importance of this parameter is best motivated on quasi-2D microstruc-

tures, where it is shown that the mechanical properties depend on this parameter in

a unique way. After that it is demonstrated that the average coordination number

describes the properties of fully 3D RVEs in the same way as that of 2D struc-

tures. Finally, the physical importance of this parameter is demonstrated by closely

analyzing the load transfer paths through the porous structures.

3.1. Average coordination number

To motivate the introduction of the average coordination number as further mi-

crostructural parameter to describe mechanical properties of porous structures, we

start by analyzing the dependence of the elastic properties on the porosity of quasi-

2D microstructures. In Figure 5 it is shown that E/E0 exhibits a generally decreas-

ing trend for increasing porosity fp, which is in good qualitative agreement with

findings for porous ceramics (Smolin et al., 2014; Yoshimura et al., 2007), while a

similar trend can be observed for other mechanical properties, as the bulk modulus

(Munro, 2001). However, over the complete range of fp a strong scattering of the

values of E/E0 for a constant porosity is observed for the quasi-2D models. This

indicates that at least in 2D there must be further microstructural parameters be-

sides the porosity that possess a very pronounced influence on the stiffness of the

porous material.

In a first step to introduce such a new microstructural parameter, the values

of ÑC obtained for the different microstructures investigated here are sub-divided

into three categories as indicated in Figure 5. The subdivision is done according to

a normalization of ÑC with respect to its highest (Ñmax
C ) and lowest (Ñmin

C ) value
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Fig. 5. Normalized Young’s modulus E/E0 of all generated RVEs plotted over their porosity fp.
The different symbols represent different classes of the normalized average coordination number
Ñnorm

C , as given in the legend and defined in the text. The solid lines are mere visual aids to
indicate the upper and lower limits of the values obtained.

appearing in the investigated microstructures, as

Ñnorm
C =

ÑC − Ñmin
C

Ñmax
C − Ñmin

C

. (9)

It can be seen that E/E0 separates into three distinct regions that can be correlated

with the three classes of Ñnorm
C . The highest class 2/3 ≤ Ñnorm

C ≤ 1 can be directly

linked to E/E0 ≥ 0.2 (except for one value). This separation can be also observed

for 1/3 ≤ Ñnorm
C ≤ 2/3 and 0 ≤ Ñnorm

C ≤ 1/3. The different classes can be related

to the values in the middle and to the lowest values of E/E0, respectively.

The correlation between ÑC and fp is visualized in Figure 6, where a general

decrease of ÑC with increasing fp is seen. This is in agreement with findings reported

in the literature that there is in fact some correlation between ÑC and fp, see e.g.

(German, 2014; Arzt, 1982; Luding et al., 2005; Liu et al., 2010). The average

coordination number ÑC increases during densification of a porous microstructure,

which agrees with the data provided in Figure 6. However, it has also been found

that there is a strong scattering, in particular for values fp ≥ 0.25, such that the

correlation merely reflects a trend in the values, but no strict functional dependence.

The observations that (i) porosity does not uniquely characterize elastic properties

of porous materials, see also Cyterman (1987), and that (ii) different classes of

correlation numbers ÑC correspond to different classes of stiffness provide a first

motivation for the hypothesis that the stiffness should be strongly correlated with

the average coordination number. Hence, the average coordination number, which

is known in relation to aggregates, see Jefferson (2002), is proposed here as a new
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Fig. 6. Plot of the average coordination number ÑC versus porosity fp. The solid lines are mere
visual aids to indicate the upper and lower limits of the values obtained.

microstructural parameter in terms of the description of the elastic properties of

solid porous materials. This parameter is a measure for the average number of

sintered, i.e. in the present paper overlapping, neighboring grains (German, 2014)

and it appears to be natural to assume that a higher amount of overlaps will lead

to better load transmission within the structure and thus to a higher stiffness.

