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Abstract A set of computationally generated granular packings of friction-
less grains is statistically analyzed using tools from stochastic geometry. We
consider both the graph of the solid phase (formed using the particle mid-
points) and the pore-phase. Structural characteristics rooted in the analysis of
random point processes are seen to yield valuable insights into the underlying
structure of granular systems. The graph of the solid phase is analyzed using
traditional measures such as edge length and coordination number, as well as
more instructive measures of the overall transport properties such as geomet-
ric tortuosity, where significant differences are observed in the windedness of
paths through the different particle graphs considered. In contrast, the distri-
butions of pore-phase characteristics have a similar shape for all considered
granular packings. Interestingly, it is found that prolate and oblate ellipsoid
packings show a striking similarity between their solid-phase graphs as well as
between their pore-phase graphs.

1 Introduction

Granular systems, such as sand, soils and powders are present throughout the
natural world [22,23], however there is still much that we do not understand
about their varied and complex behaviors. Even in their static state, we have
yet to develop methods sophisticated enough to fully characterize a granular
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system, and to exactly relate the physical properties of the individual grains,
and their geometric configuration, to the macroscopic properties of the system.

The study of particle packings is extremely important for understanding
the properties of granular materials but also has had significant impact in
understanding liquids and jamming, and transitions in glasses and other ma-
terials [40,39]. Since the early experimental work of Bernal on mono-disperse
sphere packings [2], systems composed of purely spherical grains have been by
far the most studied. Even for the simplest mono-disperse sphere packings, a
rich and varied set of behaviors are observed as the density of the packing is
varied, with a key transition being found at the random close packing limit,
where the system jams in its most dense disordered state. For spheres, this
limit is well established at a packing fraction of Φ ' 0.64 [2].

More recently, much attention has focused on investigating the properties
of packings of non-spherical grains, which more realistically represent the mul-
titude of grain shapes found in nature [12]. Studies of the role of anisotropy in
the grain shape using spherocylinders and ellipsoids have demonstrated that
the packing density in random packings varies strongly with the aspect ratio
of the grains [12,8,10,29]. Baram investigated the importance of polydisper-
sity in ellipsoid packings and showed how the contact forces between particles
varied as the shape deviated away from a sphere [38]. Packings of polyhedral
shapes have been shown to have a strong propensity to self-assemble into var-
ious ordered structures [37], while packings of tetrahedra have recently been
the subject of considerable investigation and been shown to form hyperstatic
packings [36]. The importance of particle shape has also been demonstrated
in determining the physical properties of granular packings for a range of 3D
printed non-spherical shapes [35], with the stress response being found to be
strongly affected by the shape of the individual grains.

In this paper, we consider a set of computationally generated granular
packings and perform an extensive series of analyses to quantify the geomet-
ric properties of both the solid and the pore-phase. The granular packings
considered have been chosen to capture several key features seen in granular
systems, and cover a range of density, anisotropy and order. The first gran-
ular system is a random close packing of spheres, which represents probably
one of the most important and most studied of all granular systems [2,9,13,
38]. We then consider two different ellipsoid packings composed of prolate
and oblate grains, respectively. Ellipsoids are an important grain shape that
closely approximates the shape of many real grains e.g. stones, tablets, rice,
etc. These packings allow us to study the effect of anisotropy of the grain
shape in random granular packings [8,10,29]. Finally, we consider a packing of
superballs (equiaxed superellipsoids) which have a shape similar to a rounded
cube. This packing exhibits a large degree of structural ordering, and allows
us to compare and contrast the effect of such ordering compared to the other
less ordered packings.

A considerable part of the analysis is performed by the use of spatial graphs,
which are widely applied to analyze or simulate complex structures in biology,
materials science and many other areas, see e.g. [1,25,30,32]. Moreover, spatial
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Table 1 Parameters of superellipsoids together with packing fraction Φ

m a b/a c/a Φ

spheres 2 4.2538 · 10−2 1.0 1.0 0.6449
oblate ellipsoids 2 4.9684 · 10−2 1.0 0.7 0.7193
prolate ellipsoids 2 5.5868 · 10−2 0.7 0.7 0.7158

