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Abstract

Computed tomography (CT) can capture volumes large enough to measure a statistically
meaningful number of micron-sized particles with a sufficiently good resolution to allow for
the analysis of individual particles. However, the development of methods to efficiently in-
vestigate such image data and interpretably model the observed particle features is still an
active field of research. When image data of particles exhibiting a wide range of shapes and
sizes is considered, traditional image segmentation methods, such as the classic watershed
algorithm, struggle to recognize particles with satisfying accuracy. Thus, more advanced
methods of machine learning must be utilized for image segmentation to improve the va-
lidity of subsequent analyzes. Moreover, CT data does not include information about the
mineralogical composition of particles and, therefore, additional SEM-EDS image data has
to be acquired. In this paper, micro-CT image data of a particle system mostly consist-
ing of zinnwaldite-quartz composites is considered. First, an image segmentation method
is applied which uses deep convolutional neural networks, in particular an adaptation of
the U-net architecture. This has the advantage of requiring less hand-labeling than other
machine learning methods, while also being more flexible with the possibility of transfer
learning. Then, fully parameterized models based on vine copulas are designed to deter-
mine multivariate probability distributions of descriptor vectors for the size, shape, texture
and composition of particles—allowing for the estimation and interpretable characteriza-
tion of interdependencies between particle descriptors. For model fitting, the segmented
three-dimensional CT data and co-registered two-dimensional SEM-EDS data are used.
The models are applied to predict the mineralogical composition of particles, solely on the
basis of particle descriptors observed in CT data.
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1 Introduction

The nature of individual particles within materials influences the quality and behavior of
application-specific particulate materials, such as crushed mineral ores considered in the mining
industry and those materials used for the production of coatings, membranes and electrodes.
For example, descriptors of particle size, flatness and sphericity as well as their mineralogical
composition play an important role in this context. Moreover, the behavior of particle systems
during processing depends on the descriptors of individual particles mentioned above (Tripathy
and Suresh, 2017; Zheng et al., 2017). Therefore, the quantitative characterization of particle
systems by means of such descriptors is of great interest in order to study their influence on
macroscopic physical properties of particulate materials and, in particular, on the behavior of
the underlying particle systems during processing.

Typically, particle systems are characterized by univariate probability distributions of single
particle descriptors, e.g., the particle size distribution or the distribution of shape descriptors
(Ditscherlein et al., 2020a; Furat et al., 2018; Sygusch and Rudolph, 2021). To do so, imaging
techniques like, for example, computed tomography (CT) can be deployed to obtain image data
of the particle system under consideration, followed by image processing to obtain a particle-
wise segmentation from which descriptors for individual particles can be computed (Ditscherlein
et al., 2020b; Oliveira et al., 2022a). However, in many cases, the segmentation of image data is
a non-trivial task, requiring a careful calibration of image processing algorithms. In Furat et al.
(2018) the particle-wise segmentation of CT image data and its characterization by means of
probability distributions of particle descriptors was achieved by combining conventional segmen-
tation algorithms with methods from machine learning, which have been trained using manually
labeled 3D data.

Since particle descriptors are in general correlated and univariate probability distributions
of single particle descriptors are unable to capture such correlations, multivariate probability
distributions have to be used for a more holistic characterization of particle systems. However,
it is clear that this leads to additional complexity for the characterization task. In Ditscherlein
et al. (2020a); Furat et al. (2019) so-called Archimedean copulas (Czado, 2019; Nelsen, 2006)
have been used for modeling the joint multivariate distribution of 2- and 6-dimensional descriptor
vectors, respectively. Yet, for modeling the distribution of vectors with dimension larger than
two, so-called vine copulas have shown to be a more flexible tool (Aigner et al., 2023).

For some particle systems, additional difficulties in the course of their characterization arise
when the particles are composed of various materials, or when they are even composites con-
sisting of different material components. Then, CT image data often does not provide sufficient
information on the composition of particles (Furat et al., 2018). On the other hand, combining
different imaging techniques, like the combination of scanning electron microscopy (SEM) and
energy-dispersive X-ray spectroscopy (EDS), allows for a mineralogical characterization of pla-
nar 2D sections of particle systems. Using both 3D CT and co-registered 2D SEM-EDS image
data of a particle system, a characterization with respect to the 3D particle morphology, texture
as well as the mineralogical composition can be achieved (Furat et al., 2018; Reyes et al., 2017).

The general goal of the present paper is the development of a workflow for the multivariate
characterization of particle systems consisting of (i) the segmentation of particulate CT data
based on machine learning techniques, such as convolutional neural networks (CNN), which re-
quire less manually labeled data than the method described in Furat et al. (2018), see Fig. 1
(first row; left and center); (ii) the combination of segmented CT image data and SEM-EDS
data to obtain multidimensional vectors of particle descriptors regarding size, shape, texture
and composition, see Fig. 1 (first row; center and right); (iii) modeling of multivariate proba-
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bility distributions of descriptor vectors using vine copulas which allows for better fits than the
Archimedean copulas considered in Ditscherlein et al. (2020a); Furat et al. (2019), see Fig. 1
(second row; right); (iv) the calibration of prediction model which allows for the estimation of
the mineralogical composition of particles imaged by CT without requiring additional SEM-EDS
data, see Fig. 1 (second row; left). To illustrate this workflow, crushed ore particles consisting of
various mineral components, mainly quartz, topaz, zinnwaldite and muscovite, are characterized
on the basis of micro-CT data using multivariate probability distributions of their descriptor vec-
tors. Since such particle systems typically undergo separation processes in applications within
the mining industry, we restrict the mineralogical characterization of particles to the assessment
of their volume fractions of valuable (in this case zinnwaldite) and non-valuable materials. Nev-
ertheless, the methods of the present paper can be applied for further particle systems with
different characterization tasks, as well. In particular, in Section 4 we discuss how a modified
version of the prediction model could be used if the volume fractions of more than two groups
of minerals are of interest, in contrast to the assessment of just the volume fractions of valuable
and non-valuable minerals. Moreover, our image segmentation and modeling approach does not
depend on the range of particle sizes and image resolution, provided that the chosen imaging
technique captures a suitable number of particles comprised of sufficiently many voxels (Behnsen
et al., 2023).

CT data segmentation SEM-EDS data
before separation

multivariate distribution
of size, shape, texture and composition

descriptors of particles

prediction model
for the VFVM

CNN

modeling by means of
vine copulas

Figure 1: Workflow for multivariate stochastic modeling of particle descriptor vectors and estimation
of the particle-wise volume fraction of valuable materials (VFVM) from CT data.

More precisely, the workflow for the characterization of particle systems, which is developed
in the present paper, can be decomposed into the following steps. First, the measured CT image
data undergoes a pre-processing step based on machine learning, where suitable neural networks
are considered. More precisely, we use a modified version of the network architectures described
in Çiçek et al. (2016); Furat et al. (2021), which is a fully convolutional neural network (LeCun
et al., 2015). After the pre-processing step performed by the trained network, several binarization
and segmentation steps are applied to the CT data in order to extract individual particles by
means of a marker-based watershed algorithm (Roerdink and Meijster, 2001; Spettl et al., 2015).
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Then, for each segmented particle, the corresponding vector of size, shape and texture descrip-
tors is computed. Moreover, using 2D SEM-EDS data, the mineralogical composition of those
particles hitting some planar sections within the 3D sampling window of CT data is correlated
with corresponding particle descriptors computed from CT data. In this way, for such particles
vectors of size, shape, texture and composition descriptors can be determined. These descriptor
vectors are then stochastically modeled by multivariate probability distributions, which are de-
termined by means of an R-vine copula approach (Joe, 2015; Kurowicka and Joe, 2010). These
multivariate probability distributions can be used as a prediction model to estimate the miner-
alogical composition of particles, solely based on particle descriptors computed from CT data,
assuming that the geometrical/textural descriptors and the mineralogical composition are corre-
lated. In particular, using such multivariate probability distributions, we extend the prediction
model presented in Furat et al. (2018) such that we can now estimate the mineralogical compo-
sition of particles quantitatively (i.e., the VFVM) from CT data (without requiring additional
SEM-EDS data) instead of just determining their predominant mineral component.

