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Abstract

The microstructure of anodes in lithium-ion batteries has a strong influence on

their electrochemical performance and degradation effects. Thus, optimizing

the morphology with respect to functionality is a main goal in battery research.

Doing so experimentally in the laboratory causes high costs with regard to time

and resources. One way to overcome this problem is the usage of parametric 3D

microstructure models, which allow the realization of virtual morphologies on

the computer. The functionality of microstructures generated with such models

can be investigated by means of numerical transport simulations. The results of

this procedure, which is called virtual materials testing, can be used to design

anodes with improved morphologies that lead to a better electrochemical perfor-

mance. Recently, a particle-based stochastic microstructure model for anodes

in lithium-ion energy cells has been proposed. In the present paper, an exten-

sion of this model to describe the morphology of anodes in power cells, whose

structure strongly differs from energy cell anodes, is introduced. The extensions
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include techniques to model anisotropic morphologies with a low volume frac-

tion of the particle phase and strongly irregular particle shapes. The model is

fitted to 3D image data of a power cell anode and validated using morpholog-

ical image characteristics. Furthermore, we show examples of modifications of

our microstructure model that can be made for generating further virtual mor-

phologies. Finally, we briefly explain how electrochemical characteristics can be

estimated using thermodynamically consistent transport theory. To illustrate

this, we compute the cell potential over time during lithiation for image data of

real microstructures as well as corresponding microstructures simulated by our

model.

Keywords: stochastic microstructure modeling, power cell, lithium-ion

battery, anodes, spherical harmonics, anisotropy

1. Introduction

Lithium-ion batteries have a wide field of applications, ranging from small

mobile devices up to large-scale applications, e.g., in electric vehicles. However,

there are still unresolved problems concerning capacity, power, safety, duration

and ageing effects, see, e.g., [1, 2, 3, 4]. For an overview of challenges regarding5

lithium-ion batteries we refer to [5].

It is well known that the morphological properties of the electrodes strongly

contribute to these problems. Thus, the microstructure of anodes and cathodes

is of high interest in battery research [6, 7, 8]. Many theoretical investigations

are based on the famous model introduced by Newman [9]. However, Newman’s10

model does not take into account the full 3D information of the microstructure.

This can be overcome using microstructure-resolved transport models, see [10].

Given the 3D morphology of the electrodes, such models can be used to predict

the electrochemical performance of battery cells. Thus, if a tool is on hand that

systematically generates virtual 3D microstructures with varying morphologi-15

cal properties, microstructure-resolved transport models can be used to identify

electrochemically preferable structures, a procedure called virtual materials test-
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ing. Stochastic microstructure modeling has proven to be an ideal tool for the

generation of such structures for various energy materials, see, e.g., [11, 12].

In particular, virtual materials testing based on stochastic modeling has been20

performed in [13] and [14] for a wide class of 3D structures, which are closely

related with microstructures observed in tomographic image data for electrodes

of solid oxid fuel cells (SOFC). Thus, it is desirable to develop a parametric

stochastic model that is capable of creating a broad range of battery electrode

morphologies, which can be used as input for microstructure-resolved transport25

models. By doing so, an efficient tool (compared to experimental manufacturing

and testing of electrodes in the laboratory) to identify preferable structures is

provided.

Depending on the application of a battery, either power cells or energy cells

are used. While for an energy cell the capacity is of high priority, which is30

reflected in a high volume fraction of the particle phase, for power cells a fast

ion transport is necessary for high charge and discharge currents, and therefore

the volume fraction of the pore phase needs to be rather high. For a discussion

of the morphological differences between energy and power cells we refer to [15].

Recently, a parametric stochastic model for the microstructure of anodes in35

energy cells has been developed [16]. The model is particle-based, and each

particle is modeled using so-called spherical harmonics [17]. The particles are

placed in a system of convex polytopes that forms a decomposition of the region

of interest. Due to the high volume fraction of the particle phase in energy

cell anodes, it is easily possible to force each particle to touch a previously40

chosen subset of neighbors, in a way that the whole 3D structure is completely

connected.

In the present paper, a parametric stochastic microstructure model for power

cell anodes is introduced, which is based on the approach considered in [16].

The model accounts for the lower volume fraction of the particle phase, but45

still ensures its complete connectivity. In addition, techniques for modeling

particles with more irregular shapes (compared to [16]) as well as anisotropy of

the particle phase (which results from the calendering process) are presented.
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We fit the model to tomographic 3D image data (which we will call ‘real data

set’ or just ‘real data’ in the following) of a power cell anode and compare50

morphological characteristics between real and simulated data.

In addition, we show various kinds of modifications of the microstructure

that can be realized by the model. Finally, we briefly discuss how the ther-

modynamically consistent transport theory developed in [10] can be applied to

image data of real microstructures and virtual ones generated by the model. To55

give an example, we compute the cell potential over time during lithiation of

the electrode. Those two aspects (the ability to generate virtual, but still re-

alistic structures and to perform electrochemical simulations) provide the basis

for virtual materials testing.

The paper is organized as follows. In Section 2, a brief overview of the60

considered material and data preprocessing steps is given. The stochastic mi-

crostructure model as well as the fitting procedure to real data are introduced

in Section 3. The validation based on morphological image characteristics is

shown in Section 4. An outlook towards virtual materials testing is given in

Section 5. In Section 6, the results are summarized and possible further work is65

discussed.

2. Material Description and Data Preprocessing

The real data, to which the model is applied, is taken from a plug-in hybrid

vehicle’s battery cell. The cells have been exposed to moderate cyclic aging,

i.e., no too strong structural changes due to aging are expected. The imaging70

was performed at a synchroton X-Ray facility (BAMLine, BESSY, Berlin). For

details regarding the imaging process, we refer to [18], where the technique

has been introduced in detail. The imaging procedure resulted in an 8-bit 3D

grayscale image with 1601×1401×109 voxels, where the voxel size is 0.44 µm3.

This grayscale image is binarized, i.e., each voxel is either assigned to the75

particle phase or to the complementary phase, the pore phase. First, in order to

remove noise in the image data, a Gaussian filter (see, e.g., [19]) with parameter
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σ = 1 is applied. After that, a (manually chosen) global threshold of 34 is ap-

plied, as this value leads to the best binarization considering visual comparison.