superballs 5 3.8392 · 10−2 1.0 1.0 0.7843

graphs are useful to describe transport processes that occur in particle systems
[1]. We therefore analyze the particle graph, which is formed by connecting
neighboring particles, in terms of transport-relevant characteristics like the
coordination number (degree of connectivity), edge length and the geometric
tortuosity (windedness of percolation paths). In general, significant differences
are observed when analyzing the windedness of paths (i.e., geometric tortuos-
ity) through the particle graphs indicating that geometric tortuosity is a useful
tool for characterization of granular packings. The pore-phase is analyzed by
both, a pore-phase graph, obtained by a skeletonization of the pore-phase [30],
and by other characteristics from stochastic geometry describing further as-
pects of the morphology of the pore-phase (spherical contact distances and
chord length). In addition, we analyze the system of particle midpoints by
characteristics of stationary and isotropic point processes in order to investi-
gate the degree of interaction between neighboring particles.

The paper is organized as follows. Section 2 introduces the granular packing
algorithm. In Section 3, the system of particle midpoints is analyzed as well as
the particle graph. Section 4 describes the analysis of the pore graph, with fur-
ther characteristics relevant to the pore-phase being introduced. Conclusions
are given in Section 5.

2 Granular Packing Algorithm

In our simulations, we represent the particles as superellipsoids defined by the
equation (x

a

)m

+
(y
b

)m

+
(z
c

)m

= 1, (1)

where we refer to m as the shape parameter, and a, b and c are the semi-major
axis lengths. For m = 2, we recover the general formula for an ellipsoid. While
for m > 2 we obtain increasingly cubical shapes. In the packings considered
in this paper, the grains have at least two equal axes. More precisely, we
consider four different systems consisting of spheres, oblate ellipsoids, prolate
ellipsoids and superballs. All systems contain 2000 particles arranged in a unit
box having predefined aspect ratios b/a and c/a. The three semi-major axis
lengths a, b and c result from the packing algorithm, which is described later
on. For more details, see Table 1. Examples of superellipsoids with different
shape parameters and aspect ratios are shown in Figure 1. The corresponding
granular packings are visualized in Figure 2.
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Fig. 1 Images of the particle shapes (from left to right): sphere, oblate ellipsoid, prolate
ellipsoid and superball.

Fig. 2 Visualizations of granular packings: spheres (top left), oblate ellipsoids (top right),
prolate ellipsoids (bottom left) and superballs (bottom right).

Our packing algorithm utilizes a particle expansion technique to generate
a dense jammed packing of superellipsoids. These types of techniques have
been used extensively to study the properties of particle packings [7,12,24].
We seed our particles at random locations and with random orientations in
a unit periodic box at a low packing fraction (Φ < 0.2), where the particles
all have unit density and are frictionless. We employ a fully dynamic linear
spring Discrete-Element-Method (DEM) simulation to model the interaction
between particles [6]. At each iteration we obtain the contact locations and
linear overlaps between particles and hence solve for the forces and torques
on each particle. (Further details of our DEM technique can be found in [4,
5].) The particles are then grown at a uniform volumetric growth rate γ and
a condition of constant kinetic energy is imposed on the system. The growth
of the particles proceeds until a point is reached where the average overlap of
the particles diverges sharply as the system jams. The growth rate affects the
properties of the final packing and in the present paper was chosen such that
random close packings of spheres and ellipsoids are formed [7].
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3 Analysis of Particle Systems

3.1 Analysis of particle midpoints

In this section, we analyze the structural properties of the systems of particle
midpoints. Thereby, we obtain quantitative information about the degree of
spatial interaction between neighboring particle midpoints or particles mid-
points with a certain distance, respectively. We use characteristics which are
commonly applied in the analysis of stationary and isotropic point processes,
see for example [21].