Besides the calibration of the prediction model for estimating the particle-wise VFVM from
CT data, multivariate probability distributions of particle descriptors have further useful appli-
cations. For example, as mentioned above, in the mining industry similar ore particle systems
like that one considered in the present paper undergo various separation processes, e.g., magnetic
separation (Leißner et al., 2016), for the extraction of zinnwaldite-rich particles from a crushed
greisen-type ore. Typically, in the literature the quality of such separation processes is char-
acterized by comparing univariate probability distributions of single particle descriptors before
and after separation, using so-called partition curves (Leißner et al., 2016). Recently, in Schach
et al. (2019) a characterization of separation processes has been proposed by considering bivari-
ate probability distributions of two-dimensional descriptor vectors. The workflow developed in
the present paper, which can reliably model the multivariate distribution of higher-dimensional
vectors consisting of more than just two particle descriptors, can be used as a basis for an even
more holistic analysis of the quality of separation processes. This will be discussed in detail in a
forthcoming paper.

2 Materials and methods

2.1 Description of materials and data acquisition

The sample material used in this study is a crushed lithium ore, which consists of four main sili-
cate components. These are quartz, topaz and the phyllosilicates zinnwaldite and muscovite (also
grouped as mica), where quartz and zinnwaldite make up more than 90% of the volume fraction
of particles intersecting with a SEM-EDS slice. Mica is slightly paramagnetic and can be sepa-
rated from quartz and topaz by magnetic separation, provided that there occurs no significant
intergrowth of components within individual particles. In the case of composite particles, their
particle magnetizability determines whether they are enriched in a magnetic or non-magnetic
product (Leißner et al., 2016). Since the extraction of target particles with a defined composition
is of great interest in the mining industry, the goal of the present paper is the 3D characteri-
zation of particles with respect to their size, shape, texture and VFVM. Such particle data will
be unbiased compared to data coming exclusively from 2D characterization methods even for
anisotropic data (Oliveira et al., 2022b). For methods which deal with the characterization of
3D structures based on 2D image data (Chiu et al., 2013; Kench and Cooper, 2021).

The sample material was prepared to enable both SEM-EDS analyses and micro-CT imaging
on the same specimen. To achieve better dispersion, the particles were mixed with micron-sized
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graphite and then embedded in epoxy blocks with a diameter of 20 mm. To avoid the influence
of segregation effects on the results of the 2D SEM-EDS analyzes, the grain mount was cut in
the direction of sedimentation, rotated by 90◦ and re-embedded (Heinig et al., 2015).

The sample was analyzed by a Mineral Liberation Analyzer (MLA), a FEI Quanta 650F
field emission scanning electron microscope (SEM) equipped with two Bruker Quantax X-Flash
5030 energy-dispersive X-ray detectors (EDX). Back-scattered electrons (BSE) are used for im-
age segmentation and EDX-spectra for mineral classification. The GXMAP (grain-based X-ray
mapping) measurement mode was selected for analyzing the sample. More detailed information
about the functionality of MLA and offline processing of the data can be found in Bachmann
et al. (2017); Fandrich et al. (2007). Measurement conditions were 20 kV, 500×500 px frame size
and 1000 µm horizontal field width (2 microns per pixel). EDX analyzes were performed every 6
px with an exposure time of 7 ms. BSE calibration was set on Au=252. Particle data processing
was done with the software package MLA Dataview 3.1.4.686.

Micro-CT imaging was performed using a Zeiss Xradia 510 Versa X-ray microscope. Scan-
ning was done using 80 keV acceleration voltage and 7 W tube power. The polychromatic beam
was filtered with the systems LE6 filter. The pixel size of the projections is 12 µm (0.4X objec-
tive, source-sample distance: 40 mm, detector-sample distance: 120 mm, camera binning: 2). In
this way, 1601 projections were acquired over 360◦ using 15 s exposure time to achieve an opti-
mum signal-to-noise ratio. Reconstruction was done using the Zeiss software XMReconstructor
(version 11.1.8043) with the following parameters: automatic center shift correction, Gaussian
smoothing (0.5), beam hardening correction (0.1), and no byte scaling.

Note that the methods described in the following sections, both for image segmentation as
well as for stochastic model-based characterization of particles, can also be applied to image
data resulting from other 3D imaging procedures, such as nano-CT.

2.2 Processing of CT image data via machine learning

In order to describe the particle system considered in this paper using multivariate probability
densities of their size, shape and texture descriptors, we have to identify individual particles in
the CT image. Therefore, an image segmentation procedure has to be deployed which partitions
the CT image data into a background region and regions which correspond to individual particles,
see Fig. 1 (first row; center). However, the direct application of conventional methods like the
watershed algorithm fails for the given CT image data since particles observed in the data
often exhibit elongated, platelike shapes. More precisely, the watershed algorithm tends to split
elongated particles into multiple regions, an issue which is referred to as oversegmentation (Soille,
2003).

Since the accuracy of the segmentation results strongly impacts the results of subsequent
analyzes, i.e., the computation of descriptor vectors and their stochastic modeling in Sections 2.3
and 2.4, we utilize methods of machine learning to obtain an improved segmentation of the CT
image data. More precisely, we consider a modified version of the network architectures described
in Çiçek et al. (2016), i.e., we use a CNN, namely the 3D U-net architecture, to achieve a
reasonably good segmentation of the 3D image data. The 3D U-net is reported to only require
annotated 2D cutouts for training, rather than annotated 3D voxel volumes, and thus reducing
the amount of manually labeled data (Çiçek et al., 2016). After training, the optimized network
can be applied on the entire CT image data to produce a 3D segmentation of the entire data
set.

From here on, we assume that the CT image data can be described as a map I : W → R,
where the voxel space W ⊂ Z3 is a three-dimensional interval and I(x) ∈ R is the corresponding
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grayscale value of the voxel x = (x1, x2, x3) ∈ W .

2.2.1 Description of the network architecture

The U-net architecture, originally introduced for pixel-wise classification of 2D images in Ron-
neberger et al. (2015), was later extended for 3D image segmentation as the 3D U-net in Çiçek
et al. (2016). This structure primarily comprises an encoder-decoder design with both down-
sampling and upsampling paths, each having four levels with specific convolutional layers and
activation functions, as detailed in Fig. 2.

We make the following two adjustments with respect to the original architecture described in
Çiçek et al. (2016). First, the last two downsampling layers are extended by two dilated 3×3×3
convolutional layers with dilation factors of 2 in each dimension (Yu and Koltun, 2015). The
dilated convolutional layers allow the network to consider a larger region around each voxel.
A similar effect could be achieved by increasing the kernel sizes in the convolutional layers
which, contrary to the usage of dilated convolutional layers, leads to an increase in trainable
parameters and, thus, a decrease in computational feasibility. However, the additional dilated
convolutional layers still add depth to the network which can cause the problem of vanishing
gradients during training. Second, in order to overcome this issue, we modified the network
architecture described in Çiçek et al. (2016) by adding further residual connections. Specifically,
in each downsampling level, the input to the first convolutional layer is also added to the output
of the second convolutional layer. Similarly, the input to the first dilated convolutional layer
in the last two downsampling levels is added to the output of the second dilated convolutional
layer. In He et al. (2016) it was shown that such residual connections can improve learning in
deep convolutional neural networks. The entire architecture is depicted in Fig. 2.

32 32 32

32 64 64

64 128 128

256 256 256 256128

128128 128 256+128

64 64128+64

32 3264+32 1

BN,Pad,3x3 Conv,Relu

max pool

up-conv

BN,Pad,Dil. Conv,Relu

Sum

Concatenation256 256

128

1x1 Conv

Figure 2: U-net architecture used for the initial segmentation task. Each 3× 3× 3 convolutional layer
(3 × 3 Conv) and each dilated convolutional layer (Dil. Conv) is preceded by a batch normalization
layer (BN) and a symmetric padding layer (Pad) of suitable width.

2.2.2 Building the ground truth: Annotation of 2D voxel slices

As stated in Çiçek et al. (2016), an advantage of using a 3D U-net is that only annotated 2D slices
are required for training. In this context, a 2D slice is a subset of voxels Wz ⊂ W given by Wz =
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{(x1, x2, x3) ∈ W : x3 = z} for some integer z ∈ Z. Then, an annotated 2D slice is a mapping
Lgt : Wz → {0, 1}, where the connected components of the set {x ∈ Wz : Lgt(x) = 1} correspond
to the voxel positions of the individual 3D particles intersected with the slice Wz. Meaning that
an annotated slice is a segmentation map, in this context referred to as ground truth, of a planar
2D section of 3D image data. To avoid oversegmentation of non-convex particles, which can
appear as disconnected sets in a given 2D slice, visual 3D information is used for the annotation
of the ground truth labels.