We expect the particles not to have holes, however, due to artifacts in the data,80

after binarization, some holes are visible. Those holes are detected using the

Hoshen-Kopelmann clustering algorithm [20] and removed, i.e., the correspond-

ing voxels are assigned to the particle phase. This is done for clusters found

up to a size of 10000 voxels. Finally, as we expect the particle phase to be

completely connected, a clustering algorithm is performed (now on the particle85

phase) and only the largest cluster (and clusters touching the edge of the image,

as their connectivity across the border is not known) are kept, which removes a

few artifacts in the background.

(a) Grayscale image. (b) Corresponding binarization.

Figure 1: 2D planar cutout of the real data set.

As an example, Figure 1 shows a cutout of a 2D slice from the grayscale

image and the corresponding binarization. The complete binarized 3D data set90

is visualized in Figure 2.

As the parametric stochastic model is particle-based, we need a segmenta-

tion of the binary image that allows identification of individual particles. This is

necessary for parameter estimation, see Section 3.4. The segmentation is done

using a watershed algorithm, see, e.g., [21] for detailed information. The algo-95

rithm is adapted from [22] and is based on so-called regional local minima, which
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Figure 2: 3D rendering of the binarized data set.

extend the concept of simple local minima in order to prevent oversegmenta-

tion. We consider the so-called negative Euclidean distance transformation of

the binary image, i.e., the value of each voxel is given by the negative of its

shortest Euclidean distance to the pore phase. Based on this grayscale image,100

the markers for the watershed algorithm are chosen as described in [22]. In

Figure 3 a cutout of the segmented image is displayed.

Figure 3: 3D rendering of a cutout of the image after segmentation; each particle is labeled

using a different color.

Given the segmentation of the binary image, we have all the structural in-

formation we need to fit the parametric stochastic model to this data set. The

results will be discussed in Section 4, after introducing the principle ideas of the105

model in Section 3.

3. Parametric Stochastic Microstructure Model

The construction of the stochastic model consists of several steps. An

overview of the modeling approach is given in Figure 4 as a 2D sketch.

To begin with, a random marked point pattern that mimics the positions of110
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(a) (b) (c)

(d) (e) (f)

Figure 4: Overview of the modeling idea. (a) A random marked point pattern is realized

(blue dots and circles); (b) An anisotropic connectivity graph (dashed grey lines) based on the

Laguerre tessellation (black lines) induced by the random marked point pattern is simulated;

(c) Candidates for marked points (red dots) that induce empty polytopes (i.e., where no

particle is placed) are created; (d) Only those candidates are accepted the corresponding

polytopes of which do not cover the center of Laguerre facets between two particles that

are supposed to be connected (lightblue); (e) Particles are created in the polytopes that are

induced by blue dots using spherical harmonics; (f) The auxiliary tools are deleted and only

the union of particles is kept.
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particles and their approximate sizes is simulated, see Figure 4(a), where the

mark is indicated as radius of a circle around the corresponding point. Using a

so-called Laguerre tessellation (see [23] for details), each of these marked points

induces (under some regularity conditions, which are usually fulfilled for the kind

of point pattern considered in this work) exactly one convex polytope. These115

polytopes are shown with black lines in Figure 4(b). In each of them a particle

will be placed. But beforehand, we have to indicate which particles should

be connected, ensuring full connectivity of the particle system. Therefore, a

connectivity graph is constructed, where the connection probability between two

particles depends on a) the surface area of the facet between their corresponding120

polytopes, b) the distance of (seed) points and c) the angle between a horizontal

plane and the line between the two marked points inducing the corresponding

polytopes. Note that by including the angle as a connection criterion for the

connectivity graph, anisotropy can be included into the model, i.e., particles can

be stretched and preferably connected in a specific direction. In Figure 4(b) the125

connectivity graph is shown with dashed grey lines. Anisotropy of the graph is

indicated in horizontal direction. Now, we have a system of convex polytopes,

where we want to put one particle into each polytope, following the connectivity

constraints given by the connectivity graph. However, to account for the low

volume fraction of the particle phase in power cell anodes, we have to shrink the130

sizes of polytopes. Otherwise the connectivity induced by the graph cannot be

achieved with reasonably shaped particles. Thus, candidates for marked points

that induce empty polytopes (i.e., where no particle is placed) are added to

the marked point pattern that induces the Laguerre tessellation, see the red

points in Figure 4(c). From these candidates, only those points are chosen, the135

corresponding polytopes of which (if added to the generators of the Laguerre

tessellation) do not cover the center of a Laguerre facet between two polytopes

whose particles are supposed to be connected (lightblue in Figure 4(d)). Given

the connectivity graph and the final tessellation (Figure 4(d)), particles are

placed in each polytope of the initial point pattern, which are now shrinked140

because the polytopes induced by the additional points cover some fraction of
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space, see Figure 4(e). The particles are forced to fulfill the conditions induced

by the connectivity graph, i.e., touch a subset of surrounding particles. Finally,

only the particle system is kept (Figure 4(f)) and a morphological closing is

performed.145

In the following subsections, each step of the model construction is described

in detail.

3.1. Modeling the particle positions and approximate sizes

To begin with, a random marked point pattern depicting particle positions

and approximate sizes is realized. Figure 5(a) shows a representation of a cutout150

of real data as spheres with volume-equivalent radii, i.e., for each particle with

center of massm and volume V , a sphere with midpointm and radius 3
√

3V/4π is

shown. This results in a system of (slightly) overlapping spheres. Thus, we found

(a) Cutout of real particle system represented

as spheres with volume-equivalent radii.

(b) Distribution of radii (esti-

mated from data in black, fit-

ted mixed gamma distribution in

red).

Figure 5: Representation of particles by volume equivalent radii.

that a collective rearrangement algorithm is useful for modeling this pattern.

Such algorithms are, e.g., used for modeling packings of spheres, see [24]. Here,155

first we fit a parametric probability distribution to the empirical distribution of

the volume-equivalent radii observed in real data. A mixed gamma distribution

gives a good fit as can be seen in Figure 5(b), i.e., the radii approximately follow

a gamma distribution with shape parameter p1 > 0 and scale parameter b1 > 0
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with some probability α, where 0 < α < 1, and another gamma distribution160

with parameters p2 > 0 and b2 > 0 with probability 1 − α. Then, we use

a homogenous Poisson point process with some intensity λ > 0 to model the

initial configuration for the collective rearrangement, as the Poisson process is

one of the easiest models for random allocation of points. For details about

point processes, we refer to [25]. Let {Si, i ∈ N} be a measurable indexing of165

the homogenous Poisson point process. Each point Si is marked with a radius

Ri drawn from the mixed gamma distribution introduced above, resulting in

an independently random marked point pattern {(Si, Ri), i ∈ N}, that can be

interpreted as a system of spheres {S(Si, Ri), i ∈ N}, where S(m, r) is a sphere

with midpoint m and radius r.170

We want to simulate particle systems in a bounded sampling window W ⊂

R3. To avoid edge effects, we perform the simulations on a slightly larger

sampling window W̃ ⊃ W . In the following, we consider the point pattern

{(Si, Ri), Si ∈ W̃} and the corresponding sphere system {S(Si, Ri), Si ∈ W̃}.