3.2. Influence of the average coordination number on elastic

properties

In the following the influence of the average coordination number ÑC on the elastic

properties of the porous microstructure is assessed further to verify whether it can

account for the scattering of E/E0 at constant porosities. To accomplish this, the

normalized stiffnesses of the porous microstructures are plotted against their average

coordination numbers in Figure 7. It is seen immediately that there exists a much

closer correlation between stiffness and coordination number than between stiffness

and porosity. In fact, there is only a rather small scattering of the stiffness for given

coordination numbers, where it is found that higher porosities lead to slightly more

compliant material behavior. The quantitative relationship between E/E0 and ÑC
is visualized as a fit line in Figure 7. The quadratic fit function follows the relation

E

E0
= m1ÑC +m2Ñ

2
C + b , (10)

where m1, m2 and b are the linear and quadratic prefactors and the axis offset,

respectively. The estimated fit parameters are listed in Table 1. For small values

of ÑC non-linear effects occur, which arise due to the enforced global connectivity
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Fig. 7. Normalized Young’s modulus E/E0 of porous microstructures plotted over their average
coordination number ÑC . Data is subdivided into the three classes of porosities (fp) provided in
the legend. All other data points (indicated as ’Rest’) do not belong to a specific porosity class.
The dashed line represents the quadratic fit to the data points as described in the text.

of the microstructures, giving a bias towards the selection of microstructures with

higher stiffnesses at high porosities. Considering RVEs with porosities in the ranges

0.18 - 0.22, 0.28 - 0.32 and 0.38 - 0.42 separately, it is observed that microstructures

with the lowest porosities exhibit the highest values for E/E0 and ÑC , whereas

structures with higher porosities possess less stiffness, see Figure 7. Thus, it can

be said that for the 2D models, the average coordination number is the most fun-

damental parameter to describe their elastic properties, whereas the porosity is a

correction on top of that parameter.

Table 1: Estimated parameters of the quadratic regression model given in Equation

(10) and visualized in Figures 7 and 10.

Figure m1 m2 b

7 -0.482 0.119 0.482

10 -0.367 0.037 1.088

The fit of the quadratic model shows that there is a very strong correlation

between ÑC and E/E0, in contrast to the much larger scattering occurring when

E/E0 is related to fp. The relation between the average coordination number and

the stiffness of a microstructure is almost unique, because the porosity fp influences
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the stiffness E/E0 at constant values of the average coordination number ÑC only

slightly. In summary we find that our results are consistent with the hypothesis that

the average coordination number is the main microstructural parameter influencing

the stiffness of a porous sinter ceramic. We note here, that the presented quadratic

relations are mere fit functions, whose purpose it is to clearly demonstrate the strong

and unique correlation between elastic properties of a granular porous material and

its average coordination number. It will be the scope of future work to develop a

proper theoretical description of such a relationship.

3.3. Fully 3D representative volume elements

In the following the results for fully 3D RVEs are presented and discussed. One of

the 3D RVEs is shown in Figure 8, where the microstructure and the maximum

principle stresses for tensile loading along the three Cartesian axes are presented.

In Figure 9, it can be seen that E/E0 reaches to higher values in the 3D case.

Fig. 8. Microstructure of one 3D RVE (top left) and maximum principle stresses for tensile
loading along the x, y and z-axis in subfigures (a), (b), and (c), respectively.

Furthermore, in contrast to the 2D case, E/E0 and fp are strongly and also rather

uniquely correlated. It will be shown later that this can be attributed to the limited
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number of paths through which forces can be transferred through 2D structures,

whereas in 3D there is always a plenty of load transfer paths. However, also in

3D the correlation between stiffness and average coordination number ÑC is still

strong as can be seen in Figure 10. Furthermore, also in the 3D case, a quadratic

fit describes the results very well, see Table 2 for the fitted parameters.

Fig. 9. Normalized Young’s modulus E/E0 of porous microstructures plotted over their porosity
fp. Note that the presented values have been computed for 3D RVEs.
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Fig. 10. Normalized Young’s modulus E/E0 of porous microstructures plotted over their average
coordination number ÑC . Note that the presented values have been computed for 3D RVEs.
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From the comparison of 2D and 3D results it can be stated that the parameter of

the average coordination number ÑC describes both types of results with the same

strong correlation and limits the scattering of data even for the 2D case, where there

is no good correlation between the porosity and the stiffness of the material. Hence,

it can be stated that ÑC seems to be the more fundamental parameter to describe

the mechanical properties of porous materials.