Once suitable 2D slices Wz1 , . . . ,Wzn are chosen for some integers z1, . . . , zn ∈ Z, the labels
Lgt(x) are determined for all x ∈ W ′ = Wz1 ∪ . . .∪Wzn by thresholding the image data first, fol-
lowed by manual correction of particle boundaries to separate neighboring particles in the ground
truth image data. Additionally, thin particles are manually enlarged to avoid over-segmentation.
A cutout of the resulting ground truth labels for the slice Wz with slice number z = 387 is shown
in Fig. 3. The amount of required hand-labeling can vary depending on the nature of the data.
For reference, we annotated five 800 × 800 voxel-sized cutouts of the entire 4086 × 4086 × 1498
voxel-sized image data. The annotated slices should be representative, meaning that they should
include common features such as interfacing particles and imaging artifacts, like those shown in
Fig. 3.

The goal of this section is to explain how this 2D ground truth can be used to create a
3D training data set for the 3D U-net. Specifically, the remaining voxels x ∈ W \ W ′ of other
slices are not annotated, but placeholder labels for those voxels are still required for the training
process described in Section 2.2.3. Therefore, for a given ground truth labeling Lgt on W ′, we
introduce a 3D voxelwise labeling L : W → {0, 1}, given by

L(x) =

{
Lgt(x), if x ∈ W ′,

0, otherwise.

0

0.983

0.5

Figure 3: (a) 2D cutout of raw CT data showing a strongly absorbing particle, (b) the corresponding
ground truth labels of particles (white) and background (black), and (c) the corresponding weight map,
where brighter areas indicate higher weights. Note that the weights of voxels corresponding to platelike
particles are increased to avoid oversegmention of such particles.

During network training, described below in Section 2.2.3, voxels for which the ground truth
is not known, i.e., for voxels x ∈ W \ W ′, the eventually occurring discrepancy between the

voxelwise labeling L(x) and the network’s output L̂(x) should be ignored in the loss function.
This is achieved by means of a so-called voxel weight function. The weight function determines
to which degree the network output at each voxel position contributes to the loss function during
training. By setting the weight of a voxel equal to zero, the classification of that voxel does not
impact the training loss. Vice versa, the voxels within regions between interfacing particles are
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most important for the quality of the obtained segmentation, and, thus, their weights should be
increased. In general, any function w : W → [0,∞) is a valid voxel weight function. However, in
the present paper, we consider the following weight function w : W → [0,∞) with

w(x) =


0.04 + exp

(
−(d21(x)+d22(x))

36

)
, if x ∈ W ′ and L(x) = 0,

cf , if x ∈ W ′ and L(x) = 1,
0, otherwise,

(1)

where the constant cf ≥ 0 is chosen such that
∑

x∈W ′ : L(x)=1

w(x) =
∑

x∈W ′ : L(x)=0

w(x), and d1(x) and

d2(x) denote the distance of voxel x ∈ W ′ to the closest and second closest particle within the
labeled slice to which x belongs, respectively. The weight function given in Eq. (1) is similar to
the weight function proposed in Ronneberger et al. (2015), with the difference that we increase
the weights for voxels which are closer to the center of the gap between two particles. Moreover,
to avoid emphasizing gaps that are sufficiently large, we replace the distance functions d1 and d2
considered in Eq. (1) by the truncated versions d̃1 : W ′ → [0,∞) and d̃2 : W ′ → [0,∞), where

d̃i(x) =

{
di(x), if di(x) ≤ d̂,

∞, otherwise,

for i = 1, 2, for all x ∈ W ′ and for some upper bound d̂ ≥ 0. Putting d̂ = 5, the resulting weight
map for a cutout of slice Wz with slice number z = 337 is shown in Fig. 3.

2.2.3 Network training

A convolutional neural network with an architecture as depicted in Fig. 2 can be described by
the parameters of its layers. In the following, we explain how the available image data as well
as labels and voxel weights are used to train the network, i.e., to estimate optimum network
parameters for the computation of segmentation maps from CT data.

The training can be decomposed into different training steps, in each of which the network’s
output L̂ : W → [0, 1] is compared to the voxelwise labeling L : W → {0, 1}, where the

network parameters are updated to reduce the discrepancy between L̂ and L. For that purpose,
a stochastic gradient descent algorithm is used to minimize the weighted binary cross-entropy
loss H(L, L̂, w), which is given by

H(L, L̂, w) = −
∑
x∈W

w(x) ℓ(L(x), L̂(x)), (2)

where ℓ(a, b) = a log b+ (1 − a) log (1 − b) for any label a ∈ {0, 1} and predicted label b ∈ (0, 1),
and w : W → [0,∞) is the weight function given in Eq. (1).

Note that the output L̂ depends on the network’s trainable parameters. Thus, by utilizing
the gradient of the loss function in Eq. (2) with respect to the neural network’s parameters, the
latter ones are updated according to the ADAM algorithm with a stepsize of α = 10−4 (Kingma
and Ba, 2017). To accelerate learning in the early training steps, the network parameters are
initialized according to the distribution described in He et al. (2015). The result of the training
process described above largely depends on which training images are used during the individual
training steps. Furthermore, the use of so-called data augmentation has been identified as a
useful tool for training convolutional neural networks when an abundance of training data is not
available (Shorten and Khoshgoftaar, 2019). Therefore, the training images in each training step
are chosen as follows:
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(i) An 80×80×80 sized cutout box is taken at random from the grayscale image I : W → R.

(ii) The grayscale values of voxels belonging to the cutout box are normalized.

(iii) A random elastic transformation is applied on the cutout box.

(iv) The cutout box is rotated by a random degree around each axis.

The same operations, with the exception of step (ii), are performed on the weight function
w : W → [0,∞) and the voxelwise labeling L : W → {0, 1} in such a way that they correspond
to the augmented training image. The cutout size in step (i) was chosen in accordance with GPU
memory limitations. Furthermore, the cutout boxes are chosen such that their voxels intersect
with at least one of the annotated slices. In step (ii), the grayscale values of the cutout boxes
are normalized such that they have a mean value of 0 and a standard deviation of 1. The elastic
transformations applied in step (iii) are described in Simard et al. (2003).

The training process itself can be decomposed into subsequent periods each of which consists
of 2000 individual training steps. At the end of each period, the network is evaluated with the
cost function given in Eq. (2) on a separate validation set. If the value of the cost function on the
validation set (validation score) does not decrease for four subsequent periods, then the network
parameters are restored to the parameters of the most performant network. The training process
concludes when the validation score does not improve for 40 subsequent periods (or after 200
periods all in all, to ensure that the training process terminates sufficiently fast).

2.2.4 Segmentation procedure

After training the network is applied on the entire CT image data. While the network is trained
on 80× 80× 80 sized cutout boxes, its fully convolutional architecture allows for the application
of the network to 3D input data of any size, as long as the size is divisible by 8 for each direction
to accommodate the max-pooling layers. However, it turned out that due to memory limitations
the application of the trained network on the entire 3D image data was not possible. Therefore,
we used an overlap-tile strategy to remedy this issue (Ronneberger et al., 2015).

Then, the trained network’s output is an image of the same size as the CT image data, which
takes arbitrary values in the interval [0, 1], i.e., the output is not a segmentation of the CT image
data yet. Therefore, we first compute an initial segmentation by binarizing the network’s out-
put with respect to the threshold of 0.5. Then, connected components within this binarization
consisting of more than 50 voxels are identified as individual regions of the initial segmenta-
tion. However, certain features, such as gaps between interfacing particles, are overemphasized
in the initial segmentation. In order to capture the particle shape more accurately, the final
segmentation is computed by applying a marker-based watershed algorithm to the binarized
CT image data, using the centroids of the connected components of the initial segmentation as
markers (Soille, 2003). Each connected (foreground) component P ⊂ W of the final segmenta-
tion is then interpreted as a particle, i.e., the segmented particles are considered to be sets of
voxels.

In the following we will use the segmented image data, as shown in Fig. 4, in order to
investigate various descriptors of the extracted particles P ⊂ W describing their size, shape and
texture—which will then be correlated with the VFVM of the particles determined by considering
SEM-EDS data.
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Figure 4: Cutout of a 2D slice of the grayscale image (left), U-net based segmentation (middle) and
aligned SEM-EDX image (right). In the SEM-EDX slice, the valuable mineral is shown in blue whereas
the other minerals are depicted in turquoise.

2.3 Computation of particle descriptors

We now explain how particle descriptors characterizing the size, shape and texture of particles
can be computed, using the particle-wise segmented CT image data which has been obtained
with methods of machine learning as stated in Section 2.2. However, also the VFVM of particles
and the modeling thereof is of great interest. In order to obtain such information which is not
provided in the CT data considered in Section 2.2, phase-wise segmented SEM-EDS data will
be utilized, which is available for three slices of the CT image data, see Fig. 1 (first row; right).

