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Abstract
Many post-processing methods improve forecasts at individual locations
but remove their correlation structure. However, this information is es-
sential for forecasting larger-scale events, such as the total precipitation
amount over areas like river catchments, which are relevant for weather
warnings and flood predictions. We propose a method to reintroduce
spatial correlation into a post-processed forecast using an R-vine copula
fitted to historical observations. The method rearranges predictions at
individual locations and ensures that they still exhibit the post-processed
marginal distributions. It works similarly to well-known approaches, like
the “Schaake shuffle” and “ensemble copula coupling”. However, com-
pared to these methods, which rely on a ranking with no ties at each con-
sidered location in their source for spatial correlation, the copula serves
as a measure of how well a given arrangement compares with the ob-
served historical distribution. Therefore, no close relationship is required
between the post-processed marginal distributions and the spatial corre-
lation source. This is advantageous for post-processed seamless forecasts
in two ways. First, meteorological parameters such as the precipitation
amount, whose distribution has an atom at zero, have rankings with ties.
Second, seamless forecasts represent an optimal combination of their in-
put forecasts and may spatially shifted from them at scales larger than
the areas considered herein, leading to non-reasonable spatial correlation
sources for the well-known methods. Our results indicate that the calibra-
tion of the combination model carries over to the output of the proposed
model, i.e., the evaluation of area predictions shows a similar improvement
in forecast quality as the predictions for individual locations. Additionally,
the spatial correlation of the forecast is evaluated with the help of object-
based metrics, for which the proposed model also shows an improvement
compared to both input forecasts.

1 Introduction

In operational weather forecasting, forecasters are supported by various forecast
models to issue targeted warnings of potentially hazardous weather phenomena.
The longer such warnings are accurate and reliable, the more time decision-
makers in hydrological and civil protection have to diminish possible harm to
life and property. Usually, these warnings rely on nowcasting systems and nu-
merical weather prediction (NWP). Both give valuable guidance, however, for
different lead times (Hess, 2020; Ruti et al., 2020). Thus, both systems repre-
sent different sources of predictability that can be combined to give the best
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forecast at any time. The so-called seamless prediction is part of a whole value
cycle as described in Ruti et al. (2020), reaching from information generation
toward the outcomes and values.

The project Seamless Integrated Forecasting System (SINFONY) of Deutscher
Wetterdienst (DWD) focuses on the seamless prediction of precipitation within
the short-term range up to 12 h ahead. As a first step to achieve the combination,
both forecasting techniques—nowcasting and NWP—are enhanced individually
such that the gap between both of them is narrowed in terms of a verification
metric. Then, based on the improved forecast systems, developing and imple-
menting custom combination methods leads to a unique user-oriented forecast,
including the best information for both individual forecasts. Within this project,
among other techniques, we have developed an approach to seamlessly combine
6 h forecasts of the observation-based precipitation nowcasting scheme “STEPS-
DWD” and the NWP model “ICON-D2-EPS”. Both models provide ensemble
forecasts and they are subsequently referred to as input forecasts.

The main component of the combination approach mentioned above is a
model we proposed in Rempel et al. (2022). It is based on neural networks for
combining and post-processing two ensemble forecasts (briefly called C3-model
in the following, where C3 stands for combined, calibrated, consistent). The
output of the C3-model consists of calibrated probabilities for the exceedance of
a set of precipitation thresholds at each grid point of a regular horizontal grid,
see also Schaumann et al. (2021). Forecasts of the C3-model could provide a
data basis for future customized warnings. However, a drawback of the model
is the loss of any spatial correlation of the input forecasts during the calibration
process.

This loss is a well-known problem often discussed in the literature about
post-processing of ensemble forecasts (Bellier et al., 2018; Jobst et al., 2023;
Möller et al., 2013; Wu et al., 2018). To overcome this drawback, several
approaches have been developed that reintroduce spatial information to post-
processed marginal distributions. Typically, these approaches are based on the
“Schaake shuffle” (Clark et al., 2004) or on “ensemble copula coupling” (Schefzik
et al., 2013). In these methods, sample values are drawn from the post-processed
marginal distributions for individual locations and rearranged into synthetic en-
sembles according to the rank correlation of one provided ensemble forecast or
a set of past observations. The resulting synthetic ensemble follows the post-
processed marginal distributions while preserving the spatial correlations of the
raw (i.e. unprocessed) data.