Table 2: ÑC ,fp and E/E0 of the structures shown in Figures 11 to 13. Note that

E/E0 refers to the homogenized value for E, as described above.

Figure Structure ÑC fp E/E0

11 A 2.46 0.342 0.007

12 B 3.84 0.172 0.270

13 C 3.31 0.352 0.170

3.4. Load transfer paths

A further motivation for the introduction of the average coordination number as

an essential microstructural parameter with an immediate physical meaning can

be drawn from taking a closer look on the way the applied force is transmitted

through the 2D porous microstructure. Figure 11 (structure A) shows the plot of

the maximum principle stresses for a simulated microstructure after deformation

to a tensile strain of 0.1% in x-direction. The microstructure has a porosity fp
= 0.342 and its average coordination number is ÑC = 2.46, which is the lowest

value of all RVEs considered in the present paper. It clearly exhibits well-defined

load paths along which the forces are transmitted and which hence indicate the

most favorable way for the load distribution within the microstructure. The highest

stresses occur at the sinter necks, which represent the smallest cross-sectional area

of two overlapping particles.

The porosity of structure B (Figure 12) is 0.172, which is about half the value

of structure A. The average coordination number is the largest of all structures

investigated here and amounts to ÑC = 3.84, such that grains on average exhibit

a higher number of overlaps. Thus, a larger number of force transmission paths

through the material exists. Moreover, the overall stress level at the same tensile

strain in structure B is higher than that in structure A, indicating that B is the

stiffer structure. A quantitative comparison of the normalized Young’s moduli be-

tween structure A and B reveals that they differ by a factor of approximately 38

(structure A: E/E0 = 0.007, structure B: E/E0 = 0.27; cf. Table 2. Furthermore,

one salient feature of structure B is that there are regions in which the stresses are

significantly smaller than in the rest of the material. These regions seem to be those
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Fig. 11. Plot of the maximum principle stress for structure A (see text) with ÑC = 2.46 and fp =
0.342 at a tensile strain of εxx = 0.1%. The normalized Young’s modulus amounts to E/E0 = 0.007.

places where larger gaps occur and the connectivity of the microstructure is locally

disturbed such that no force is transmitted through such regions.

Fig. 12. Plot of the maximum principle stress for structure B with ÑC = 3.84 and fp = 0.172
at a tensile strain of εxx = 0.1%. The normalized Young’s modulus E/E0 is 0.27.

In Figure 13 (structure C), finally, the force transmission through a structure is
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represented that is characterized by a rather high porosity of fp = 0.352, which is

slightly higher than that of structure A. However, the normalized Young’s modulus

of structure C is E/E0 = 0.17 and thus more than a factor of 24 higher than that of

structure A. This is attributed to the significantly better connectivity, expressed by

the larger average coordination number of ÑC = 3.31 in this structure. A better con-

nectivity between the grains allows for a more efficient force transmission through

the structure. The load paths in structure C show a horizontal pattern, which is

also favored by the chain-like regular structure in which the grains are arranged,

with only some agglomerations of grains. Note that – as throughout the present

paper – the normalized Young’s modulus E/E0 of this structure is calculated as a

homogenized value, as described in section 2.2.

Visual inspection of the stress distributions in the mechanically loaded mi-

crostructures thus confirms our previous observation that there is a strong cor-

relation between the average coordination number and stiffness, whereas in the

quasi-2D case the influence of porosity on stiffness is much weaker and shows a

much larger scattering.

Fig. 13. Plot of the maximum principle stress for structure C with ÑC = 3.31 and fp = 0.352
at a tensile strain of εxx = 0.1%. The normalized Young’s modulus E/E0 is 0.17.