Later on, in Section 2.4, the computed vectors of particle descriptors will be stochastically
modeled, which leads to multivariate probability distributions of particle descriptors for the
particle system described in Section 2.1, see Fig. 1 (second row; right).

2.3.1 Size, shape and texture descriptors

Visual inspection of the available image data indicates that particles consisting of different
minerals differ significantly in size and shape. In order to quantitatively distinguish irregularly
shaped particles from each other, we consider several size and shape descriptors. In particular,
the size descriptors of a particle P ⊂ W considered in this paper are its volume Mvol(P ), given
by the number of voxels associated with P , and its surface area, denoted by Marea(P ), which is
computed using an algorithm described in Schladitz et al. (2006).

Regarding the description of particle shape, we compute two so-called aspect ratios. More
precisely, for a particle P the elongation Melo(P ) and the flatness Mflat(P ) are given by

Melo(P ) =
a2(P )

a1(P )
and Mflat(P ) =

a3(P )

a2(P )
, (3)

where a1(P ), a2(P ) and a3(P ) denote the length of the longest, second longest and third longest
axis of the (arbitrarily oriented) minimum-volume bounding box of P, respectively (Barequet
and Har-Peled, 2001). Note that due to the definitions given in Eq. (3), a platelike particle would
feature a smaller value of Mflat, whereas a more spherical particle would feature a larger value of
Mflat. Furthermore, we compute the sphericity of particle P , denoted by Msphe(P ). It quantifies
how closely the shape of P resembles that of a sphere, where the ratio of Mvol(P ) to Marea(P ) is
compared to the ratio of volume to surface area of a sphere with the same volume as P . Thus,
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the sphericity Msphe(P ) is given by

Msphe(P ) =
Mvol(P )

Marea(P )

Sarea(r(P ))

Svol(r(P ))
, (4)

where Svol(x) and Sarea(x) denote the volume and surface area of a sphere with radius x > 0,
respectively, and r(P ) is the radius of a sphere with the same volume as P . Alternatively, instead
of using Eq. (4), the sphericity Msphe(P ) can be computed using the following representation
formula:

Msphe(P ) =
(36πMvol(P )2)

1
3

Marea(P )
. (5)

Recall that the grayscale value I(x) ∈ R of a voxel x ∈ W in CT image data corresponds to
the (local) X-ray attenuation coefficient of the material at voxel x which depends on the mate-
rial’s mass density, atomic number, and photon energy. at this location (Grodzins, 1983). Thus,
it seems to be plausible that the overall brightness of the set of voxels representing a particle can
be correlated with its VFVM. However, in the present CT data, imaging artifacts exist which
could distort mean grayscale values of voxels associated to individual particles. Hence, instead of
the mean grayscale value, the median of grayscale values of voxels associated to a particle P is
considered, which is denoted by Mmed(P ). Similarly, a larger variability of grayscale values within
a particle could indicate the presence of different mineralogical components. Therefore, besides
the median Mmed(P ), we consider the inter-quartile range MIQR(P ) of particle-wise grayscale
values, which is given by

MIQR(P ) = Q3(P ) −Q1(P ),

where Q1(P ) and Q3(P ) denote the 25-th and 75-th percentile of grayscale values associated to
P, respectively. The interquartile range MIQR(P ) is a robust measure of variability, frequently
used instead of the standard deviation (Ko lacz and Grzegorzewski, 2016). The choice of these
descriptors stems from our visual observations of differences within the image data. However, if
particles of distinct minerals were to exhibit similar size and shape, one would need to rely more
heavily on textural measures, ensuring accurate differentiation and modeling.

2.3.2 Mineralogical composition

To correlate the morphological and textural 3D characterization of particles with their miner-
alogical composition, we use the SEM-EDS data described in Section 2.1 in order to determine a
particle descriptor for quantifying the presence of valuable minerals, namely the VFVM. Since the
distinction between valuable minerals (zinnwaldite) and non-valuable minerals (quartz, topaz,
muscovite and others) is of interest, we group the detected minerals accordingly. The phase-wise
segmented SEM-EDS data within a slice Wz ⊂ W for some z ∈ Z can then be described by a
map LSEM : Wz → {0, 1, 2}, where LSEM(x) = 0 indicates the presence of no particle at voxel
x ∈ Wz. Moreover, LSEM(x) = 1 and LSEM(x) = 2 indicate that a valuable mineral (zinnwaldite)
and a non-valuable mineral (quartz, topaz, muscovite and others) was detected at x ∈ Wz,
respectively.

The SEM-EDS data is available for three slices1 Wz1 ,Wz2 ,Wz3 , i.e., the maps LSEM
j : Wzj →

{0, 1, 2} of the mineralogical composition are given for each j = 1, 2, 3. The exact locations of
these slices were determined by aligning nine small (800 × 1000) cutouts of each SEM image

1The subsets of voxels, where SEM-EDS data are available, are not necessarily parallel to any of the axes, and,
thus, they do not fit the usual definition of a 2D slice given in Section 2.2.2. However, for notational simplicity,
we still refer to them as slices.
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using the methodology described in Furat et al. (2018). Then, for each particle P ⊂ W such that
P ∩ (Wz1 ∪Wz2 ∪Wz3) ̸= ∅ the area fraction Mrat(P ) of valuable minerals observed in voxels
associated with the intersection P ∩ (Wz1 ∪Wz2 ∪Wz3) ̸= ∅ is given by

Mrat(P ) =
#
⋃3

j=1{x ∈ P ∩Wzj : LSEM
j (x) = 1}

#
⋃3

j=1{x ∈ P ∩Wzj : LSEM
j (x) > 0}

, (6)

where # denotes the cardinality of a set. For this, to obtain a useful descriptor, we assume that
the mineralogical composition of a particle P observed in a SEM-EDS slice is representative for
the entire 3D particle. Then, Mrat(P ) can be interpreted as the VFVM within P .

2.4 Multivariate probabilistic modeling of particle descriptors

By computing the descriptors introduced in Section 2.3 for each segmented particle P1, . . . , Pn

within the CT image data for which SEM-EDS information is available, we obtain a sample of
vector data

x(ℓ) =
(
Mmed(Pℓ),MIQR(Pℓ),Mvol(Pℓ),Melo(Pℓ),Mflat(Pℓ),Msphe(Pℓ),Mrat(Pℓ)

)
(7)

for ℓ = 1, . . . , n. We use the data set D = {x(ℓ) : ℓ = 1, . . . , n} in order to fit a multivariate
probability distribution of particle descriptors for the particle system considered in this paper.

Therefore, we interpret the data given in Eq. (7) as realizations of a certain random vector
X = (X1, . . . , Xd) with d = 7. Note that the distribution of X is uniquely determined by
its cumulative distribution function (CDF) F1,...,d : Rd → [0, 1], where F1,...,d(x) = P(X1 ≤
x1, . . . , Xd ≤ xd) for each x = (x1, . . . , xd) ∈ Rd. Thus, fitting a model for F1,...,d, or for the
corresponding probability density f1,...,d : Rd → [0,∞), to the data set D = {x(1), . . . , x(n)} can
provide valuable insight regarding the size, shape, texture and VFVM of individual particles of
the particle system under consideration.

In Furat et al. (2019), d-dimensional Archimedean copulas have been utilized to model the
joint distribution of particle-wise descriptors determined in a similar type from sample data. In
the present paper, we extend this approach through the use of so-called R-vine copulas, which
allow for a more flexible modeling of multivariate probability distributions. Therefore, to begin
with, we briefly recall the definition of a copula.

2.4.1 Copulas: Definition and Sklar’s representation formula

A function C : [0, 1]d −→ [0, 1] with d ≥ 2 is called a d-dimensional copula if C is the cu-
mulative distribution function of a d-dimensional random vector with standard uniformly dis-
tributed marginals, i.e., C : [0, 1]d −→ [0, 1] is a component-wise non-decreasing function such
that C(1, . . . , 1, xi, 1, . . . , 1) = xi for all i = 1, . . . , d and xi ∈ [0, 1].

Copulas are a powerful tool to parametrically model multivariate probability distributions.
The reason for this is the fundamental representation formula discovered by A. Sklar (Nelsen,
2006), which states that the multivariate CDF F1,...,d : Rd → [0, 1] of any random vector X =
(X1, . . . , Xd) can be expressed by its marginal CDFs Fi : R → [0, 1], i = 1, . . . , d, where Fi(xi) =
P(Xi ≤ xi) for each xi ∈ R and i = 1, . . . , d, and a certain copula C : [0, 1]d −→ [0, 1], i.e., it holds
that

F1,...,d(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for all (x1, . . . , xd) ∈ Rd. (8)
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Furthermore, if the CDFs F1,...,d and C are differentiable, then Eq. (8) implies that

f1,...,d(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))
d∏

i=1

fi(xi) for all (x1, . . . , xd) ∈ Rd, (9)

where f1,...,d : Rd → [0,∞), c : [0, 1]d → [0,∞) and fi : R → [0,∞) denote the probability
densities corresponding to the CDFs F1,...,d, C and Fi, respectively.