On the one hand, a close relationship between the source of the spatial
correlation (e.g. one ensemble forecast or a set of past observations) and the
post-processed marginal distributions is required to obtain suitable spatial cor-
relations for these rearrangement methods (Schefzik, 2016). On the other hand,
the ranks should be unambiguous to achieve a realistic result. These conditions
are fulfilled in common applications of the “Schaake shuffle” or “ensemble cop-
ula coupling”, where only one post-processed ensemble forecast is rearranged
(Lerch et al., 2020; Lakatos et al., 2023, e.g.).

However, the conditions mentioned above are no longer met for seamless
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probabilistic forecasts for precipitation provided by the C3-model (Rempel et al.,
2022). The output of this model represents an optimal combination of predic-
tions of two ensemble prediction systems: the precipitation nowcasting scheme
“STEPS-DWD” (Reinoso-Rondinel et al., 2022) and the short-range high-resolution
NWP-model “ICON-D2-EPS” (Zängl et al., 2015). Furthermore, precipitation
forecasts have an atom at 0mm, whereby the ranks are ambiguous and, due to
thr blending of the two sometimes completely different ensemble forecasts, the
output of the C3-model is a mixture of the distributions of the input forecasts.
Being a mixture of both input forecasts, it may be spatially shifted compared
to each input model at scales larger than the considered area for spatial rear-
ranging. Thus, no corresponding ensemble forecasts exist that could be used to
transfer its spatial correlation structure.

Therefore, in the present paper, we propose a multivariate stochastic model
for generating synthetic ensemble members based on the idea of the “Schaake
shuffle”. However, in our approach, the spatial correlations are not derived
from a given ensemble nor directly from historical observations but are modelled
through an R-vine copula. Vine copulas are a powerful tool for parametric mod-
elling of multivariate probability distributions (Joe and Kurowicka, 2011) and
offer the flexibility to describe their tail behaviour adequately (Czado and Na-
gler, 2021). Thus, the need for having an ensemble forecast available in advance
as a source of spatial correlations is circumvented. Furthermore, the spatial
correlation structure can be reconstructed in any area without a readjustment
of the model components for the new area considered. As a result, we offer the
possibility to provide forecast information on user-oriented customized areas,
which can be a basis for flexible warnings to end-users. Thus, with additional
impact data, we can support the transition process of the current operational
warning system towards an impact-oriented one (Kaltenberger et al., 2020; Kox
et al., 2018; Potter et al., 2021). Finally, we estimate the distribution of the
total precipitation amount within given regions (e.g. river catchments or mu-
nicipal areas) using synthetic ensemble members drawn from the multivariate
stochastic model.

Vine copulas are recently used in the field of energy meteorology to model
the spatial interrelation of errors in probabilistic forecasts to assess the uncer-
tainties in the power generation of photovoltaic systems (Aigner et al., 2023;
Schinke-Nendza et al., 2021), or for the inclusion of spatial dependencies be-
tween multiple wind farms in wind energy scenarios (Li et al., 2022; Tu et al.,
2023). Another field of application is within so-called weather generators. Since
high-resolution time series of atmospheric variables are only available for a lim-
ited period (e.g. 30 years), it is necessary to extend these time series when
assessing extreme events (Van de Velde et al., 2023) or designing hydrological
applications (Callau Poduje and Haberlandt, 2018). In Brunner et al. (2019),
several copula models have been evaluated to reproduce the spatial dependen-
cies of gauging stations in a river catchment. Furthermore, in Erhardt et al.
(2015), a spatial model based on an R-vine copula has been introduced to pre-
dict time series of the daily mean temperature at unobserved locations, and,
in Nazeri Tahroudi et al. (2022), various C-, D-, and R-vine copulas have been
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examined to estimate rainfall deficiency structures in an Iranian river basin.
It should be noted that in the meteorological literature, the term “spatial

correlation” sometimes refers to the spatial correlation of forecast uncertainty,
which is then called “spatial error correlation”, see, e.g. Feldmann et al. (2015),
as opposed to the spatial correlation of the precipitation amount itself. The rea-
son for this distinction is that the (actually observed) precipitation amount can
be mathematically modelled either as a deterministic quantity or as a random
variable.