4. Conclusions

In this computational study the mechanical behavior of porous ceramics has been

investigated. A wide range of RVEs has been generated by the aid of a parametric

stochastic microstructure model (PSMM), which is based on methods from stochas-
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tic geometry and graph theory. To mimic typical microstructures of sintered ceram-

ics, the spheres representing ceramic particles are allowed to overlap, which essen-

tially models the formation of sinter necks. To characterize the mechanical behavior

of such RVEs, the finite element method has been applied to simulate the elastic

response of different microstructures. By using homogenization methods it has been

possible to calculate a representative stiffness tensor and hence the effective Young’s

modulus for each RVE.

The presented results show a decrease of Young’s modulus of the porous struc-

tures with increasing porosity, which is in agreement with the findings from both

experimental and computational studies. However, comparing the results of 2D and

3D models reveals a large scattering of Young’s modulus for 2D RVEs with the same

porosity, whereas for 3D models there is a strict correlation between porosity and

stiffness of the material. This motivates the introduction of the average coordina-

tion number as a new microstructural parameter to describe the stiffness of porous

ceramics. The average coordination number is a measure for the average number

of sinter necks that each ceramic grain forms to its neighboring grains. Hence, it

provides a measure for the connectivity within the porous network of grains, which

in turn characterizes the efficiency of load transfer through the structure and thus

its stiffness. This parameter has a clear physical interpretation and it can precisely

describe the 2D results, where different structures with the same porosity can have

very different elastic properties.

The combination of stochastic and mechanical modeling has revealed that the

influence of this topological parameter on the resulting Young’s modulus is more

fundamental than the porosity. In fact, even for the 2D models it could be shown

that for given values of the average coordination number a quite unique relation

to the stiffness of the microstructure exists and that only a small spread in the

resulting Young’s modulus occurs, which can be attributed to variations in poros-

ity. Hence, our main conclusion is that connectivity properties play an important

role for mechanical behavior of sintered materials. In particular, the average coor-

dination number should be considered as a fundamental parameter to characterize

the mechanical behavior of sintered porous ceramics, which is, however, difficult to

assess by experimental methods.
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Appendix

In the following, we give formal definitions of the model graph G and the rearrange-

ment algorithm of the sphere system which is used for the generation of virtual RVEs

matthias
Rectangle

matthias
Rectangle

matthias
Rectangle

matthias
Rectangle



May 28, 2017 23:28 WSPC/INSTRUCTION FILE
Kulosa˙etal-revised20170528

20 Kulosa, Neumann, Boeff, Gaiselmann, Schmidt & Hartmaier

described in Section 2.1. The model graph G consists of the edges of the minimum

spanning tree (Thulasiraman and Swamy, 1992) on {Si}ni=1 with respect to the dis-

tance δ, introduced in Section 2. The minimum spanning tree is a connected graph

on {Si}ni=1 such that the total edge length is minimized. In a further step we add

edges to the graph according to the following parametric model. At first, we attach

random marks {Mi}ni=1 to the midpoints of spheres. These marks are independent

and identically distributed such that P(M1 = j) = θj for each j ∈ {1, . . . , 5} with

model parameters θ1, . . . , θ5 ∈ [0, 1] where θ1 + . . .+ θ5 = 1. Note that these marks

are never changed during the rearrangement of sphere midpoints. We connect each

midpoint Si to its Mi nearest neighbors by edges in the graph, where the nearest

neighbors are computed with respect to δ. The model graph with parameter vector

θ = (θ1, . . . , θ5) is denoted by Gθ. For simulation purposes we choose θ4 = θ5 = 0

in dimension d = 2, since there is less space available around a single sphere in 2D

compared to 3D.