This is the initial configuration for the collective rearrangement algorithm, which175

is performed as follows.

1. For each sphere S(Si, Ri), calculate the random force

Fi =
∑

j:Sj∈W̃

(Si − Sj)11{Rj+Ri>||Si−Sj ||},

where 11A is the indicator of the event A, i.e., 11A = 1 if A occurs, and

otherwise 11A = 0, and ||a − b|| is the Euclidean distance between two

vectors a and b. This means, for each sphere that intersects S(Si, Ri), we

consider the vector from its centroid to Si, and sum up all these vectors.180

2. For each sphere S(Si, Ri), calculate the mean random overlap Ōi with all

spheres it intersects, i.e.

Ōi =

∑
j 6=i (Rj +Ri − ||Si − Sj ||)}11{Rj+Ri>||Si−Sj ||}

#{j : Rj +Ri > ||Si − Sj ||, j 6= i}
,

where #M is the number of elements in the set M .

3. If the mean of all mean overlaps Ōi is larger than a given threshold Othr,

shift all Si by Fi/||Fi|| and go to step 1. Otherwise terminate.
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Note that the force Fi is a vector that shifts (Si, Ri) such that the overlap

with neighboring spheres becomes smaller. By scaling it to unit length in Step185

3 of the algorihm we ensure convergence to a state where a mean overlap of

approximately Othr is achieved, avoiding uncontrolled large shifts. Thus, the

algorithm yields a system of slightly overlapping spheres as desired. In the

following, we call the resulting marked point pattern S1 = {(Si, Ri), Si ∈ W̃}.

The model validation performed in Section 4.1 will show that this model nicely190

fits the marked point pattern induced by the real data set.

The parameter λ is chosen such that it resembles the intensity estimated

from the point pattern induced by the particle centers in the real data set. We

found that λ̂ = 4.87 · 10−5. Note that the collective rearrangement algorithm

does not change the intensity and thus we can control the final intensity of the195

point pattern.

The parameters for the mixed gamma distribution were estimated using

expectation maximization as implemented in the mixtools package [26] in R

[27]. We found that α̂ = 0.43, b̂1 = 0.66, p̂1 = 7.81, b̂2 = 0.91 and p̂2 = 15.44.

The threshold Othr is chosen as the mean of all mean overlaps in the real data200

set (where particles are represented as spheres with volume-equivalent radii).

This is 2.09 voxel length for our data set.

3.2. Modeling the connectivity graph

In the previous step, we have modeled locations and approximate sizes of

particles. Now, a connectivity graph is simulated that indicates which particles205

are supposed to be connected. A graph G = (V, E) consists of a set of vertices

V and a set of edges E ⊂ V × V, where V can be seen as a set of points in

some space (of sites) and E can be considered as segments connecting (some)

pairs of points. For details regarding graphs, we refer to [28]. In our case, the

vertices are the marked points considered in Section 3.1, i.e., V = S1, and an210

edge between two marked points indicates that the corresponding particles are

supposed to be connected.

As already mentioned, particles will be placed in convex polytopes, given by
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a so-called Laguerre tessellation on the sampling window W̃ . Note that again

the edge correction (i.e., considering the extended sampling window W̃ ⊃W ) is215

important to avoid boundary effects. Let T ′ be the Laguerre tessellation induced

by the point pattern S1. Then T ′ = {P ′i , Si ∈ W̃} is a collection of convex

polytopes, where P ′j is the convex polytope corresponding to (Sj , Rj) ∈ S1.

Furthermore, let F ′jk be the joint facet of two neighboring polytopes P ′j and P ′k.

If P ′j and P ′k are not neighbors, then we put F ′jk = ∅. Note that this is not yet220

the final tessellation into which particles will be placed (as we want to include

polytopes where no particle is placed), but we need the tessellation desribed

above to construct the connectivity graph.

Of course, the connectivity graph should depend on the underlying tessella-

tion, as it determines the rough shape of the particles. In particular, as it has225

been done in [16], particles should be connected with higher probability if the

Laguerre facet between their polytopes is large, i.e., the particles placed in the

polytopes induced by (Si, Ri) and (Sj , Rj) should be connected with high prob-

ability if F ′ij is large. Furthermore, the connection probability should decrease

with increasing distance of particle seed points. Additionally, by the aid of the230

connectivity graph, we want to account for the anisotropic structure of the real

data set.

To get an idea for modeling the connectivity graph, we analyze the real data

set. We have already identified individual particles by segmentation techniques,

see Section 2. Based on this, we can determine which particles are connected235

(which is the case if a voxel from one particle neighbors a voxel belonging to

the other particle). Let furthermore T exp be the Laguerre tessellation induced

by the marked point pattern {(sexpi , rexpi ), i ∈ {1, ..., n}}, where n is the number

of particles extracted from the real data set, sexpi is the barycenter of the i−th

particle and rexpi the corresponding volume-equivalent radius. Using this, we240

can estimate the probability P̂area(a) of two particles with barycenters sexpi and

sexpj being connected, given that the area of the facet f expi,j of T exp separating

sexpi and sexpj is equal to a. The results obtained for the considered set of real
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data are shown in Figure 6(a), black line. It can be nicely seen that the proba-

bility of connection increases with increasing facet area. For modeling purposes,245

a parametric curve (red) is fitted. The same procedure is performed considering

the distance between two particle centers, i.e., P̂dist(d) is the estimated prob-

ability of two particles being connected, given that the distance between their

barycenters is d (and that their corresponding polytopes share a common facet),

see Figure 6(b).

(a) Connection probabilites depend-

ing on the area of the joint facet of

corresponding Laguerre polytopes.

(b) Connection probabilites depend-

ing on the distance between barycen-

ters.

(c) Illustration of angle α (dots cor-

respond to barycenters of two parti-

cles).

(d) Connection probabilites depend-

ing on the angle α between a hori-

zontal plane and the segment between

barycenters.

Figure 6: Probability of two particles being connected. Black: Estimated from real data set;

Red: Parametric fit.