The present paper is structured as follows. First, the utilized datasets are
introduced in Section 2. This is followed in Section 3 by a description of the
adjustment of the C3-model by a quantile regression, the generation of synthetic
ensemble members, and the prediction of the total precipitation amount in a
given area. Then, Section 4 discusses the proposed model’s implementation
details. Afterwards, the validation results are presented in Section 5. Finally,
conclusions are drawn in Section 6.

2 Data

For adding spatial correlations to the C3-model forecasts, we use the same
dataset as in Rempel et al. (2022). That set consists of, on the one hand,
precipitation extrapolations of “STEPS-DWD”, a nowcasting scheme. On the
other hand, forecasts of an experimental version of “ICON-D2-EPS” are used,
a high-resolution short-term NWP model. Both systems provide ensemble fore-
casts. In order to keep the present paper largely self-contained, we provide
a brief description of the dataset, which covers three time periods from the
years 2016, 2019 and 2020 (2016-05-26 - 2016-06-26, 2019-06-01 - 2019-06-23,
2020-06-03 - 2020-07-16).

2.1 STEPS-DWD

“STEPS-DWD” has been developed within SINFONY as an adaption of “STEPS”
(Short-Term Ensemble Prediction System), see Bowler et al. (2006); Foresti
et al. (2016); Seed (2003); Seed et al. (2013), where DWD’s radar network pro-
vides radar reflectivities based on which precipitation rates are estimated by a
hydrometeor-dependent Z-R relation optimised for the radar stations utilised
by DWD (Steinert et al., 2021).

For the present study, “STEPS-DWD” is configured to consist of a cascade
of first-order autoregressive processes on twelve spatial scales and to apply a new
localisation approach (Pulkkinen et al., 2020; Reinoso-Rondinel et al., 2022) for
the estimation of the autoregressive parameters on each individual scale. The
spatially correlated noise field is estimated globally but is imprinted only in
regions with precipitation due to the localised autoregressive parameters.

We use further 30-member “STEPS-DWD” extrapolations that are gener-
ated every 30minutes running 6 h ahead on a 1 × 1 km2 grid with a temporal
resolution of 5 minutes. For our purposes, all 5-minute forecasts within a given
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hour are aggregated into one hourly forecast. In the same way, radar obser-
vations are aggregated to obtain the ground truth for the C3-model and the
estimated precipitation amounts for validating the synthetic rainfall fields.

2.2 ICON-D2-EPS

Furthermore, we use forecasts of an experimental version of “ICON-D2-EPS”
(Zängl et al., 2015) that runs in limited area mode (LAM) with a horizontal grid
spacing of ∆x ≈ 2.2 km. The domain of the 20-members ensemble is centred
on Central Europe. In addition to conventional observation data and MODE-S
aircraft measurements, radar reflectivities and radial winds of the 3D volume
scans are assimilated by DWD’s kilometre-scale ensemble data assimilation sys-
tem KENDA. It implements a localised ensemble transform Kalman filter (Bick
et al., 2016; Schraff et al., 2016). Only the first 20 members serve as initial condi-
tions for the forecasts, while 40 members are used for the assimilation. “ICON-
EU ensemble” forecasts (larger trans-European domain, grid spacing 6.5 km,
parameterised deep convection) provide lateral and upper boundary conditions.
The operational conventional one-moment cloud microphysics scheme is used.

Our experimental setting of “ICON-D2-EPS” generates hourly forecasts run-
ning 12 h ahead. The native ICON output is provided on an irregular triangular
grid. Hence, forecasts of both—“STEPS-DWD” and “ICON-D2-EPS”—as well
as the observations are interpolated onto a common regular 2.2 × 2.2 km2 grid
that was established for the former operational NWP model COSMO-D2.

2.3 C3-model

The so-called C3-model further processes the previously presented “STEPS-
DWD” and “ICON-D2-EPS” forecast datasets. It consists of a neural network
with a feed-forward architecture featuring multiple hidden layers trained to
merge precipitation forecasts into one combined probabilistic prediction. The
main objective of this model is to learn and correct the biases within both input
forecasts and to generate a calibrated seamless transition between the input
forecast models.