3.1.1 Pair-correlation function

Fig. 3 Pair-correlation function (left) and nearest-neighbor distance distribution function
(right)

First we analyze the pair-correlation function g : [0,∞)→ [0,∞), a second-
order characteristic which has recently been considered in [3] to investigate
random packings of ellipsoids. This characteristics measures the probability
of finding a particle at a distance of r away from a given reference particle,
with the value g(r) of the pair-correlation function being proportional to the
relative frequency of point pairs with a distance of r. It is normalized such
that in the case of complete spatial randomness (CSR, i.e., homogeneous Pois-
son process), we have g(r) ≡ 1. Furthermore, g(r) > 1 indicates a clustering
of points and g(r) = 1 indicates no interaction of points, while g(r) < 1 in-
dicates low probability to find pairs of points with distance r. In a ‘regular’
point process, i.e., a point process with both a high intensity of points and
large distances between points, the pair-correlation function exhibits oscilla-
tions. Imagine points on a (slightly perturbed) regular lattice with width d.
Then distances between points can only be close to the square roots of sums
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of (n1d)2, (n2d)2, (n3d)2 with n1, n2, n3 ≥ 0. Therefore, the pair-correlation
function will only have peaks at these values.

For the particle packings, we see that the highest peak appears for the
spheres, see Figure 3 (left). This is due to the constant distance from the
surface of a sphere to its center, which leads to all its contacting grains having
the same distance between grain centers and thus a high probability to find
pairs of grains at this distance. The first peak for the other three shapes is
lower and broader, due to the range of distances from the surface of the grains
to their centers as a result of their non-spherical shape. All the grain shapes
then exhibit decaying oscillations in the pair-correlation function for larger
distances.

3.1.2 Nearest-neighbor distance

Next, we consider the distribution function of nearest-neighbor distances. From
a so-called ‘typical grain’, we analyze the distribution of the distances from
the center point to the center of its nearest-neighbor. Considering Figure 3
(right), we see that there are significant differences for the different grains
shapes. The system of spheres has - as expected - a constant nearest-neighbor
distance, corresponding to twice the sphere radius. There are large differences
between the prolate and oblate ellipsoids, due to the differences in their semi-
minor and semi-major axis lengths. For both ellipsoid cases the probability of a
neighboring contact occurring becomes non-zero at twice the semi-minor axis
length. The rate of increase in the probability for the prolate grains is much
higher than for the oblate grains, this shows that there is reduced variation
in the nearest-neighbor distances for the prolate grains due to two of their
axes having the shorter relative length, compared to one for the oblate grains.
For the system of superballs, the probability of a neighboring contact becomes
non-zero at twice the distance from the center to a face on the grain’s surface.
The probability again increases at a fast rate, due to the prevalence for face
on face contacts within the system, which leads to a low variability in the
nearest-neighbor distances.

3.2 Analysis of particle graph

Spatial graphs are widely applied to analyze or simulate complex structures
in biology, materials science and many other areas, see [1,25,30,32]. In par-
ticular, spatial graphs are useful to describe transport processes that occur
in particle systems. Previous use of graph theory to study granular materials
has focused on investigations of systems of spherical particles and has mainly
considered the properties of the force network [19,33]. Here we will extend
this consideration to a much more detailed consideration of the geometrical
properties of both the solid phase and the pore-phase within systems of both
spherical and non-spherical grains. A graph G can be described by the pair
G = (V,E), see [11], where V = {x1, . . . ,xn} ⊂ R3 is a set of vertices and
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E = {(xi1 ,xj1), . . . (xik ,xjk),xil 6= xjl ∈ V } ⊂ V × V a set of edges. Graphs
can describe the main structural aspects of the granular systems and therefore
are a useful tool for the analysis and characterization of granular systems.

In order to apply spatial graphs to the granular systems, we transform
the system of particles on a voxel grid with resolution 500 × 500 × 500. This
discretisation is especially useful for extraction of the pore-phase graph, see
Section 4.2, since graph-extraction algorithms are available for voxel-based
systems. Furthermore, the discretisation allows for a less complex approach
to calculate distances between particles or distances of the pore-phase to the
particle system more easily.

Fig. 4 Illustration of particle graph

We now connect neighboring particles to form a graph, where we define
two particles to be ‘connected’ if their smallest distance is below a threshold
ς = 0.002. This corresponds to two particles on the voxel grid having a common
face. Two particles are connected from their midpoints via edges set at their
‘touching point’, i.e., at the point on the particle with the lowest distance to
its connected neighbor, see Figures 4 and 5.