250
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As already mentioned, we want to include the anisotropy information into the

model using the connectivity graph. Therefore, similar to the criteria discussed

above, we consider still another property of two particle centers - the angle α

between a horizontal plane and the segment between the two particle centers,

see Figure 6(c). In Figure 6(d) the probability P̂angle(α) of two particles being255

connected, given that the angle between their barycenters is equal to α, is shown.

It can be seen that the probability of connection is larger for small angles - i.e.,

particles are rather connected horizontally than vertically. By including this

when modeling the connectivity graph, we achieve two things. On the one

hand, of course, we resemble exactly this property observed in the real data set260

in our model. But, on the other hand and even more important, this results

in particles that are stretched in horizontal direction, because of the conditions

(induced by the connectivity graph) they have to fulfil, i.e., the particles they

have to touch. Thus, anisotropy is included into the model.

As already shown in Figure 6, we fit parametric curves to the empirical

probability functions estimated from real data. The fitting is performed using

the curve fitting tool in Matlab [29]. For the dependence on the area of the

connecting facet, we have

Parea(a) = min{aareaa2 + bareaa+ carea, 0.7161}

where aarea = −4.54 ·10−7, barea = 0.0011 and carea = 0.07503. Note that 0.7161

is the maximum of this function on R+. Furthermore, it holds

Pdist(d) = max

{
adistd+ bdist

d2 + cdistd+ ddist
, 0

}
where adist = −3.14, bdist = 279.8, cdist = −16.29 and ddist = 325.6. For the

angle, we have

Pangle(α) =
aangle

α2 + bangleα+ cangle

where aangle = 0.1019, bangle = −0.1953 and cangle = 0.2369.265

Now, when modeling the connectivity graph, we want to calculate the proba-

bility of two particles being connected. However, up to now, we only have three
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(conditional) probabilites given the area of facet, distance and angle, respec-

tively. If we just multiply them, the resulting probability is too small. This is

why we include a correction factor c > 0 and set the probability of two particles

being connected to

P (a, d, α) = max{c · Parea(a) · Pdist(d) · Pangle(α), 1}, (1)

where a is the area of the Laguerre facet between two points, d is their distance

and α the angle between them with respect to a horizontal plane. The factor

c is estimated using the minimum contrast method with respect to the mean

coordination number, i.e., the mean number of edges emanating from a vertex.

This means, we minimize the cost function

h(c) = |cexp − csim(c)|,

where cexp is the mean coordination number in the real data set (which was

found to be 3.67), and csim(c) is the mean coordination number of a realization

of the model with parameter c. Here, csim(c) is estimated by generating 100

realizations of the graph model, computing the mean coordination number for

each realization and averaging over all of them. The minimization is carried out270

using the Nelder-Mead algorithm, see [30], with initial parameter c0 = 10. This

results in the estimated value of ĉ = 11.83.

Note that it would also be possible to estimate the joint probability distribu-

tion, given a, d and α. However, when performing virtual materials testing, by

the approach we use, it is easier to vary specific characteristics, i.e., to change275

only the dependence on area, distance or angle with respect to a horizontal

plane.

Now, using Equation (1), we can construct the connectivity graph for the

marked point pattern S1. To ensure complete connectivity, we start with a min-

imum spanning tree, i.e., a graph that is completely connected. This is done as280

follows. We construct a graph G′ with vertex set V = S1 and set of marked edges

E ′ ⊂ (S1 × S1,R+). Thereby it holds ((Si, Ri), (Sj , Rj), 1/P (Ai,j , Di,j , αi,j)) ∈

E ′ if F ′i,j 6= ∅, where Ai,j is the area of F ′i,j , Di,j is the Euclidean distance be-
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tween Si and Sj and αi,j the horizontal angle between Si and Sj . This means,

an edge is added to E ′ if there is a Laguerre facet in T ′ between the corre-285

sponding points and it is marked with the inverse of the probability of these

two vertices being connected according to (1). Then Prim’s algorithm [31] is

used to compute a minimum spanning tree G based on the weighted graph G′,

i.e., if we interpret the mark of each edge as a cost, G is the completely con-

nected graph (i.e., there is a path from each vertex to every other vertex) with290

minimal sum of edge costs. Note that this means that those edges that are con-

tained in the minimum spanning tree are the ones that have a high probability

according to (1). Let E be the edge set of G. So far, there are still too less

edges in the graph (compared to the one extracted from real data). Thus, we

add each edge ((Si, Ri), (Sj , Rj), 1/P (Ai,j , Di,j , αi,j)) ∈ E ′\E to E with prob-295

ability P (Ai,j , Di,j , αi,j), leading to the final connectivity graph G = (V, E),

which ressembles the structural characteristics of the connectivity graph ex-

tracted from real data, in particular the mean coordination number. Note that

the marks of the edges in E can be discarded (as they were only needed for

the minimum spanning tree and its completion). Thus, to make notation sim-300

pler, instead of ((Si, Ri), (Sj , Rj), 1/P (Ai,j , Di,j , αi,j)) ∈ E we just shortly write

(Si, Sj) ∈ E in the following sections.

3.3. Insertion of empty polytopes

In this section, we explain in detail how empty polytopes are added to the

Laguerre tessellation T ′. As already said, they are important to ensure the lower305

volume fraction of the material. The polytopes into which we will put particles

should not be too much larger than the corresponding particles, because oth-

erwise the connectivity constraints cannot be achieved with reasonably shaped

particles. However, we have to ensure that the empty polytopes we add do

not destroy Laguerre facets where connectivity is indicated by the connectivity310

graph. This is the reason why the following procedure is chosen.

To begin with, we compute the set of centroids {S′k} of the Laguerre facets

16



(a) (b)

(c) (d)

Figure 7: Addition of empty polytopes to the tessellation. (a) Candidates for generators

of empty polytopes {S′′k } (red) are computed as barycenters of Laguerre facets where the

connectivity graph does not indicate connectivity of particles. Centers of facets with indicated

connectivity are called {S′k} and marked in lightblue. The mark of each possible generator

point of an empty polytope is chosen to be zero. (b) For each possible generator S′′k0
, it is

checked if the corresponding Laguerre polytope (with respect to the point pattern S1 ∪ S′′k0
)

covers a point in {S′k}. If not, the generator is kept, otherwise it is deleted. (c) Here, a point

belonging to {S′k} is covered by a Laguerre polytope (yellow), so the corresponding generator is

not kept. (d) Final set of generators for empty polytopes (red) with corresponding tessellation.
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F ′ij for which an edge between Si and Sj exists in the connectivity graph, i.e.,