In more detail, the C3-model takes as input the probabilities for exceeding
several precipitation thresholds estimated by both input forecast models at a set
of grid points. Its output, conversely, also comprises either threshold exceedance
probabilities or a set of quantiles of the probability distribution for each grid
point. The output forecast exhibits improved validation scores compared to
both input forecasts across all considered lead times. It serves as the input
for the copula method presented in the next section. For more details on the
C3-model, see Schaumann et al. (2021).

5



3 Methods

The modelling approach proposed in this paper consists of several parts. First,
the C3-model is used to predict calibrated quantiles of the precipitation amount
distribution for each location under consideration. However, these pointwise
predictions do not take spatial correlation into account. Therefore, in the next
step, an R-vine copula is fitted to precipitation observation data for modelling
the multivariate precipitation distribution at multiple locations. The R-vine
copula model has been selected from the vine copula models occurring in the
literature because it is the most general one with no restrictions regarding the
vine structure. In other words, any valid D-vine and C-vine model is also a
valid R-vine model. Finally, the copula model is used with a hill-climbing algo-
rithm to order the predicted quantiles at each considered location into synthetic
ensemble members. This step is conceptually similar to “Schaake shuffle” and
“ensemble copula coupling” in that spatial correlation is imposed on samples of
marginal distributions by rearranging the samples. However, for rearranging the
predicted precipitation values, the fitted copula serves as a measure of how well
a given arrangement compares with the observed distribution of precipitation
in the historical data, where no close relationship is required between the post-
processed marginal distributions and the spatial correlation source. This is an
advantage in comparison to “Schaake shuffle” and “ensemble copula coupling”,
which rely on the existence of a ranking with no ties at each considered location
in their source for spatial correlations. The ensemble members obtained by our
modelling approach exhibit not only the calibrated marginal distributions pre-
dicted by the C3-model but also the spatial correlation provided by the copula
model. We refer to Section 4 below regarding various implementation aspects.

3.1 Quantile regression

Recall that the output of the C3-model, as proposed in Rempel et al. (2022)
and Schaumann et al. (2021), consists of probabilities for the exceedance of an
appropriately selected family of thresholds. For reliable fitting of probability
densities to these datasets of exceedance probabilities, a relatively large number
of thresholds would be required to cover the entire spectrum of possible precipi-
tation amounts. In addition, picking a suitable family of parametric densities is
not trivial to model the distribution predicted by the C3-model. Thus, we switch
from considering threshold exceedance probabilities to a quantile regression ap-
proach to limit the number of necessary data points generated by the C3-model.
For this, we replace the softmax layer of the C3-model with a dense layer with a
linear activation function and replace the “categorical cross-entropy” loss func-
tion with “pinball” loss functions, see Steinwart and Christmann (2011) for
details. This allows us to predict a set of evenly spaced quantiles on the [0, 1]-
interval. By sampling values directly from this set of quantiles, we obtain data
which can be seen as realizations of the precipitation amount distribution pre-
dicted by the C3-model without the necessity to fit a suitable probability density
function.
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3.2 Sampling of predicted precipitation amounts for single
locations

For some integer, m > 1, let V = {v1, . . . , vm} ⊂ R2 denote a set of locations,
for each location vi of which the C3-model produces a calibrated distribution of
precipitation amounts, as described above. For some sample size N > 0 and for
each i = 1, . . . ,m, we draw N sample values x1

i , . . . , x
N
i > 0 for a specified hour

t > tc from a certain random variable Xi, whose probability distribution de-
scribes the predicted precipitation amount at location vi. It is important to note
that the sample size N does not necessarily have to be the same as the number
of ensemble members in either of the input forecasts. If resampling values from
the predictions of the C3-model is allowed, i.e., bootstrapping, then the value
of N can be any positive integer. It should be noted that drawing more boot-
strapped samples from the number of available quantiles does not improve the
predicted marginal distribution for a specific grid point. However, increasing the
number of samples can enhance the model’s ability to represent the overall mul-
tivariate distribution of precipitation within the considered area by generating
additional synthetic ensemble members. However, if resampling is not allowed,
then the value of N is constrained by the number of quantiles generated by the
C3-model. Nonetheless, it should be noted that the C3-model can produce an
arbitrary number of quantiles if trained to do so. Here and in the following,
tc ∈ R refers to the present point in time dividing the datasets into past and
future, i.e., the data available for training and validation, respectively. Note
that these values are independently sampled for each individual location, i.e.,
the random vector (X1, . . . , Xm) has independent components because the C3-
model predicts the univariate (marginal) distributions of precipitation amounts
without taking spatial correlations into account. The sample values x1

i , . . . , x
N
i

are used later on as building blocks for the construction of synthetic ensemble
members, which follow the distribution of some m-dimensional random vector
(X ′