Fig. 5 Left: particle system (prolate ellipsoids, cut-out); center: corresponding particle
graph; right: particle system with particle graph

Such a particle graph can for example be used to describe charge trans-
port (i.e., electron hopping) in a network of molecules, see [1,32], where the
particles resemble molecules. Transport properties within the system of parti-
cles are related to the structure of the particle graph. Therefore, a structural
characterization of this graph is important.
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3.2.1 Graph coordination number

mean variance

spheres 6.94 1.86
oblate ellipsoids 10.14 1.32
prolate ellipsoids 10.21 1.22

superballs 6.88 11.64

Fig. 6 Distributions of coordination numbers, together with their means and variances

To begin with, we consider the distribution of the coordination number of
the graph, i.e., the number of edges emanating from a vertex. Large coordina-
tion numbers of the graph indicate a better connectivity. The results in Figure
6 show that the mean coordination number of the graph is as expected close to
the mean number of contacts within the particle system [7]. The sphere graph
has a mean coordination number of 6.94, while the ellipsoid cases both show
an increase in coordination to 10.14 and 10.21, respectively. This is due to the
additional number of grain contacts required for mechanical stability for a fric-
tionless set of non-spherical particles. The superball graph has a lower mean
coordination number than the ellipsoids, with a value of 6.88 being found. The
lower value compared with the ellipsoid systems is due to the additional sta-
bility that face-on-face contacts provide in systems of non-spherical particles,
which leads to a lower mean contact number. The shape of the distributions
of coordination numbers for the sphere and ellipsoid systems are quite similar,
being close to centered at the mean contact number and reasonably symmetric
about the mean. Despite the higher mean coordination number, the variance
in the contact number is lower for the ellipsoids than for the sphere system.
For the superballs system, the distribution is much flatter with a very high
variance of 11.64 being found.



Quantitative structural analysis of simulated granular packings 9

3.2.2 Edge length

Next, we analyze the distribution of edge lengths. In particle graphs that
describe charge transport (i.e., electron hopping or hopping of holes), the dis-
tances between connected particles play an important role [1,32]. The mean
value of the edge lengths is seen to correlate with the density of the overall
packing within the unit cube, with superballs having the largest mean edge
length, followed by the ellipsoids and then the spheres, see Figure 7. Further-
more, the mean values for both ellipsoid systems are identical, but the variance
is larger for the prolate system. The variance for the superballs is smaller than
for both ellipsoid systems. This may in part be due to the large number of
face-on-face contacts in the superball system, which reduces the variability in
the location of the contacts between neighboring grains.

Figure 7 (left) shows the cumulative distribution functions of the edge
lengths of the graphs. For each grain shape the probability becomes non-
zero for an edge of a given length to exist at the semi-minor axis length.
For the sphere system, the edge lengths exhibit small variations described
by the distance over which the probability varies from 0 to 1. This is due
to two spheres being connected if their distance is within the interval [0, ς].
The ellipsoids and superballs show smooth variations from their semi-minor to
semi-major axis lengths (which is the distance from the particle center to its
corner in the superball case). Comparing the curves for the prolate and oblate
ellipsoids, we see that the prolate ellipsoids show a faster initial increase at
distances above their the semi-minor axis length and then a slower increase
at larger edge-lengths, compared to the oblate ellipsoids which have an initial
slower increase for the shorter edge-lengths and then a more rapid increase at
larger edge lengths. These differences are attributable to how the total surface
area of the ellipsoids varies with the distance from the center of the grain. For
the prolate ellipsoids with 2 shorter axes, there is a relatively larger proportion
of the total surface area at shorter distances from the center of the ellipsoid,
compared to the oblate ellipsoid which has 2 longer axes.

3.2.3 Geometric tortuosity

We consider the geometric tortuosity to describe the windedness of percolation
pathways along the particle graph in a similar manner to that described in [32].
Assume that point particles (modelling e.g. charge carriers) move from the top
of the granular system to the bottom, where the paths are restricted to edges
of the graph. Then, for a given vertex xi = (xi, yi, zi) ∈ R3, located at the top
of the granular system, we are interested in the shortest path (along the edges
of the graph) towards a vertex located at the bottom of the system, say, xj .
If −−→xixj is the shortest path between vertices xi and xj and dz(xi,xj) denotes
their orthogonal distance |zi−zj | in z-direction, then the geometric tortuosity

τ(xi,xj) is defined as
|−−→xixj |

dz(xi,xj)
, thus the ratio between the length |−−→xixj | of

the path −−→xixj along the graph and the orthogonal distance dz(xi,xj) between
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mean variance

spheres 4.31 · 10−2 7.69 · 10−7

oblate ellipsoids 4.55 · 10−2 1.92 · 10−5

prolate ellipsoids 4.55 · 10−2 2.57 · 10−5

superballs 4.68 · 10−2 1.24 · 10−5

Fig. 7 Left: cumulative distribution functions of edge lengths; right: their means and vari-
ances

both vertices xi and xj . Different vertices as starting points will yield different
values of geometric tortuosity, wherefore we are interested in the distribution
of geometric tortuosity.