On the other hand, copulas can be used for the construction of multivariate probability dis-
tributions. More precisely, by inserting any d-dimensional copula density c and any combination
of univariate CDFs F1, . . . , Fd with probability densities f1, . . . , fd into Eq. (9), the function
f1,...,d given by the right-hand side of Eq. (9) is a multivariate probability density with marginal
probability densities f1, . . . , fd. Moreover, by means of vine copulas, this procedure for the con-
struction of multivariate distributions can be simplified by applying the so-called pair-copula
construction method. Then, for modeling the probability density of a d-dimensional random
vector X with d > 2, two-dimensional copula densities are used to approximate conditional
bivariate probability densities, see Section 2.4.2, where the three-dimensional case is considered
for illustration.

2.4.2 The pair-copula construction method

Before explaining the pair-copula construction method in Section 2.4.3, we first illustrate the idea
of this method for the three-dimensional case. Let X = (X1, X2, X3) be a random vector such
that the CDFs F1,2,3 : R3 → [0, 1] and C : [0, 1]3 → [0, 1] appearing in Eq. (8) are continuously
differentiable. Then, the density f1,2,3 : R3 → [0,∞) of X can be written in the following form:
For each x = (x1, x2, x3) ∈ R3 with f1,2,3(x) > 0, let us consider the identity

f1,2,3(x) = f1,3|X2=x2(x1, x3) f2(x2), (10)

where f1,3|X2=x2 : R2 → [0,∞) with f1,3|X2=x2(x1, x3) = f1,2,3(x1, x2, x3)/f2(x2) is the conditional
density of the random vector (X1, X3) given that X2 = x2. Applying Eq. (9) to the first factor
on the right-hand side of Eq. (10), we get that

f1,2,3(x) = c1,3|X2=x2

(
F1|X2=x2(x1), F3|X2=x2(x3)

)
f1|X2=x2(x1) f3|X2=x2(x3) f2(x2), (11)

where c1,3|X2=x2 : [0, 1]2 → [0,∞) denotes the copula density corresponding to f1,3|X2=x2 and
Fi|X2=x2 is the conditional CDF of Xi given that X2 = x2 with density fi|X2=x2 , i = 1, 3. Now,
observe that similar to Eq. (10), the identity fi|X2=x2(xi) = fi,2(xi, x2)/f2(x2) holds, where
fi,2 : R2 → [0,∞) denotes the (unconditional) probability density of (Xi, X2); i = 1, 3, Then,
applying Eq. (9) to the two-dimensional probability densities fi,2, i = 1, 3, we get from Eq. (11)
that

f1,2,3(x) = c1,3|X2=x2(F1|X2=x2(x1), F3|X2=x2(x3)) c1,2(F1(x1), F2(x2)) c3,2(F3(x3), F2(x2))
3∏

i=1

fi(xi)

(12)
for each x = (x1, x2, x3) ∈ R3 with f1,2,3(x) > 0. Thus, the (trivariate) probability density
f1,2,3 can be expressed as a product of bivariate copula densities and the (univariate) densities
f1, f2, f3.

Furthermore, instead of the identity given in Eq. (10), we can consider an alternative de-
composition of f1,2,3, using the fact that the identity f1,2,3(x) = f1,2|X3=x3(x1, x2) f3(x3) holds for
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each x = (x1, x2, x3) ∈ R3 with f1,2,3(x) > 0. This leads to a different pair-copula construction
given by

f1,2,3(x) = c1,2|X3=x3

(
F1|X3=x3(x1), F2|X3=x3(x2)

)
c1,3

(
F (x1), F (x3)

)
c2,3(F2(x2), F3(x3))

3∏
i=1

fi(xi)

for each x = (x1, x2, x3) ∈ R3 with f1,2,3(x) > 0. Moreover, a third pair-copula construction
is obtained starting with the identity f1,2,3(x) = f2,3|X1=x1(x2.x3) f1(x1) which holds for each
x = (x1, x2, x3) ∈ R3 with f1,2,3(x) > 0.

Thus, in the three-dimensional case there are three different pair-copula constructions. Note
that the number of possible pair-copula constructions grows exponentially with the dimension
d > 3 (Morales-Nápoles et al., 2016). For that reason, so-called regular vines are used to describe
how different pair-copula constructions can be obtained in the general d-dimensional case, see
Sections 2.4.3 and 2.4.4 below.

2.4.3 Regular vine copulas

In the higher-dimensional case, the representation formula given in Eq. (9) cannot be directly
used for the fitting of multivariate probability densities to vector-valued data, as it would require
the fitting of a higher-dimensional copula density which can be difficult. Instead, we present an
alternative representation formula which, under some simplifying assumptions (see Section 2.4.4),
allows for the modeling of higher-dimensional probability densities using only bivariate copulas
and marginal (univariate) densities.

The vector V = (T1, . . . , Td−1) is called a regular vine (or, briefly, R-vine) on a set of d > 1
elements, identified with the set of integers {1, . . . , d}, if the following three conditions hold:

(i) T1 is an undirected tree with the set of nodes N1 = {1, . . . , d} and some set of edges
denoted by E1.

(ii) For i = 2, . . . , d− 1, Ti is an undirected tree with set of nodes Ni = Ei−1 and some set of
edges Ei.

(iii) For i = 2, . . . , d − 1 and {a, b} ∈ Ei it holds that |a ∩ b| = 1, where |a ∩ b| denotes the
cardinality of the set a ∩ b.

The edges of a tree Ti in a regular vine specify conditioning and conditioned sets. For each edge
e = {e1, e2} ∈ E1, the conditioned set O(e) is defined as O(e) = {e1, e2} and for the conditioning
set we put S(e) = ∅, i.e., S(e) is the empty set. Now, let e = {e1, e2} ∈ E2 ∪ · · · ∪ Ed−1 be an
edge of any of the subsequent trees. Then, we recursively define

S(e) = S(e1) ∪ S(e2) ∪ (O(e1) ∩O(e2)) and O(e) = (O(e1) ∪O(e2)) \ S(e).

By construction, the sets S(e) and O(e) defined in this way are subsets of {1, . . . , d} for any
edge e ∈ E(V ), where E(V ) = E1 ∪ · · · ∪ Ed−1 denotes the set of all edges in V . According
to Kurowicka and Joe (2010), the conditioned set O(e) consists of two elements for every edge
e ∈ E(V ). Moreover, for each pair of indices {i, j} ∈ {1, . . . , d} × {1, . . . , d} with i < j, there
is exactly one edge e ∈ E(V ) with {i, j} = O(e). Thus, it holds that {et1 , et2} = O(e) for some
indices et1 < et2 , where for notational simplicity we will shortly write e1 and e2 instead of et1
and et2 , respectively.
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Let X = (X1, . . . , Xd) be a random vector with continuous probability density f1,...,d : Rd →
[0,∞] and marginal densities f1, . . . , fd : R → [0,∞]. Moreover, let V = (T1, . . . , Td−1) be a d-
dimensional R-vine as described above. Then, for any x = (x1, . . . , xd) ∈ Rd with f1,...,d(x) > 0,
the following representation holds (Czado, 2019)

f1,...,d(x) =
∏

e={e1,e2}∈E(V )

ce1,e2|XS(e)=xS(e)
(Fe1|XS(e)=xS(e)

(xe1), Fe2|XS(e)=xS(e)
(xe2))

d∏
i=1

fj(xi), (13)

where XS(e) denotes the random vector consisting of those components of X whose indices belong
to the set S(e), and xS(e) is the corresponding subvector of x. Moreover, ce1,e2|XS(e)=xS(e)

: R2 →
[0,∞] denotes the bivariate copula density of the conditional probability distribution of the
random vector (Xe1 , Xe2) under the condition that XS(e) = xS(e), and Fei|XS(e)=xS(e)

denotes the
conditional CDF of Xei under the condition that XS(e) = xS(e), with i ∈ {1, 2}, which can be
determined by using the recursion formula (Dissmann et al., 2012)

Fei|XS(e)∪ej
=xS(e)∪ej

(xei) =

d
dxej

Ce1,e2|XS(e)=xS(e)

(
Fe1|XS(e)=xS(e)

(xe1), Fe2|XS(e)=xS(e)
(xe2)

)
d

dxej
Fej |XS(e)=xS(e)

(xej)
, (14)

where j ∈ {1, 2} \ {i}.
The representation formula given in Eq. (13), called vine copula representation of the mul-

tivariate probability density f1,...,d : Rd → [0,∞), is a central result of copula theory, further
details can be found in Czado (2019).