1, . . . , X
′
m) that describes the precipitation amounts predicted at locations

v1, . . . , vm ∈ V for the same hour t, i.e., the (univariate) distributions of X ′
i

and Xi coincide for each i = 1, . . . ,m, where the spatial correlations observed
in historical precipitation data are taken into consideration in (X ′

1, . . . , X
′
m).

3.3 Modeling spatial dependencies by measured precipi-
tation amounts

This section briefly introduces copula theory and explains how copula mod-
els can capture spatial dependencies based on measured precipitation amounts.
Copulas are a statistical tool to model multivariate (non-Gaussian) probability
distributions. With the help of Sklar’s fundamental theorem of copula the-
ory (see Joe and Kurowicka (2011)) the cumulative distribution function of a
multivariate probability distribution can be decomposed into several distinct
functions, i.e., a univariate (marginal) cumulative distribution function for each
marginal distribution and a so-called copula which models the underlying cor-
relation structure. By decomposing the joint CDF into several components,
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each component can be modelled separately. In other words, copulas allow for
modelling a random vector’s correlation structure independently of its marginal
distributions and, therefore, without imposing restrictions on these marginal
distributions. Since copulas do not require the multivariate distribution to be
Gaussian, they are popular in areas of research where non-Gaussian phenomena
such as precipitation amounts are investigated.

In the present paper, we are interested in the multivariate distribution of
m-dimensional vectors of precipitation amounts. More specifically, we want to
model the multivariate density for precipitation amounts at several locations.
However, the implementation explained in Section 4 below only allows for con-
tinuous or discrete distributions but not for mixtures of both distribution types.
Since the distribution of precipitation amounts has an atom at 0 mm, it is a
mixture distribution, which necessitates that we consider discretized marginal
distributions instead. Furthermore, it should be noted that the method could be
applied without discretization for meteorological quantities with continuous dis-
tributions such as temperature. Therefore, both the continuous and the discrete
cases will be discussed in the following.

To determine the joint distribution of (historical) precipitation amounts at
a set of locations v1, . . . , vm ∈ V modelled by an m-dimensional random vector
(Y1, . . . , Ym), we use historical datasets (y1,t1 , . . . , ym,t1), . . . , (y1,tk , . . . , ym,tk),
which are considered as realizations of (Y1, . . . , Ym) being available from mea-
surements of precipitation amounts for certain past times t1, . . . , tk ≤ tc. Recall
that tc ∈ R refers to the present point in time dividing the datasets into past
and future. Moreover, we use Sklar’s representation formula (Joe and Kurow-
icka, 2011) for the joint cumulative distribution function G : Rm → [0, 1] of
(Y1, . . . , Ym), which states that

G(y1, . . . , ym) = C(G1(y1), . . . , Gm(ym)) for all y1, . . . , ym ∈ R, (1)

where Gi : R → [0, 1] denotes the univariate cumulative distribution function
of Yi for i = 1, . . . ,m, and C : [0, 1]m → [0, 1] is an m-variate copula. More
specifically, C : [0, 1]m → [0, 1] is the restriction of the m-variate cumulative
distribution function of an m-dimensional random vector to the cube [0, 1]m

such that its components are uniformly distributed on the unit interval [0, 1]
for each i = 1, . . . ,m. Thus, to determine G, it is sufficient to determine the
univariate cumulative distribution functions G1, . . . , Gm and the copula C. In
the following, the vector (U1, . . . , Um) refers to the transformed random variables
Ui = Gi(Yi) for i = 1, . . . ,m. Analogously, realizations of Ui are denoted as
ui = Gi(yi). Since each marginal random variable Yi is transformed by its
own CDF Gi, the corresponding transformed random variable Ui is standard
uniformly distributed.