Geometric tortuosity is a structural parameter characterizing morphologies
and is typically related to the porosity which is one minus packing fraction. If
a structure has a porosity of zero, the geometric tortuosity of the solid phase
will be one, whereas a porosity close to one will, in general, yield very large
values of geometric tortuosity of the solid phase. Often, values of geometric
tortuosity lie between 1 and 2, see [15,16,31]. Besides porosity and a con-
strictivity factor (‘bottleneck’ criterion), (geometric) tortuosity is considered
an important (morphological) characteristic that influences effective transport
properties. In particular, effective conductivity is described as being inversely
proportional to tortuosity, where the notion of tortuosity may not necessar-
ily refer to geometric tortuosity, as various definitions of tortuosity exist (e.g.
hydraulic tortuosity, dielectrical tortuosity, diffusional tortuosity), see [20].

Given the above definition of geometric tortuosity, smaller values of tor-
tuosity indicate less winded paths which (generally) leads to faster transport
while higher values, thus more winded paths, lead to slower transport.

To estimate the geometric tortuosity distribution of the particle graphs,
we calculate the shortest path lengths from vertices on the top to the bottom
(and vice versa). Therefore, we cut off all vertices within a certain layer on
the top and within a certain layer on the bottom. For each vertex at the top
(bottom), we calculate the shortest distance to the closest point at the bottom
(top) and use this value to estimate the geometric tortuosity. To increase
the accuracy of the estimation (i.e., increase the number of data points), we
consider geometric tortuosities not only in z-direction, but also in x- and y-
directions (and adjusting dz(xi,xj) to dx(xi,xj) and dy(xi,xj), resp.). Since
the granular systems are isotropic, the distribution of geometric tortuosity is
the same for all directions considered.
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The results for the computations of the geometric tortuosity of the granular
packings are shown in Figure 8. The two systems of ellipsoids have the lowest
tortuosity characteristics, both in terms of the lowest mean values and the
lowest variances. The sphere system has a higher mean and a larger variance.
This is interesting as it appears to suggest that introducing anisotropy into
the shape of a grain by transitioning from a spherical to an elliptical grain
can improve the transport properties within the granular system. Several fac-
tors in the structural differences between sphere and ellipsoid packings lead to
this decrease in tortuosity. There is an increase in density for ellipsoids com-
pared to spheres (Table 1), with the system still maintaining a high degree of
disorder. The higher mean coordination number of the ellipsoid systems also
reduces tortuosity, as there is an increase in the number of available pathways
from each grain to its neighbors. This increase in the number of connections,
increases the likelihood of finding a connection that is closer to the straight
path between the start and end points. Interestingly, the two ellipsoid sys-
tems are almost indistinguishable, while differing significantly from the other
granular packings.

The superballs are both the most ordered and the densest system, however
we see that this does not necessarily mean that the granular network will
exhibit better transport properties, with the superball packings having the
highest mean tortuosity and the highest variance. This suggests an inhibition
of transport in any process that must proceed through the system traveling
from particle to particle. Given the high density and relatively low coordination
number compared to the ellipsoid system, this suggests that the coordination
number is the biggest influence on tortuosity. It should be noted however that
here we are considering the network of particle centers and thus this measure
is relevant to transport properties that are required to pass through the center
of the particles. Transport through the system that could proceed via the
shortest line through the solid phase, could take a less winded path due to not
needing to travel through the center of each grain.

mean variance

spheres 1.26 5.72 · 10−3

oblate ellipsoids 1.18 2.10 · 10−3

prolate ellipsoids 1.18 2.27 · 10−3

superballs 1.28 6.42 · 10−3

Fig. 8 Left: distributions of geometric tortuosity; right: their means and variances
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4 Analysis of Pore-Phase

In this section, we analyze the pore-phase, which is the space complementary
to the union of particles. In various applications of granular systems, objects
(e.g. fluids or gases) are transported in the pore-phase. It is thus important
to characterize morphological aspects of the pore-phase and consider their
relation to associated transport properties.