{S′k} = {F̄ ′ij , (Si, Sj) ∈ E},

where F̄ ′ij is the centroid of the facet F ′ij , and E is the edge set of the connectivity

graph G. Furthermore, we consider the set of possible generators of empty

polytopes

{S′′k} = {F̄ ′ij , (Si, Sj) 6∈ E , F ′ij 6= ∅},

i.e., the centroids of all facets where no contact of the corresponding pair of

particles is indicated by the connectivity graph. The set {S′k} is shown as

lightblue crosses and {S′′k} as red dots in Figure 7(a). Then, for being able

to compute a Laguerre tessellation, each point S′′k has to be assigned a mark315

R′′k , resulting in a marked point pattern {(S′′k , R′′k)}. All marks are chosen to

be R′′k = 0. Now, in order to ensure that (reasonable) connections of particles

are possible where the connectivity graph indicates so, we thin out the set of

possible generators of empty polytopes {(S′′k , R′′k)} such that no point {S′k} is

covered by an empty polytope. This means that, for each candidate (S′′k0 , R
′′
k0

),320

we consider the tessellation Tk0 induced by the point pattern {S1 ∪ (S′′k0 , R
′′
k0

)}.

Recall that S1 is the system of particle locations (and marks) defined in Section

3.1. If the polytope P ′′k0 ∈ Tk0 induced by (S′′k0 , R
′′
k0

) contains a point from {S′k},

the candidate (S′′k0 , R
′′
k0

) is rejected. Otherwise, it is accepted and added to the

final set of generators of empty polytopes, which will be denoted by S2. In325

Figure 7(b), a candidate is shown that is accepted (yellow dot), because there is

no point of {S′k} (lightblue crosses) in the corresponding polytope P ′′k0 (yellow).

On the other hand, in Figure 7(c), a candidate is shown which is not accepted.

The final set S2 of generators of empty polytopes together with the set of particle

positions S1 and the corresponding tessellation T induced by S1 ∪ S2 is shown330

in Figure 7(d).

3.4. Modeling of particles

Given the final tessellation T on the sampling window W̃ , we now can place

particles into each polytope in T that is induced by a point from S1. The
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polytopes induced by points from S2 remain empty, ensuring the overall lower335

volume fraction. Thus, let {Pi, Si ∈ S1} be the set of polytopes in T induced by

the points from S1. In this section, we describe how a particle can be modelled

in each of these polytopes. The approach is adapted from [16]. The idea of

modeling particles via spherical harmonics is shortly revised in the following.

3.4.1. Description of particles using spherical harmonics340

Each particle is considered as a realization of a so-called Gaussian random

field ψ : [0, π]× [0, 2π]→ R on the sphere, where for each angle (θ, φ) the corre-

sponding value ψ(θ, φ) describes the distance from the centroid of the particle

to its boundary in direction (θ, φ). Note that, in order to do so, we need to as-

sume that particles are star-shaped, which is typically the case in the real data

set. The Gaussian random field ψ is uniquely determined by its mean radius

µ and its so-called angular power function A : [0,∞) → [0,∞), which controls

the shape of the surface. We make use of a special representation of Gaussian

random fields, where we assume that the values of A : [0,∞) → [0,∞) can be

given in a certain parametric form, see Section 3.4.2, considering spherical har-

monic functions. To define them, we need the following two definitions. First,

the Legendre polynomial Pl : [−1, 1]→ R for l ∈ N0, which is defined as

Pl(x) = 2−l
1

l!

dl

dxl
(x2 − 1)l.

Given this definition, we can introduce the associated Legendre functions Pl,m :

[−1, 1]→ R for l ∈ N0 and m ∈ {0, ..., l}, which are given by

Pl,m(x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x).

The spherical harmonic functions Yl,m : [0, π] × [0, 2π) → C for l ∈ N0 and

m ∈ {0, .., l} are then defined via

Yl,m(θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pl,m(cos(θ))eimφ.

More details can be found in [32].
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Based on these defintions, a Gaussian random field with mean radius µ and

angular power function A : [0,∞) → [0,∞) can be represented as a series

expansion with respect to spherical harmonic functions. We still define the

angular power spectrum (Al)
∞
l=0 with Al = A(l) for l ∈ N0. Given this, the

Gaussian random field can be represented by

ψ(θ, φ) =

∞∑
l=0

al,0Yl,0(θ, φ)+2

l∑
m=1

Re(al,m)Re(Yl,m(θ, φ))−Im(al,m)Im(Yl,m(θ, φ)),

with a0,0 ∼ N(µ,A0), al,0 ∼ N(0, Al) for l > 0, Re(al,m) ∼ N(0, Al/2) and

Im(al,m) ∼ N(0, Al/2) for l ∈ N, m ∈ {1, ..., l}. For practical applications, it

is possible to truncate the first sum at a parameter L, because for large indices

l ∈ N the contribution of the corresponding spherical harmonic functions is

small. Thus we have

ψ(θ, φ) ≈
L∑
l=0

al,0Yl,0(θ, φ)+2

l∑
m=1

Re(al,m)Re(Yl,m(θ, φ))−Im(al,m)Im(Yl,m(θ, φ)),

for some L ∈ N.

Note that the Yl,m are fixed, i.e., the only free variables are the al,m, which

follow a multivariate normal distribution determined by the mean radius µ and

the angular power spectrum (Al)
L
l=0. Thus, for the realization of a particle, we345

only need a realization of a multivariate normal distribution for each polytope we

want to place a particle into. For this purpose, we need to estimate the angular

power spectrum and determine the mean radius for each particle as well as to

include conditions for particles such that they are connected according to the

connectivity graph. This will be explained in the following sections.350

3.4.2. Estimation of the angular power function

To estimate the distributions of the coefficients in the series expansion of

ψ(θ, ϕ), we describe each particle of the real data set by a spherical harmonics

approximation. To do so, the approach proposed in [17] is used. Given the coef-

ficients al,m for each particle, we can estimate the variances of the corresponding

normal distributions, i.e., we get estimates for Al, l = 1, ..., L, see black dots

in Figure 8. Based on these estimates, we fit a parametric function to get an
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estimate for the angular power function. We choose the same type of parametric

function as in [16], i.e.,

A(l) =
aapfl + bapf

l2 + capfl + dapf
,

and the fitting procedure results in aapf = 0.615, bapf = 0.0466, capf = −3.642

and dapf = 3.398. The estimated angular power function is shown in Figure 8.

Figure 8: Estimated angular power function. Black dots: Estimates of the angular power

spectrum; Red line: Fitted angular power function.