The rearrangement of the sphere system consists of iterative repulsion and at-

traction steps. At first the repulsion step is described. Let {Si}ni=1 be the system of

midpoints of spheres with constant radius r > 0 and 0 < Fmin < Fmax be positive

numbers. In each step of the force-biased algorithm, every midpoint is translated by

a vector, the Euclidean norm of which is bounded from below by Fmin and bounded

from above by Fmax. In the case of repulsion we define for each i ∈ {1, . . . , n} the

vector

vi =
1

2

n∑
j=1,j 6=i

ci,j (Si −W Sj)1{Oi,j ≥ α}, (11)

where for each i, j ∈ {1, . . . , n} we put

ci,j = r(2− α)− δ(Si, Sj) (12)

for some parameter α < 1. The symbol −W denotes subtraction with respect to

periodic boundary conditions in the observation window W . After scaling the vector

vi such that Fmin ≤ ‖vi‖ ≤ Fmax, it is the displacement vector for the i-th sphere

midpoint in one iteration during the repulsion process. For each j0 ∈ {1, . . . , n}\{i}
the vector Si −W Sj0 in the sum of vi is weighted by the length of the line segment

between Si and Sj0 which is covered by the spheres centered in Si and Sj , where

the radii are scaled by 1 − α/2. The reason for scaling the radii by 1 − α/2 is the

following. If all summands of vi are zero except for the one corresponding to the

j0-th sphere, the definition of ci,j0 leads to Oi,j0 = α after one repulsion step. A

scaling of radii for computing the displacement vector is also applied in the classical

force-biased algorithm, see Mosćiński et al. (1989). After the repulsion step, the new

system of sphere midpoints is given by {S(rep)
i }ni=1, where

S
(rep)
i = Si +

vi
‖vi‖

max {Fmin,min{Fmax, ‖vi‖}} , (13)

for each i ∈ {1, . . . , n}. We set {Si}ni=1 = {S(rep)
i }ni=1 and repeat this procedure
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until
∑n
i=1 ‖vi‖ < 0.01 or 1000 iterations are done. Note that in general the force-

biased algorithm would not stop after 1000 iterations, but in this case we apply the

force-biased algorithm several times to the system of sphere midpoints.

The algorithm for attraction of sphere midpoints is similar to the one for re-

pulsion. For a given sphere system with midpoints {Si}ni=1, with constant radius

r > 0 and marks {Mi}ni=1, we compute the graph G = Gθ for a given parameter

vector θ. The edge set of G is denoted by E. Similar to the repulsion step, for each

i ∈ {1, . . . , n} we define a vector

ui =
1

2

∑
(Si,Sj)∈E

ci,j(Si −W Sj)1{Oi,j < α}, (14)

with coefficients ci,j from Equation (12). For each j0 ∈ {1, . . . , n}\{i} the following

holds. If all summands of vi are zero except for the one corresponding to the j0-th

sphere, the definition of ci,j0 leads to Oi,j0 = α if (Si, Sj0) ∈ E after application of

one attraction step. The sphere system {S(att)
i }ni=1 after one attraction step is given

by

S
(att)
i = Si +

ui
‖ui‖

max {Fmin,min{Fmax, ‖ui‖}} , (15)

for each i ∈ {1, . . . , n}. Attraction of the sphere system is iterated in the same way

as repulsion of the sphere system, i.e. until
∑n
i=1 ‖ui‖ < 0.01 or 1000 iterations are

done.

In the rearrangement of sphere midpoints the initial sphere system plays an

important role. Since we want to have a homogeneous sphere system we chose α in

the first repulsion step as

α = 1− 1

r
d

√
0.6νd(W )

κdn
, (16)

where κd denotes the volume of the d-dimensional unit sphere. With this choice

of α the volume fraction of a non-overlapping sphere system with constant radius

r(1 − α) is 0.6. The value 0.6 is chosen since the classical force-biased algorithm,

which is similar to our repulsion algorithm, is able to generate packings of non-

overlapping spheres with volume fraction higher than 0.6 (Mosćiński et al., 1989).

Thus, after applying the repulsion algorithm the first time we get a sphere system

with non-overlapping spheres corresponding to the constant radius r(1 − α). Note

that α < 0 if the volume fraction for the non-overlapping sphere system is smaller

than 0.6. The first repulsion step leads to a more regular point pattern of sphere

midpoints. In all further repulsion and attraction steps during the rearrangement

of sphere midpoints, α is given by the model parameter ρ ∈ [0, 1], which controls

overlapping between the spheres. Furthermore, we let Fmin = 1, Fmax = 20 fixed

during the rearrangement procedure.
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