4.1 Analysis of characteristics of spatial extent

4.1.1 Chord length

Fig. 9 Line L intersecting an object A

We first consider the distribution of chord lengths [27]. In general, the
chord length with respect to a line L for an object A ⊂ R3 is the length of the
intersecting line segment L∩A (Figure 9). In the case of a non-convex shape of
the object A, each intersecting line segment is considered as a separate chord.
Considering all lines with a fixed direction u ∈ ∂B(o, 1), with ∂B(o, 1) being
the unit sphere, yields the chord length distribution (for this direction). Thus,
the chord length distribution is the distribution of the extent of an object A
in direction u. Here, we consider chord lengths of the pore-phase, i.e., A rep-
resents the pore-phase, averaged over x−, y − and z − direction. The results
in Figure 10 (right) show that the pore-phase is largest in terms of its mean
spatial extent for the sphere system, followed by the two ellipsoids. The pore-
phase of the system of superballs exhibits a smaller mean chord-length. The
mean chord length inversely correlates with the density of the packings, order-
ing from spheres, to ellipsoids, to superballs. The longer mean chord length
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suggests a tendency for better transport properties, with on average greater
distances within the pore space existing over which transport can proceed
uninteruptted by the solid phase.

mean variance

spheres 0.031 8.51 · 10−4

oblate ellipsoids 0.023 4.76 · 10−4

prolate ellipsoids 0.023 4.84 · 10−4

superballs 0.018 4.21 · 10−4

Fig. 10 Left: distributions of chord lengths; right: their means and variances.

4.1.2 Spherical contact distance

Next, we analyze the spherical contact distribution function H : [0,∞)→ [0, 1]
of the pore-phase, where the value H(r) denotes the probability to reach a
particle from a randomly chosen point of the pore-phase within a distance
smaller or equal than r [27]. The results in Figure 11 show that the pore-
phase of the isotropic sphere system has by far the largest mean spherical
contact distance, which suggests the largest spatial extent of the pore-phase.

Among the cumulative distribution functions shown in Figure 11, the sphere
curve is consistently underneath that of the other 3 packings, indicating that
the sphere system has the most compact pore space, i.e., for a randomly cho-
sen location of the pore-phase, the chance that a sphere with any given radius
could be placed within the pore space is largest for the pore space of the sphere
packing. The superballs curve is above the 2 ellipsoid curves for smaller dis-
tances, indicating that the pore-phases of the ellipsoid systems possess less
narrow pore sections compared to the superball system. The superball and
the ellipsoid curves intersect at a distance of approximately 0.01, after which
the ellipsoid curves lie just above the superballs curve. This indicates that the
superballs have a greater fraction of pores that can contain larger spheres.
These curves give us useful information on the relative sizes and shapes of the
pores in the different packings, which can be useful in indicating how trans-
portation, in particular of particles of different sizes, will proceed through the
packing.

The results agree with the trend observed for chord lengths, see Sec-
tion 4.1.1. The differences, especially for the prolate and oblate ellipsoids ap-
pear minor. Note that the spherical contact distance distribution, however,
averages over the whole pore-phase. In Section 4.2.4, we will consider another
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pore-phase characteristic of this type, where we analyze the spherical contact
distances evaluated from points on the pore-phase graph.

mean variance

spheres 5.93 · 10−3 1.42 · 10−5

oblate ellipsoids 4.69 · 10−3 7.71 · 10−6

prolate ellipsoids 4.67 · 10−3 7.63 · 10−6

superballs 4.39 · 10−3 8.99 · 10−6

Fig. 11 Left: cumulative distribution functions of spherical contact distances; right: their
means and variances