3.4.3. Determining the mean radius of each particle

Recall that we place a particle into each polytope that is induced by a point

in S1, and that there are empty polytopes induced by the points in S2. The

overall volume fraction of the particle phase in the real data is Vexp = 0.4157.

Let ξ be the volume fraction of polytopes induced by points from S1, i.e., to be

filled with particles. To match the overall volume fraction Vexp of the particle

phase on average, each particle has to cover a fraction of Vexp/ξ of its corre-

sponding polytope. This is achieved by setting the variable a0,0 introduced in

Section 3.4.1 for each polytope Pi to a constant, which depends on the corre-

sponding polytope. Given the estimate of the angular power spectrum stated

in Section 3.4.2, it can be shown that (under the assumption of independence

of the coefficients aij), it holds for the expected volume EV of a particle that

EV ≈ 0.09403a30,0 + 24.5567a0,0. (2)
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Thus, for each polytope Pi with volume |Pi| we solve

ρ|Pi|Vexp/ξ = 0.09403a30,0 + 24.5567a0,0. (3)

for a0,0, where ρ is an adjustment factor that corrects for errors that occur355

because Equation (2) only holds for independent coefficients aij . However, this

is not the case if we include conditions induced by the connectivity graph, see

Section 3.4.4 below. Then, for the simulation of each particle, a0,0 is chosen as

the solution of (3).

The adjustment factor ρ is fitted using the Nelder-Mead algorithm, com-360

paring the mean volume fraction of the particle phase in simulated data with

that of the real data set. The mean volume fraction of the particle phase of the

simulated data set was estimated as the mean of 8 realizations of the model (as

this could easily be done in parallel). An initial value of ρ0 = 0.9 was used for

the optimization. This results in ρ = 0.875.365

3.4.4. Incorporating connectivity conditions for particles

By the methodology described up to now, we can place a particle into each

polytope Pi induced by points from S1. It is centered at the barycenter of the

polytope, its shape corresponds statistically to the shape of particles in the real

data set and its volume can be regulated such that the overall volume fraction

of particles fits to the volume fraction of the real data. However, what is also

important, is to ensure complete connectedness of particles according to the

connectivity graph. This is done as follows. For each polytope Pi in T induced

by a marked point (Si, Ri) ∈ S1 we consider the set of all facets

Fi = {Fi,j , (Si, Sj) ∈ E},

where E is the edge set of the connectivity graph G and Fi,j is the facet be-

tween the polytopes Pi and Pj in T . Note that Fi contains those facets of the

polytope Pi that correspond to a neighboring polytope where connectivity is

indicated by the connectivity graph. Such a facet is sketched in Figure 9. To370

ensure that particles touch each other, we simply choose points on the facets
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Figure 9: Laguerre facet and points that particles in both of the corresponding polytopes have

to touch.

Fi that the particle in the polytope Pi has to touch. If the connectivity graph

indicates a connection between particles in polytope Pi and Pj , and both parti-

cles have to touch the same points on Fi,j , then they automatically touch each

other, ensuring connectivity. The points on each facet are chosen as the center375

of the facet (red point in Figure 9) and points at a proportion of 0.15 from the

center of the facet to its vertices (blue points in Figure 9). We call the points

that a particle has to touch the constraints. Recall that a particle described

by spherical harmonics can be realized by drawing a realization from a multi-

variate normal distribution. Due to that fact, a spherical harmonics particle380

with constraints can be generated by drawing a realization from a conditional

multivariate normal distribution. For details and implementation techniques,

we refer to [16].

We have already accounted for two specifications of the data set considered

in the present paper - the lower volume fraction and the anisotropic structure.385

What still has to be done, is to find a method to deal with the very irregu-

lar particle shapes, indicated by the large peak of the angular power function

(e.g., compared to that one which has been considered in [16]). Due to this, the

so-called Gibbs phenomenon or ringing occurs [33], i.e., we observe unintended

oscillations on the particle surface. The Gibbs phenomenon can be avoided by390

using a smaller parameter L. We found that for L = 10 no problems regard-

ing ringing occur, while the shape of the particles is still described very well,

including structural details. However, the number of constraints (i.e., points
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the particle has to touch), is limited by the parameter L, where the maximum

number of constraints is (L+ 1)2 − 1, but already for a smaller number of con-395

straints highly atypical and degenerate particles might be generated. Those

particles can easily be identified, because they typically stick out considerably

of their polytopes. We solve this problem by using dynamical connectivity con-

ditions for particles. That means, if a particle is degenerate, we remove one of

the constraints, and again sample from a multivariate normal distribution, with400

one fewer constraint. Thereby the constraints given by the facet centers (red

point in Figure 9) are never removed, which ensures that particles will still be

connected with probability 1. Furthermore, we always remove the constraint

with the minimum distance to another constraint, which ensures that the gen-

eral structure of connections of particles is kept as good as possible. A particle405

is thereby identified as degenerate if its maximum distance from the center to

the surface is larger than 1.5 times the maximum distance of the center of the

polytope to its surface (which exactly means the particle sticks out considerably

of the polytope). In case there is no further constraint that can be removed, a

new point pattern and connectivity graph is realized.410

For more information concerning the Gibbs phenomenon, we refer to [33].

3.4.5. Morphological smoothing

Finally, we discard the tessellation and the graph and end up with a con-

nected particle system. In order to smooth the boundary between neighboring

particles, in a last step, a morphological smoothing is performed, i.e., we perform415

a morphological closing with radius r = 2, see [19].

4. Validation

In this section, we describe the validation of our model using characteristics

of point processes and random graphs as well as further morphological image

characteristics. To begin with, the point pattern model for the positions and420

approximate sizes of particles is validated in Section 4.1. Then, the graph model

for particle connectivity is compared to the particle connectivity in the real data
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set, see Section 4.2. In Section 4.3, the final output of the model is validated

using various morphological image characteristics. All validation steps are based

on 12 realizations of the model, compared to 12 disjoint cutouts of the real425

data set, each of which has a size of 400 × 400 × 109 voxels, i.e., 176 × 176 ×

47.96µm3. This is a reasonable sample size that gives enough information about

the structure while still being practible regarding runtime and memory. We use

12 realizations because this is the maximum number of disjoint cutouts of this

size that can be taken from the real data set. Analysis of the variances of430

different characteristics indicates that this number of samples allows reliable

statements regarding the fit.