2.4.4 Sequential fitting procedure

The goal is now to fit the probability density f1,...,d : Rd → [0,∞) to empirical data of particle
descriptors, using the formulas given in Eqs. (13) and (14). However, estimating the density
f1,...,d by directly utilizing Eqs. (13) and (14) would require a separate fitting of the conditional
bivariate copula densities ce1,e2|XS(e)=xS(e)

for each realization xS(e) ∈ R|S(e)| of XS(e). Instead,
it is common to suppose that the so-called simplifying assumption is true, i.e., the bivariate
copula densities ce1,e2|XS(e)=xS(e)

do not depend on the realizations xS(e) of XS(e), but just on the
conditioning set S(e) (Killiches et al., 2016). Note that the use of copulas generally allows for
the subsequent estimation of marginal distributions and, in a second step, interdependencies.
Therefore, after fitting suitable (univariate) probability densities f̂1, . . . , f̂d : R → [0,∞) to a
given sample D = {x(k) : k ∈ {1, . . . , n}}

of n realizations x(1) = (x
(1)
1 , . . . , x

(1)
d ), . . . , x(n) = (x

(n)
1 , . . . , x

(n)
d ) ∈ Rd of the random vector

X = (X1, . . . , Xd), the task of estimating the density f1,...,d is reduced to selecting a vine structure

V̂ = (T̂1, . . . , T̂d−1) and a family of bivariate copula densities Ĉ = {ĉe1,e2|S(e) : e ∈ E(V̂ )}.
We start by modeling the marginal probability densities f1, . . . , fd of individual particle

descriptors. Since the particles considered in this paper are often composites of different min-
eralogical components, mainly quartz and zinnwaldite, multimodal distributions are chosen as
candidates for the modeling of the marginal probability densities. More precisely, we consider a
mixture fmixed : R → [0,∞) of two probability densities f (1), f (2) : R → [0,∞) given by

fmixed(x) = λ f (1)(x) + (1 − λ) f (2)(x) for each x ∈ R, (15)

where λ ∈ [0, 1] is some mixing ratio. The parameters of fmixed, i.e., the parameters of the mixing
components f (1), f (2) and the mixing ratio λ, are fitted using the expectation-maximization
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algorithm (Kroese et al., 2019). For example, we fit the (marginal) probability distributions of
the descriptors Mmed, MIQR and Mvol introduced in Section 2.3, using mixtures of two gamma
distributions, the probability density f : R → [0,∞) of which is given by

f(x) =
xα−1 exp

(
−x/β

)
βαΓ(α)

1[0,∞)(x) for each x ∈ R, (16)

where α, β > 0 are model parameters, Γ : [0,∞) → (0,∞) is the gamma function and 1A

denotes the indicator of the set A ⊂ R, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x ̸∈
A (Johnson et al., 1994). Analogously, the remaining descriptors Melo, Mflat, Msphe and Mrat

introduced in Section 2.3, which take values in the interval [0, 1] are modeled using mixtures of
beta distributions, the probability density f : R → [0,∞) of which is given by

f(x) =
xp−1(1 − x)q−1

B(p, q)
1[0,1](x) for each x ∈ R, (17)

where p, q > 0 are model parameters and B : [0,∞)2 → (0,∞) is the beta function (Johnson
et al., 1995). By fitting such mixtures of distributions to the seven particle descriptors Mmed,

MIQR, Mvol, Melo, Mflat, Msphe and Mrat, we obtain the parametric densities f̂1, . . . , f̂7 and, by

numerical integration, the corresponding CDFs F̂1, . . . , F̂7.
To select a suitable vine structure V̂ and a family Ĉ of bivariate copula densities, the sequen-

tial algorithm described in Dissmann et al. (2012) is used, which iteratively models the trees
Ti, i = 1, . . . , d− 1 and the corresponding pair copulas starting with T1. The motivation of this
sequential estimation procedure is the supposition that the edges of the first trees are modeling
the dependencies in the data more accurately than those considered in higher levels of the vine
structure.

The strength of dependency is quantified using the pairwise Kendall rank correlation coeffi-
cient τ , which for two vectors y = (y1, . . . , yn), y′ = (y′1, . . . , y

′
n) ∈ Rn, is defined by

τ(y, y′) =
2

n(n− 1)

∑
i<j

sgn(yi − yj) sgn(y′i − y′j).

Starting with the first level of the vine structure, the configuration of T1, which maximizes the
sum (over all edges of T1) of the absolute values of pairwise Kendall rank correlation coefficients,
is selected and for each edge of the resulting tree T1 a pair copula is chosen based on the
maximum-likelihood criterion. This process is repeated for each subsequent level of the vine
structure, as detailed below in Algorithm 1, where T(Ti−1) denotes the set of tree structures,
which satisfy the requirements of regular vines given that Ti−1 is the tree at the preceding level.
The parametric families of the Archimedean copulas Frank, Joe, Clayton and Gumbel, and their
rotations by 90, 180 and 270 degrees (Kurowicka and Joe, 2010), are chosen as candidates for
each pair copula. The set of their densities is denoted by H.
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Algorithm 1. Sequential estimation of vine copulas
Data: training data D, set H of candidates for bivariate copula densities, marginal

CDFs F̂1, . . . , F̂d

Result: vine structure and its (conditional) bivariate copula densities
for i ∈ {1, . . . , d− 1} do

Ti = argmax
T∈T(Ti−1)

[ ∑
e∈E(T )

∣∣∣τ(F̂e1|S(e)(De1), F̂e2|S(e)(De2))
∣∣∣]

for e ∈ E(Ti) do

if |τ(F̂e1|S(e), F̂e2|S(e))|
√

9n(n−1)
2(2n+5)

≤ 1.96 then

ĉe1,e2|S(e) = 1 (bivariate independence copula density)

end
else

ĉe1,e2|S(e) = argmax
h∈H

[
n∏

l=1

h
(
F̂e1|S(e)=xl,S(e)

(xl,e1), F̂e2|S(e)=xl,S(e)
(xl,e1)

)]
end

end

end

V̂ = (T1, . . . , Td−1)

By means of the fitting approach described above, we can compute multivariate probability
densities for the size, shape, texture and VFVM descriptors introduced in Section 2.3, such that
we achieve an efficient characterization of the considered particle system. In the next section we
not only explain in detail how the descriptor vectors x(1), . . . , x(n) determined in Section 2.3 are
leveraged to characterize the particle system using multivariate probability densities, but also
how we use the resulting fits to derive prediction models that allow us to estimate the VFVM
of particles using only CT data.

2.5 Quantitative prediction of mineralogical composition from CT

2.5.1 Modification of the copula-based modeling approach

In this section, we show how the copula-based modeling approach stated in Section 2.4 has to be
modified in order to capture the particularities of the data set D = {x(ℓ) : ℓ = 1, . . . , n}. Since the
nature of the data given in D suggests that the distribution of Mrat might have atoms at 0 and
1, a seven-variate probability density cannot be directly fitted to D using the algorithm stated
in Section 2.4.4. The apparent occurrence of particles with Mrat = 0 and Mrat = 1, respectively,
might be caused by the limited resolution of image data and limitations of the stereological
approach used for the computation of Mrat. Thus, to construct a seven-variate probabilistic
characterization of the particle system considered in this paper, the data set D of descriptor
vectors is represented by three disjoint sets: (i) the set Dv ⊂ R6 of CT-based descriptor vectors
of particles consisting almost exclusively of valuable minerals, which is given by

Dv = {x(ℓ)
1,...,6 ∈ R6 : ℓ = 1, . . . , n, where (x

(ℓ)
1,...,6, x

(ℓ)
7 ) ∈ D with x

(ℓ)
7 ≥ 0.99};

(ii) the set Dnv ⊂ R6 of CT-based descriptor vectors of particles with almost no valuable minerals,
which is given by

Dnv = {x(ℓ)
1,...,6 ∈ R6 : ℓ = 1, . . . , n, where (x

(ℓ)
1,...,6, x

(ℓ)
7 ) ∈ D with x

(ℓ)
7 ≤ 0.01};
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and (iii) the set Dc ⊂ R7 of descriptor vectors of composite particles, meaning those particles
which contain significant fractions of both, valuable and non-valuable minerals, given by

Dc = {(x
(ℓ)
1,...,6, x

(ℓ)
7 ) ∈ D ⊂ R7 : ℓ = 1, . . . , n, where 0.01 < x

(ℓ)
7 < 0.99}.