4.2 Analysis of pore-phase graph

In many systems, like the gas-diffusion layer in PEM fuel cells, the 3D mor-
phology of the pore-phase plays an important role and thus, an analysis of the
pore-phase by analyzing individual pores appears reasonable. There is how-
ever an inherent difficulty in defining what constitutes an individual pore in
a granular structure and no universally accepted definition or algorithm ex-
ists. Techniques include the use of watershed algorithms [17], or graph-based
techniques [30]. The watershed technique, in its classical version, suffers from
over-segmentation and given the complex geometry of the pore-phase of the
granular systems, the watershed technique appears inadequate. Graph-based
techniques aim to describe the pore-phase by a graph, where the nodes are
interpreted as centers of the pores and edges describe connections between
neighboring pore centers which are separated by pore-throats (i.e., pore bottle-
necks). As described above, the geometry of the pore-phase is rather complex
and thus, a pore-phase graph may not match with this interpretation (i.e.,
considering vertices are pore centers).

Thus, we shift our focus in the analysis away from investigating individ-
ual pores towards investigating the pore-phase as a whole. For this purpose,
the graph-based technique is adequate. More precisely, to analyze the pore-
phase, we extract the pore-phase graph by a skeletonization process using the
commercial software Avizo with its default settings [14,34].

In general, if a morphology consists of a solid phase and a pore-phase, then
the idea of the skeletonization for the pore-phase is to change pore-phase voxels
into solid voxels such that a thin line with thickness one of pore-phase voxels
remains, see Figure 12 (a). Furthermore, the skeletonization is homotopic,
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Fig. 12 Cartoon of pore-phase skeletonization (a) and approximation by graph (b)

i.e., connectivity-preserving. In the next step, the skeleton is transformed into
vector data, i.e., it is approximated by polygonal tracks, see Figure 12 (b).
These polygonal tracks are systems of line segments. The representation by
systems of line segments can be interpreted as a spatial graph, where the
start- and endpoints of the line segments form the set of vertices and the line
segments themselves the set of edges.

Note that we do not interpret the vertices of the graph as pore centers, but
we use characteristics of the graph to obtain valuable information with respect
to differences in the pore-phases for the different granular packings considered
in this paper.

Fig. 13 Left: particle system (prolate ellipsoids, cut-out); center: corresponding pore-phase
graph; right: particle system with pore-phase graph

4.2.1 Coordination number

The distribution of the coordination number of the nodes of the pore-phase
graph, as displayed in Figure 14, is quite similar for all four superellipsoids con-
sidered in the present paper. The two ellipsoid systems have virtually identical
means and variances. The sphere system has a slightly lower mean value and a
slightly higher variance compared to the ellipsoid systems. This indicates that
transitioning from a spherical to an ellipsoidal system of particles increases the
overall connectivity of the pore space. However, this increase is more subtle
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compared to the large increase in coordination number for the solid phase in
going from spheres to ellipsoids. The coordination number of the superball
system lies between that of the spheres and the ellipsoids.

mean variance

spheres 2.99 0.83
oblate ellipsoids 3.22 0.74
prolate ellipsoids 3.21 0.72

superballs 3.10 1.35

Fig. 14 Distributions of coordination numbers, together with their means and variances

4.2.2 Edge length

The distribution of edge lengths of the pore-phase graph is shown in Fig-
ure 15. The mean edge length and the variance decrease as the density of the
packings increases going from spheres, to ellipsoids, to superballs. The shapes
of the edge length distributions are quite similar for the different packings.
In particular, we again observe that the two different ellipsoid packings have
virtually identical edge length distributions.

4.2.3 Geometric tortuosity

All computed values of geometric tortuosity of the pore-phase are between
1.35 and 1.39, see Figure 16. Interestingly, these values are within the range
of geometric tortuosity recently found in an analysis of the pore-phase of LSC
cathodes made from sintered (spherical) particles, where values between 1.21
and 1.41 were found [16]. This is relatively low compared to the geometric
tortuosity found in a study of the pore-phase of a gas diffusion layer made from
disordered strongly curved fibers, where a mean value of geometric tortuosity
of 1.6 was obtained [15].
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mean variance

spheres 2.78 · 10−2 3.27 · 10−4

oblate ellipsoids 2.46 · 10−2 2.32 · 10−4

prolate ellipsoids 2.46 · 10−2 2.37 · 10−4

superballs 2.06 · 10−2 1.89 · 10−4

Fig. 15 Left: distributions of edge lengths; right: their means and variances

Analyzing the distribution of geometric tortuosity, we see a strong simi-
larity across the different packings considered, see Figure 16. This is partic-
ularly interesting since the geometric tortuosities exhibited major differences
when analyzing the particle graph, see Section 3.2.3. The systems with more
anisotropic grains shapes (ellipsoids and superballs) have a smaller mean ge-
ometric tortuosity, while in the sphere system, geometric tortuosity is larger.