4.1. Marked point pattern

To begin with, we analyze the goodness of fit of the marked point pattern

model introduced in Section 3.1 to the point pattern induced by the particle435

positions and sizes in the real data set. Note that the most important charac-

teristics, the intensity of points and the distribution of marks, have been fitted

directly to real data. However, to indicate that the model fits the structural

properties of real data, we consider four further point-process characteristics.

First, we look at the nearest neighbor distance distribution function. This func-440

tion describes the probability of a randomly chosen point of the point pattern

to have its closest neighbor within given distances. For detailed information,

we refer to [34]. In Figure 10(a) the estimated nearest neighbor distance distri-

bution function for the realizations of the model (red) is shown and compared

to that one obtained from the the cutouts of the real data set (blue), where445

shaded areas describe the range between the pointwise estimated 5% and 95%

quantiles. We can observe a slight difference between the results obtained from

the model and the real data sets for small distances, but the general structural

properties are resembled by the model.

Recall that the point pattern model is only an auxiliary tool - what we really450

need are the polytopes of the Laguerre tessellation induced by this marked point

pattern. This is why for validation purposes, we consider characteristics of these
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(a) Nearest neighbor distance distri-

bution function.

(b) Size of Laguerre polytopes.

(c) Number of Laguerre facets per

polytope.

(d) Area of Laguerre facets.

Figure 10: Characteristics of marked point patterns describing positions and sizes of particles.

Blue: Real data sets; Red: Simulations. Shaded areas show the range between the estimated

5% and 95% quantiles.
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polytopes. Figure 10(b) shows the size distribution of the Laguerre polytopes. In

Figure 10(c) we can see a histogram showing the number of Laguerre facets per

polytope. Furthermore (as it is needed for modeling the connectivity graph) the455

surface area of the polytopes is investigated - a comparison of results obtained

for model and real data is shown in Figure 10(d). All these characteristics show

a good accordance of results obtained for real and simulated data, respectively.

4.2. Connectivity graph

In this section, we compare the connectivity graph induced by the particles460

in the real data sets to realizations of the graph drawn from our model. For a

visual impression, we refer to Figure 11. It can be seen that the basic structural

properties are quite similar, and that the anisotropy is nicely resembled by the

model.

(a) Real data set. (b) Corresponding simulation.

Figure 11: Comparison of the connectivity graph for a cutout of the real data set and corre-

sponding simulation. Lines indicate connectivity between corresponding particles.

To validate the graph model more formally, we consider two graph charac-465

teristics. To begin with, we look at the distribution of the coordination number,

i.e., the number of outgoing edges from each vertex. The corresponding his-

tograms are shown in Figure 12(a). Note that the mean coordination number

has been fitted in the course of parameter estimation, but also the entire distri-

bution nicely fits to the real data set. To also ensure that the model reflects the470

anisotropic structure of the real data set, we consider the distribution of angles

between connected vertices with respect to a horizontal plane, see Figure 12(b).

An almost perfect agreement with the real data sets can be found.
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(a) Coordination number. (b) Angle between two connected ver-

tices with respect to a horizontal

plane.

Figure 12: Characteristics of the graph model describing particle connectivity. Blue: Real

data sets; Red: Simulations. Shaded areas show the range between the estimated 5% and

95% quantiles.

4.3. Particle system

Having shown that the auxiliary tools, i.e., marked point pattern and con-475

nectivity graph, nicely correspond to the real data set, we now want to validate

the entire structure, i.e., the completely connected union of particles. In Figure

13, a cutout of the real data set is compared to a realization of the model with

the same size. We observe a nice structural accordance. Particles in simulated

and real data look very similar and the anisotropic structure is resembled by480

the model, i.e., particles are also tendentially stretched in horizontal direction.

(a) Real data set. (b) Corresponding simulation.

Figure 13: Comparison of a cutout of the real data set and a corresponding simulated mi-

crostructure.

Of course, we also perform a more formal validation for the complete system

of particles. To begin with, we look at simple characteristics, where the most
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important ones are volume fraction and specific surface area. In Table 1 we

see that there is hardly any difference in volume fraction of the particle phase485

between real data sets and simulations (as the volume fraction can be exactly

adjusted in the model). Also the specific surface area fits nicely with a small

error of only about 1%. In Figure 14, boxplots of the volume fractions and

Table 1: Comparison of volume fraction and specific surface area for real and simulated data

sets.

real simulation relative error

volume fraction 0.41483 0.41475 0.02%

specific surface area (1/µm) 0.19681 0.19907 1.15%

(a) Volume fraction. (b) Specific surface area.

Figure 14: Volume fraction and specific surface area of the particle system. Blue: Real data

sets; Red: Simulations. Shaded areas show the range between the estimated 5% and 95%

quantiles.

surface areas for the 12 cutouts of the real data set and 12 simulations are shown,

which indicate that the variance of these characteristics in the model is smaller490

than in the real data sets.

Of course, we do not only validate the model regarding simple characteristics

like volume fraction and specific surface area, but also want to investigate the

structural fit of the model. To do so, we consider further morphological image

characteristics. First, we look at the so-called chord length distribution function495
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Cd : [0,∞) → [0, 1], which can be interpreted as follows. If one puts a random

line in direction d into an image with a solid phase and a void phase, there are

segments of intersection with the solid phase, which we call chords. Then, Cd(l)

is the probability that the length of a chord (chosen at random) is not larger

than l. For further details regarding chord length distributions, we refer to [35].500

In Figure 15, the estimated chord length distribution functions for real data and

corresponding simulations are shown, where we consider the vertical direction

(green curve) and two perpendicular horizontal directions (yellow and orange

curves). The plot on the left-hand side clearly shows that the chord lengths in

vertical direction are tendentially shorter than with respect to both horizontal505

directions, which results from the anisotropic structure of the particle phase.

The plot on the right-hand side shows that this feature is nicely resembled by

the model, i.e., the chord length distribution function shows that anisotropy is

captured by the model.

(a) Real data sets. (b) Simulated structures.

Figure 15: Chord length distribution functions. Green: Vertical direction; Yellow and orange:

Perpendicular horizontal directions.

The chord length distribution function gives us information regarding the510

structural fit of the simulated particle system to the one extracted from tomo-

graphic images. Of course, in battery applications, also the structural properties

of the pore phase are very important. The so-called continuous pore size distri-

bution function [36] is a suitable tool for the comparison of structural properties
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of the pore space. The value of the continuous pore size distribution function for515

a radius r gives us the volume fraction of the subset of the pore phase that can

be covered by spheres with radius r that are completely contained in the pore

phase, i.e., that do not overlap with particles. For further background regarding

the continuous pore size distribution information, we refer to [36]. Estimates

of the continuous pore size distribution functions for real and simulated data520

are visualized in Figure 16(a). The curves are in good accordance, where the

pointwise estimated 5% and 95% quantiles of the estimated continuous pore size

distribution for the simulated data do not exceed the corresponding quantiles

of the real data sets.