Now, using the vine copula approach stated in Section 2.4, six-variate probability densities
f̂v, f̂nv : R6 → [0,∞) can be fitted to the data sets Dv and Dnv, respectively. Similarly, a seven-

variate probability density f̂ c : R7 → [0,∞) is fitted to the data set Dc such that its univariate

marginal density f̂ c
7 : R → [0,∞) vanishes outside of the interval (0.01, 0.99) (e.g., by fitting a

truncated mixed beta distribution).
To describe the distribution of the seven-dimensional descriptor vectors considered in Eq. (7)

for the entire data set D, we make the following model assumption. Suppose that the random
variable Mrat describing the VFVM is conditionally independent of the remaining six (CT-
based) particle descriptors and uniformly distributed on [0, 0.01] and [0.99, 1]. Note that these
two intervals can be chosen arbitrarily small around 0 and 1, respectively. Then, a seven-variate
probability density f̂ : R7 → [0,∞) of the particle descriptors considered in Eq. (7) can be
constructed as follows. For each x = (x1...,6, x7) ∈ R6 × R, we put

f̂(x) =


nnv

n
1

0.01
f̂nv(x1,...,6), if 0 ≤ x7 ≤ 0.01,

nc

n
f̂ c(x), if 0.01 < x7 ≤ 0.99,

nv

n
1

0.01
f̂v(x1,...,6), if 0.99 < x7 ≤ 1.0,

0, otherwise,

(18)

where nv, nnv, nc and n = nv +nnv +nc denote the cardinalities of the data sets Dv, Dnv, Dc and
D, respectively.

2.5.2 Prediction model

Finally, we show how multivariate probability densities of particle descriptor vectors, as consid-
ered in Section 2.5.1, can be used for predicting the VFVM of a particle using size, shape and
texture descriptors computed solely from CT image data, see Fig. 1 (second row; left). Recall that

the first six entries x
(ℓ)
1 , . . . , x

(ℓ)
6 ∈ R of a descriptor vector x(ℓ) = (x

(ℓ)
1 , . . . , x

(ℓ)
7 ) ∈ D ⊂ R7 are

determined from CT image data, whereas its seventh entry x
(ℓ)
7 which characterizes the VFVM

was determined from SEM-EDS data, see Section 2.3. Thus, we call x
(ℓ)
1,...,6 = (x

(ℓ)
1 , . . . , x

(ℓ)
6 ) ∈ R6

the CT-based descriptor vector of x(ℓ).
Using the probability densities f̂v, f̂nv, f̂ c introduced in Section 2.5.1, a prediction model

g : R6 → [0, 1] can be constructed as follows: For any given CT-based descriptor vector x ∈ R6,
the corresponding particle is classified as either a particle with only valuable minerals, a particle
with no valuable minerals, or as a composite particle, based on which of the six-variate probability
densities f̂v, f̂nv, f̂ c

1,...,6 has the largest likelihood at x ∈ R6, where the partially marginalized

probability density f̂ c
1,...,6 : R6 → [0,∞) is given by f̂ c

1,...,6(x) =
∫ 1

0
f̂ c(x, x7) dx7 for each x ∈ R6.

Such prediction models are referred to as Bayes classifiers (Hastie et al., 2009). Thus, in case
of a classification as particle with no valuable minerals (i.e., Mrat = 0) or as particle with only
valuable minerals (i.e., Mrat = 1) the output of g is set to 0 or 1, respectively. If the partially

marginalized probability density f̂ c
1,...,6 of composite particles has the largest likelihood at x ∈ R6,

the output of g will be set to the median ϕ(x) of the conditional probability density f̂ c
7|x, where

f̂ c
7|x(x7) = f̂ c(x, x7)/f̂

c
1,...,6(x) for each x7 ∈ R. Thus, the prediction model g : R6 → [0, 1] is given

by
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g(x) =


1, if nv

n
f̂v(x) ≥ max

{
nc

n
f̂ c
1,...,6(x), nnv

n
f̂nv(x)

}
,

0, if nnv

n
f̂nv(x) > max

{
nc

n
f̂ c
1,...,6(x), nv

n
f̂v(x)

}
,

ϕ(x), otherwise,

(19)

for each CT-based descriptor vector x ∈ R6. Note, however, that the prediction g(x) for a
particle with CT-based descriptor vector x ∈ R6 is not necessarily equal to the “true value” of
its composition descriptor Mrat. Thus, in Section 3, we will evaluate model fits and the predictive
power of the prediction model introduced above.

3 Results

Within the set of 1341 particles observed in the CT data which intersect with one of the 2D
voxel slices where SEM-EDS data is available, we identified nv = 227 particles which almost
exclusively consist of valuable minerals and nnv = 489 particles which contain almost no valuable
minerals. Even though many particles in the considered data set are almost purely composed
of either valuable or non-valuable minerals, see Fig. 5 for the histogram of the VFVM, there
is also a non-negligible subset of nc = 625 particles which contain significant fractions of both,
valuable and non-valuable minerals. We determine the probability densities f̂v, f̂nv and f̂ c of
descriptor vectors using the fitting procedure described in Section 2.4.4. For that purpose, the
(univariate) marginal distributions of f̂v, f̂nv and f̂ c are fitted using mixed beta and mixed
gamma distributions, see Fig. 6.
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Figure 5: Histogram of the VFVM of particles intersecting with a SEM-EDS slice.
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Furthermore, similar to the modeling approach considered in Furat et al. (2019), we also
use the (simpler) model of Archimedean copulas for the fitting of the multivariate probability

densities f̂nv, f̂v and f̂ c, in addition to using R-vine copulas. To evaluate the model fit, we
investigate various scores in order to compare the accuracy of the fitted density f̂ achieved
either by means of R-vine or Archimedean copulas. First, we consider the log-likelihood L given
by L =

∑
x∈D ln

(
f̂(x)

)
.

Furthermore, we consider the Akaike information criterion AIC = 2k− 2L and the Bayesian
information criterion BIC = k ln(n) − 2L, where k denotes the number of model parameters of

f̂ and n is the cardinality of D.
To evaluate the power of the prediction model g we use leave-one-out cross-validation to

obtain valid prediction scores. For each particle descriptor vector x = (x1,...,6, x7) ∈ D,

the probability densities f̂nv, f̂v and f̂ c required for the calibration of the prediction model g
are fitted on the data set D\{x}, and the resulting prediction for the CT-based descriptor vector
x1,...,6, denoted by gD\{x}(x1,...,6), is compared to the actual VFVM x7. In Fig. 7 histograms of
the discrepancies gD\{x}(x1,...,6)− x7 are shown, where the prediction model g fitted by means of
R-vine copulas seems to lead to better results than the model obtained by Archimedean copulas.
Additionally, the predictive power is quantified by means of the mean absolute error MAE and
the mean squared error MSE, given by

MAE =
1

n

∑
x∈D

∣∣gD\{x}(x1,...,6) − x7

∣∣ and MSE =
1

n

∑
x∈D

(
gD\{x}(x1,...,6) − x7

)2
.

Again, the scores for the prediction model g fitted by means of R-vine copulas are better than
those obtained by Archimedean copulas, see Table 1.

Table 1: Validation scores of the prediction model g calibrated by means of vine (left) and Archimedean
(right) copulas, where the scores were computed on the data set D of particle descriptor vectors.

using R-vine copulas using Archimedean copulas
log-likelihood L 4963.41 4034.87
AIC -9526.82 -7867.74
BIC -8486.58 -7342.42
MAE 0.0990 0.1304
MSE 0.0622 0.0707

Finally, to evaluate model fit and prediction power with respect to composite particles,
we additionally consider scores which are computed on the set Dc only. For that purpose, we
determine the log-likelihood Lc given by Lc =

∑
x∈Dc

ln
(
f̂ c(x)

)
as well as the corresponding

Akaike and Bayesian information criteria AICc = 2kc−2Lc and BICc = kc ln(nc)−2Lc. Moreover,
for all x = (x1,...,6, x7) ∈ Dc, the histograms of the prediction errors gD\{x}(x1,...,6) − x7 are
determined, and the mean (absolute/squared) errors MAEc and MSEc are computed, which are
given by

MAEc =
1

nc

∑
x∈Dc

∣∣gD\{x}(x1,...,6) − x7

∣∣ and MSEc =
1

nc

∑
x∈Dc

(
gD\{x}(x1,...,6) − x7

)2
.