Note that Sklar’s representation formula given in Equation (1) can be spec-
ified if the joint distribution of (Y1, . . . , Ym) is (purely) continuous or discrete.
In the discrete case, it is sufficient to determine the values of the copula C :
[0, 1]m → [0, 1] for the joint support RU1

× . . . × RUm
⊂ [0, 1]m of the vector

(U1, . . . , Um), where RUi
denotes the support of Ui for i = 1, . . . ,m, instead of

considering the values of C for the entire cube [0, 1]m.
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In this paper, we are mainly interested in the joint probability density
(or, in the discrete case, the probability mass function) g : Rm → [0,∞) of
(Y1, . . . , Ym), instead of determining the joint cumulative distribution function
G : Rm → [0, 1] of (Y1, . . . , Ym). For this, the following representation formulas
for g can be derived from Equation (1), see (Joe and Kurowicka, 2011): In the
continuous case, the density g of (Y1, . . . , Yn) is given by

g(y1, . . . , ym) = c(G1(y1), . . . , Gm(ym))

m∏
i=1

gi(yi) for all y1, . . . , ym ∈ R,

(2)
where gi : R → [0,∞) denotes the density of Yi for i = 1, . . . ,m, and c :
[0, 1]m → [0,∞) is the density of C. In the discrete case,

the probability mass function g : Rm → [0, 1] of (Y1, . . . , Ym) is given by

g(y1, . . . , ym) = c(G1(y1), . . . , Gm(ym)) for all y1 ∈ RY1
, . . . , ym ∈ RYm

,
(3)

where RYi
denotes the support of Yi for i = 1, . . . ,m. Here, c : RU1

× . . . ×
RUm → [0,∞) is the probability mass function of the transformed random vector
(U1, . . . , Um) which is given by

c(u1, . . . , um) =
∑

j1∈{0,1}

. . .
∑

jm∈{0,1}

(−1)j1+...+jmC(u
(j1)
1 , . . . , u(jm)

m ) (4)

for all (u1, . . . , um) ∈ RU1×. . .×RUm , where u
(0)
i = ui and u

(1)
i = limx↑G−1

i (ui)
Gi(x)

for i = 1, . . . ,m.
Thus, in order to obtain g for a dataset (y1,t1 , . . . , ym,t1), . . . , (y1,tk , . . . , ym,tk) ∈

Rm, we first determine the univariate cumulative distribution functionsG1, . . . , Gm :
R → [0, 1] for each location in v1, . . . , vm ∈ V . Then, in a second step, the
dataset is transformed into standard uniformly distributed samples
(u1,t1 , . . . , um,t1), . . . , (u1,tk , . . . , um,tk) ∈ [0, 1]m based on which a copula model
can be fitted. The literature uses many different types of parametric copula fam-
ilies to model multivariate distributions. However, many of these families are
limited to the two-dimensional case and involve only a small number of param-
eters, making it difficult to accurately capture the complexity of multivariate
distributions.

For this reason, we utilize so-called R-vine copulas to model the copula
C of the multivariate distribution of precipitation amounts, which are more
suitable for high-dimensional random vectors. More specifically, vine copulas
decompose a multivariate distribution into many bivariate distributions, which
are easier to model. In addition, the number of bivariate copulas within the
vine copula increases quadratically with the number of dimensions of the random
vector, i.e., vine copulas are less restrictive than other parametric copula families
with regard to the number of degrees of freedom. There are different vine
copulas, with the R-vine copula being the most general type that includes all
others. Other common types include the D-vine and C-vine copulas, which
make additional assumptions that restrict the flexibility of the vine structure.
Therefore, this paper only considers R-vine copulas.
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In the following, we briefly explain the components of a vine copula structure,
using Figure 1 as an example. This figure shows the structure of an R-vine
copula for a 5-dimensional random vector. A vine copula comprises several
trees, whereby the edges of a tree correspond to the vertices of the subsequent
tree, as indicated by the vertical dotted lines. The vertices of the first tree,
displayed at the bottom of Figure 1, correspond to the marginal distributions of
the considered random vector. The vertices of the second tree, located above the
first, correspond to bivariate copulas that model the joint distributions of the
two marginal distributions connected by the corresponding edge. The vertices
in subsequent trees correspond to bivariate copulas that model conditional joint
distributions for two dimensions each (indicated by the two numbers on the left
within each box), conditioned on one or more other dimensions (indicated by the
numbers on the right within each box). The arrangement of edges in each tree
is selected to capture most of the correlation within the multivariate random
vector in the earlier trees. The reasoning is that the fitted copulas become less
precise with each additional tree, and maximizing the correlation modelled in
the earlier trees improves the accuracy of the vine copula as a whole.