(a) Continuous pore size distribution. (b) Geodesic tortuosity.

Figure 16: Continuous pore size distribution and geodesic tortuosity of the pore phase. Blue:

Real data sets; Red: Simulations. Shaded areas show the range between the estimated 5%

and 95% quantiles.

Finally, we consider a further morphological characteristic that is important525

for transport processes, the geodesic tortuosity [14]. This means, we look at

the ratio between the lengths of shortest paths from bottom to top through the

pore phase of the material, divided by the material thickness. Histograms of

the corresponding estimates for real and simulated data can be found in Figure

16(b). Again, an excellent fit can be observed.530
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5. Outlook

In the previous sections, we have dealt with the construction and valida-

tion of a parametric 3D microstructure model for the morphology of lithium-ion

power cell anodes. We now want to give an outlook towards virtual materials

testing, which can be based on this model. The two main abilites needed for535

virtual materials testing of battery electrodes are 1) a microstructure genera-

tor that is able to provide virtual electrode morphologies and 2) a possiblity to

analyze the electrochemical performance of geometrically complex microstruc-

tures on the computer. In Section 5.1, we show how the model presented in this

paper can be used to generate virtual structures with various morphological540

properties. In Section 5.2, we briefly discuss how the software given in [37] can

be used to gain information about the electrochemical performance of electrode

microstructures on the computer. To give a simple example, we compute the

cell potential over time for tomographic image data as well as corresponding

microstructures simulated by our model.545

5.1. Generation of further virtual structures

In this section, we show that the model described in the present paper can

be used to generate further virtual, but still realistic microstructures, the mor-

phological properties of which differ from those of the real data set. This can be

done by systematically varying model parameters. Examples of possible modi-550

fications are given in Figure 17. For instance, we can change simple structural

features like volume fraction (top left) by changing the corresponding model

parameter. By changing the connection probabilites in the graph model, we

can stronger pronounce the anisotropy (top right) or create structures without

anisotropy effects (bottom left). Furthermore, we can realize virtual morpholo-555

gies with structural gradients, see the image on the bottom right of Figure 17,

where the volume fraction of the particle phase decreases from bottom to top.
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Figure 17: Virtual structures with various (modified) mophological properties. Center: Struc-

ture fitted to the real data; Top left: Higher volume fraction of particle phase; Top right:

Structure with more pronounced anisotropy; Bottom left: Structure without anistropy; Bot-

tom right: Structural gradient, i.e. decreasing volume fraction of particle phase from bottom

to top.

5.2. Estimation of electrochemical characteristics

In this section, we briefly describe a tool which makes it possible to analyze

the electrochemical performance of virtual microstructures, see [37]. It is based560

on a finite volume discretization of the thermodynamically consistent transport

theory presented in [10] and [38]. Using this software, we can estimate electro-

chemical properties of anode morphologies gained by tomographic imaging as

well as simulated microstructures that do not (yet) exist physically, but only

virtually on a computer. In particular, this tool can be used to analyze virtual565

microstructures like the ones described in Section 5.1. Doing so, one can try to

identify microstructures with preferable electrochemical properties. However,

this is beyond the scope of the present paper and thus subject of further re-

search. Here, to give a simple example of the procedure, we show how the cell

potential over time during lithiation can be estimated for tomographic image570

data as well as corresponding microstructures simulated by our model.

The setting for the electrochemical simulations is the following. We inves-
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tigate half-cell simulations, where we consider lithiation of the cell at a state-

of-charge of 50%. After 60 seconds without any current, we apply a current

of 0.008A/cm2 (≈ 4C) for 60 seconds, after which, for another 60 seconds, no575

current is applied. Such a current peak is a reasonable setting for a power cell.

As mentioned above, to give an example, we compute the resulting cell poten-

tial over time. The corresponding results are visualized in Figure 18 for the

tomographic image data as well as the simulated microstructures that have also

been used for model validation in Section 4. It can be seen that the mean value

Figure 18: Cell potential over time. Blue: Real data sets; Red: Simulation. Shaded areas

show pointwise 95%-confidence intervals. On the right-hand side a zoom is shown to the

regions marked by light-green and dark-green boxes, respectively.

580

of the cell potential of the simulated data sets approximately matches the cell

potential of the real data sets for each time step, while the variability of the

results obtained for the real data sets is larger than the one for the simulated

data sets. The pointwise 95% confidence intervals of the results for the simu-

lated data sets are almost contained within the ones for the experimental data585

sets for any time step.

6. Conclusions

In this work, we have introduced a parametric stochastic 3D microstructure

model for simulation of the morphology of power cell anodes. The model is
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based on a previously published modeling idea (see [16]) and extends this idea590

to account for the lower volume fraction of the particle phase in power cell anodes

and to include the anisotropic structure of this kind of cells which results from

the calendering process.

The basic idea of the extended model is to divide the region of interest in

convex polytopes and to fill part of these polytopes with particles using so-called595

spherical harmonics. The remaining polytopes stay empty to account for the

lower volume fraction, where nevertheless a complete connection of the particle

system is ensured by a connectivity graph that indicates connections of particles.

This connectivity graph has an anisotropic structure such that also the resulting

particle system has this property.600

The model was fitted to real data gained by synchroton tomography and the

goodness of fit was investigated using various morphological image characteris-

tics.

Furthermore, we proved the ability of our model to generate further virtual

microstructures of battery anodes with a variety of morphological properties.605

Thus, it was shown that the parametric 3D model introduced in this paper can

be used as a microstructure generator for virtual materials. Finally, an example

was given which shows how electrochemical properties of simulated morphologies

can be estimated on the computer using the software given in [37].

Besides the overall aim to identify morphologies that can help to improve610

the functionality of new Li-ion batteries, there are still other possible applica-

tions of our model. For example, several studies (see, e.g., [39]) showed that

local variability of morphological properties has an enormous influence on func-

tionality. In [40], this has been analyzed e.g. for varying local tortuosity. The

microstructure model introduced in the present paper can be adapted to gener-615

ate structures with different local variability of diverse morphological aspects.

The influence of this local variability can then be analyzed using electrochemical

simulations. Such investigations can help to better understand the relationship

between morphology and functionality of battery electrodes, which in turn can

help to improve battery performance.620
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