mean variance

spheres 1.39 2.60 · 10−3

oblate ellipsoids 1.36 3.32 · 10−3

prolate ellipsoids 1.36 4.02 · 10−3

superballs 1.35 3.80 · 10−3

Fig. 16 Left: distributions of geometric tortuosity; right: their means and variances

The mean geometric tortuosity is smallest for the superballs, which could
suggest good transport properties. But a shortest path may not always repre-
sent the fastest or the best route to travel. Consider analogously a situation
in the real world where one wishes to find the best driving route to travel
from A to B. This is a tradeoff between shortest paths (which might involve
narrow minor roads) and large highways (which might include detours). In
Section 4.1 we showed that the superball system has the smallest extent of
pore-phase. Thus, to decide which of the considered granular packings has the
best transport properties of the pore-phase, will depend on the specific physi-
cal application. When for example considering the liquid flow, computational
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fluid dynamics has been demonstrated to be a useful tool in determining the
permeability in granular systems similar to those considered here [28].

4.2.4 Graph-based spherical contact distance

In Section 4.1, we have seen that the structural differences between the pore-
phases of oblate and prolate ellipsoids were insignificant with respect to the
characteristics considered in that section. We therefore assume, together with
the other characterization results of the pore-phase obtained so far in Sec-
tion 4.2, that the pore-phases are indeed very similar for prolate and oblate
ellipsoids. We now consider again the spherical contact distances, but only
evaluated from points on the graph. If differences regarding spherical contact
distances exist, they should be more significant when analyzing the pore-phase
from the graph which is located predominantly in the center of the pores. Thus,
the distribution of these graph-based spherical contact distances gives accu-
rate information of the sizes of the pores. The results in Figure 17 show the
pore-phase is most narrow for the superball system and again, that the spa-
tial extent is largest for the sphere system. Again, the differences between the
prolate and oblate ellipsoid system are very small.

mean variance

spheres 10.06 · 10−3 5.51 · 10−5

oblate ellipsoids 8.30 · 10−3 3.85 · 10−5

prolate ellipsoids 8.38 · 10−3 4.02 · 10−5

superballs 5.48 · 10−3 3.69 · 10−5

Fig. 17 Left: cumulative distribution functions of spherical contact distances evaluated on
the nodes of the pore-phase graph; right: their means and variances

5 Conclusions

In this paper, we considered a set of computationally generated granular pack-
ings and performed an extensive series of analyses to quantify the geometric
properties of both the solid and the pore-phase. A particle graph was gener-
ated by connecting neighboring particles and analyzed in terms of transport-
relevant characteristics like the degree of connectivity (coordination number),
edge lengths and the windedness of percolation paths (geometric tortuosity).
Similarly, the pore-phase was analyzed by a pore-phase graph, obtained by
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a skeletonization of the pore-phase, as well as by further characteristics from
stochastic geometry describing the spatial extent of the pore-phase (spherical
contact distances and chord lengths).

In terms of transport properties, the pore-phase of the superball system
has the least winded percolation paths (i.e., the smallest geometric tortuosity),
yet it also has the smallest mean chord length indicating the smallest pore-
phase in terms of their spatial extent. Contrarily, the pore-phase of the sphere
system has the most winded paths (i.e., the largest geometric tortuosity), but
the largest mean chord length. Goodness of transport properties will be a
tradeoff between large pores and short paths, and will depend on the specific
physical application. Overall, the characterization of the pore-phases of the
four granular packings considered in this paper exhibited a surprisingly large
degree of similarity. Moreover, the shape of the distributions characterizing
the pore-phases, were all of the same shape indicating a similar morphological
structure of the pore-phase. In particular, the pore-phase for the 2 ellipsoid
packings (oblate and prolate) show a striking degree of similarity for all the
measures considered here.
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