When constructing a vine copula, the trees are built step by step, starting
with the first. The first tree involves fitting the marginal distributions from a
dataset of multivariate samples of the considered multivariate random vector
with the help of common approaches such as parametric probability distribu-
tions, kernel density estimators or empirical CDFs. These fitted marginal distri-
butions are then used to transform the samples within the dataset into standard
uniform samples, which are used to fit the bivariate copulas in the second tree.
Either parametric copula families or a kernel density estimator are used for this.
The previous tree’s elements transform the dataset into the required samples to
fit the copulas in each subsequent tree.

While it is outside of the scope of this present paper to discuss vine copulas
in more detail, it should be mentioned that the vine structure is specifically
built in such a way that once the bivariate copulas within the vine structure are
fitted, they can be utilized to obtain the vine copulas CDF or PDF or to generate
samples. For a more detailed description regarding the fitting procedure of R-
vine copulas to data, we refer to Joe and Kurowicka (2011), see also Aigner
et al. (2023).
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Figure 1: Exemplary structure of an R-vine copula for a 5-dimensional distribu-
tion. Each vertex in the bottom tree represents a marginal distribution, while
the vertices in the second tree represent joint bivariate distributions. In the
third and following trees, each vertex represents a joint conditional distribution
for two components conditioned on one or more other components. Once fitted
to data, these bivariate copulas can generate samples from the fitted copula
or obtain functions such as its density. Note that this example was previously
depicted in Aigner et al. (2023).

3.4 Generation of synthetic ensemble members

From now on, we assume that all random variables, i.e., X1, . . . , Xm, Y1, . . . , Ym,
and X ′

1, . . . , X
′
m, as well as the transformed random variables U1, . . . , Um, con-

sidered in the following, have discrete distributions.
We show how the samples (x1

i , . . . , x
N
i ) for i = 1, . . . ,m, which have been in-

dependently drawn from the components of the random vector (X1, . . . , Xm) as

stated above, can be rearranged intoN synthetic ensemble members (x
(j)
1 , . . . , x

(j)
m )

for j ∈ {1, . . . , N}, such that these ensemble members can be considered as real-
izations of some m-dimensional random vector (X ′

1, . . . , X
′
m), whose univariate

marginal distributions coincide with those of (X1, . . . , Xm) and, in addition,
which exhibits the spatial correlations observed in historical precipitation data.

For this purpose, i.e., to rearrange the samples {(x1
i , . . . , x

N
i ), i = 1, . . . ,m}

into N synthetic ensemble members {(x(j)
1 , . . . , x

(j)
m ), j = 1, . . . , N}, we deter-

mine a permutation σi : {1, . . . , N} → {1, . . . , N} for each i = 1, . . . ,m with

(x
σ−1
i (1)

i , . . . , x
σ−1
i (N)

i ) = (x
(1)
i , . . . , x

(N)
i ) such that the sample of ensemble mem-

bers {(x(j)
1 , . . . , x

(j)
m ), j = 1, . . . , N} exhibits the spatial correlation of precipi-

tation amounts modeled by the copula C : RU1
× . . . × RUM

→ [0, 1] intro-
duced above. For this, we define the likelihood L(σ) for a set of permutations
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σ = {σi, i = 1, . . . ,m} as

L(σ) =

N∏
j=1

g(x
(j)
1 , . . . , x(j)

m ) , (5)

where g : RY1
×. . .×RYm

→ [0, 1] is the probability mass function of the discrete
random vector (Y1, . . . , Ym) fitted to historical precipitation data.

Thus, a set of permutations σ, which maximizes the likelihood L(σ), re-
arranges the samples {(x1

i , . . . , x
N
i ), i = 1, . . . ,m} into N synthetic ensemble

members {(x(j)
1 , . . . , x

(j)
m ), j = 1, . . . , N} such that they match the spatial cor-

relation of precipitation amounts in the best possible way.