The obtained results are shown in Fig 8 and Table 2.
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Note that all scores presented in Table 2 for the density f̂ c fitted on Dc and for the corre-
sponding prediction models gD\{x} improve if R-vine copulas (instead of Archimedean copulas)
are used for model fitting. In particular, the scores for the log-likelihood Lc and for the Akaike
and Bayesian information criteria AICc and BICc obtained by means of R-vine copulas are clearly
better than those obtained by Archimedean copulas.

Table 2: Validation scores for the prediction model g calibrated by means of vine (left) and Archimedean
(right) copulas, where the scores were computed on the data set Dc ⊂ D composed of descriptor vectors
for composite particles.

using R-vine copulas using Archimedean copulas
log-likelihood Lc 1315.06 725.51
AICc -2454.12 -1377.02
BICc -2093.88 -1225.55
MAEc 0.1378 0.2153
MSEc 0.0631 0.0952

4 Discussion

The power of the prediction model g, which was introduced in Section 2.5.2 for estimating the
VFVM of particles by means of CT-based descriptor vectors, was evaluated in Section 3, by
applying the model to a particle system consisting of zinnwaldite, quartz, topaz and muscovite
composites. Additionally, the results obtained for the goodness of fit and the predictive power of
g were compared to those achieved by using the (simpler) model of Archimedean copulas instead
of using R-vine copulas.

The results shown in Fig. 8 and Table 2 indicate that the use of Archimedean copulas leads
to significantly larger prediction errors, when we investigate the performance of the prediction
model g for composite particles. In particular, the mean absolute error of 0.2153 when using
Archimedean copulas reduces to an error of 0.1378 achieved by means of R-vine copulas. Fur-
thermore, Fig. 7 and Table 1 indicate that the prediction model g also estimates the VFVM of all
considered particles (i.e., not only composite particles but also particles which consist of either
almost exclusively of valuable or non-valuable minerals) reasonably well when R-vine copulas
are used for model fitting.

Recall that the results stated in Section 3 for the power of the prediction model g were
achieved via cross-validation. Thus, it is expected that prediction results would be similarly
accurate for particles not intersecting with the 2D voxel slices where SEM-EDS data is avail-
able, i.e., for particles for which only CT-based descriptor vectors are known. In particular,
the prediction model g can be used to estimate the VFVM of all particles observed in the CT
data, allowing for a quantitative mineralogical characterization of the entire particle system re-
constructed by CT imaging. Additionaly, when the VFVM of a particle is predicted using the
probability density f̂ c, we can not only predict a likely value, but we can also assign a probability
to a range of potential values. This enables us to specify a confidence interval for each individual
particle, where the model indicates that the true value of the VFVM has a 90% probability
of being within that interval. Upon evaluation, 90.6% of the composite particles were found to
actually be within their respective 90% confidence interval and 94.5% of composite particles
were in their respective 95% confidence interval, indicating that the model is able to estimate
its own confidence quite well.
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The capability to predict the VFVM of particles quantitatively is only one possible ap-
plication of the multivariate probabilistic characterization of particle descriptor vectors. More
precisely, the multivariate probability density f̂ considered in Eq. (18) can be used as a basis for
an in-depth analysis of the quality of separation processes. This will be discussed in detail in a
forthcoming paper.

Moreover, even though the prediction model g was calibrated to predict the mineralogical
composition with respect to the VFVM of particles based on six CT-based descriptors, it can
be adapted to predict the prevalence of K ≥ 2 different minerals. In such a scenario, the
mineralogical composition of a particle can be described by a vector Mrat = (m1, . . . ,mK) ∈
[0, 1]K with ∥Mrat∥ = 1, where ∥Mrat∥ =

∑K
i=1 |mi| and mi describes the fraction of the i-

th mineral within the particle for i = 1, . . . , K. Note that similar to the prediction model
given in (19) for the case K = 2, it suffices to consider the first K − 1 entries of Mrat, since
mK = 1 −

∑K−1
k=1 mk.

Thus, for some d ≥ 2, the joint distribution of d CT-based particle descriptors and the min-
eralogical volume fractions of the first K − 1 minerals of composite particles can be modeled
by some (d + K − 1)-variate probability density f̂ c. Note that such a model for the joint distri-
bution of the mineralogical volume fractions has to ensure that the sum of the first K − 1
minerals is smaller than 1, i.e., the support of f̂ c

d+1,...,d+K−1 has to be bounded by the set
{m = (m1, . . . ,mK−1) ∈ RK−1 : mi ≥ 0 for each i = 1, . . . , K − 1, ∥m∥ ≤ 1}. Furthermore,
similarly to the approach presented in Section 2.5 the distribution of the CT-based particle de-
scriptors for particles almost purely composed of the i-th mineral can be modeled by d-variate
probability densities f̂ (i) for each i = 1, . . . , K. In (19) the prediction model for the case K = 2 is

presented with respect to the median value of the conditional probability density f̂ c
d+1,...,d+K−1|x.

However, instead of the median value other characteristic values of the distribution like the mean
or mode can be considered. A possible generalization of the prediction model g : Rd → [0, 1]K

for K ≥ 2 different minerals which considers the mean value is given by

g(x) =

{
ei, if ni

n
f̂ (i)(x) ≥ nc

n
f̂ c
1,...,d(x) and ni

n
f̂ (i)(x) > max

j∈{1,...,K}\{i}

nj

n
f̂ (j)(x),

(ϕ(x), 1 − ∥ϕ(x)∥) , otherwise,
(20)

for each x ∈ Rd, where ni is the number of particles mainly composed of the i-th mineral, nc is the
number of composite particles, n = nc+

∑K
i=1 ni is the total number of particles and ei ∈ {0, 1}K

is the unit vector for which the i-th entry is equal to 1. Moreover, ϕ(x) =
(
ϕ1(x), . . . , ϕK−1(x)

)
,

denotes the mean vector of the (K− 1)-variate conditional probability density f̂ c
d+1,...,d+K−1|x for

each CT-based particle descriptor vector x ∈ Rd and ∥ϕ(x)∥ =
∑K−1

i=1 ϕi(x).

5 Conclusions

In this paper we describe an approach for deriving prediction models which can estimate the
VFVM of particles solely based on information gathered from CT image data. The methods
were developed using CT image data of a particle system consisting of zinnwaldite, quartz,
topaz and muscovite composites—but, they can be adapted to further particle systems. We are
in the process of evaluating the flexibility of our modeling approach using a particle system of
crushed engineered artificial minerals (Wittkowski et al., 2021). Unlike the presented particle
system, these minerals have size and shape features that are not as easily distinguishable from
one another, necessitating a greater reliance on their distinct textural characteristics for accurate
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characterization.
In a first step, CT image data was segmented using an adapted 3D U-net architecture. For

the training of the 3D U-net, we calibrated a loss function which focuses on the separation of
touching particles for improved segmentation results. Moreover, the loss function can handle
partially labeled data in order to reduce the amount of hand-labeled data necessary to train
the network. More precisely, for training just sparsely annotated slices are required to achieve a
3D particle-wise segmentation. From the segmented CT data individual particles were extracted
such that vectors of descriptors describing the size, shape and texture of particles can be com-
puted (CT-based descriptor vectors). Additionaly, for some particles SEM-EDS information was
available, such that the CT-based descriptor vectors could be extended with a descriptor of their
VFVM. Then, in the stochastic modeling step, we utilized R-vine and Archimedean copulas to
fit multivariate probability densities to the computed descriptor vectors, achieving an in-depth
probabilistic characterization of the particle system.

Moreover, the building blocks f̂nv, f̂v, f̂ c of the seven-variate probability density f̂ introduced
in Eq. 18 provide, as a “by-product”, conditional probability densities which can be used to
construct a prediction model g given in Eq. (19). This model can estimate the VFVM of a
particle quantitatively by means of CT-based descriptor vectors. Furthermore, it turned out
that the prediction model g performs significantly better when utilizing R-vine copulas instead
of Archimedean copulas.
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Figure 6: Histograms and fitted marginal probability densities of shape, size and texture descriptors of
particles which almost exclusively consist of valuable minerals (left), particles which contain almost no
valuable minerals (right) and particles which contain significant fractions of both, valuable and non-
valuable minerals (middle).
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Figure 7: Histograms of prediction errors gDc\{x}(x1,...,6) − x7 resulting from the use of R-vine (left)
and Archimedean (right) copulas, computed for each particle descriptor vector x = (x1,...,6, x7) ∈ D.
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Figure 8: Histograms of prediction errors gD\{x}(x1,...,6)−x7 resulting from the use of R-vine (left) and
Archimedean (right) copulas, computed for each particle descriptor vector x = (x1,...,6, x7) ∈ Dc.
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