3.5 Predicting the total precipitation amount in a given
area

Recall that the i-th component Xi of the random vector (X1, . . . , Xm) intro-
duced above has the same (univariate) distribution as the i-th component X ′

i

of (X ′
1, . . . , X

′
m) for each i ∈ {1, . . . ,m}. However, in addition to this, the joint

distribution of the random vector (X ′
1, . . . , X

′
m) obtained by maximizing the

likelihood L(σ) given in Equation (5), also captures the spatial correlation of
precipitation amounts. Thus, for any subset S ⊂ {1, . . . ,m}, the random sum∑

i∈S X ′
i can be considered as an appropriate prediction model for the total

precipitation amount in an area which is represented by the set {vi, i ∈ S} ⊂ V
of locations. In particular, the probability P(

∑
i∈S X ′

i ≥ z) that the total pre-
cipitation amount

∑
i∈S X ′

i exceeds a certain (critical) threshold z > 0 can be

estimated by the relative frequency #{j : 1 ≤ j ≤ N,
∑

vi∈S x
(j)
i > z}/N , where

# denotes cardinality.

4 Implementation of the copula-based model

We now discuss some implementation details of the copula-based model in-
troduced in Section 3. First, we explain for which areas the proposed model
generates synthetic ensembles, which are validated in Section 5 below. Next,
the procedure for fitting an R-vine copula to historical data is explained in de-
tail. Then, a hill-climbing algorithm is presented for optimizing the likelihood
function L(σ) introduced in Section 3. Finally, we discuss the validation scheme
utilized for evaluating the results stated in Section 5.

Note that so far in this paper, the term ”location” has been used because, in
general, the model introduced in Section 3 does not assume that the underlying
data is given on a regular grid, i.e., the set V = {v1, . . . , vm} ⊂ R2 introduced in
Section 3 can be arbitrarily shaped. However, in our case, the data described in
Section 2 is arranged on a regular grid, and, therefore, we will refer to grid points
(or grid boxes) in the following instead of calling them locations. Moreover,
instead of considering one single set V of grid points, in the following, we apply
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the copula-based model introduced in Section 3 to several sets of grid points
simultaneously, i.e., we assume that the historical observations of precipitation
amounts are statistically invariant in space and time. This means, in particular,
that we fit one single R-vine copula to multiple precipitation observations from
across the entire considered period and from non-overlapping subsets of some
sampling window W ⊂ R2, respectively.

4.1 Areas, where synthetic ensembles are generated

In order to evaluate the copula-based model proposed in the present paper, it
is applied to the combined forecast produced by the C3-model, which receives
forecasts of “STEPS-DWD” and “ICON-D2-EPS” as input and predicts cali-
brated marginal distributions for all considered grid points without taking spa-
tial correlations into account. This combined forecast is available for a sampling
window W ⊂ R2, consisting of 350 × 450 grid points and a rectangular subset
of the regular COSMO-D2 grid, enclosing Germany and parts of neighbouring
countries.

However, due to computational complexity, applying the copula-based model
to the whole sampling window W in a single step is impossible. So instead, for
each hour t available in the dataset, which belongs to the time intervals listed
in the introduction of Section 2, we successively choose nt > 1 non-overlapping
quadratic subsets V t

1 , V
t
2 , . . . , V

t
nt
⊂W , consisting of 9× 9 grid points each and

being positioned at random within W , until no further non-overlapping 9 × 9
subset can be found in W .

4.2 Fitting R-vine copulas to historical observations

For a given hour tc representing the “current time”, we fit an R-vine copula to
the historical observations made within the areas V t

1 , V
t
2 , . . . , V

t
nt
⊂ W and for

the k past hours t ∈ {t1, . . . , tk} introduced in Section 3 with t ≤ tc, i.e., the R-
vine copula is fitted to the vector data of precipitation amounts observed within
the sets of 9× 9 grid points described above, without taking local peculiarities
into account. In other words, since the areas V t

1 , V
t
2 , . . . , V

t
nt

are selected at
random from all parts of the sampling window W , the fitted R-vine copula
does not model local correlations which might be specific to a particular 9 × 9
area. This has the advantage that rare events, which might occur only at a few
grid points within the entire dataset, do not influence how spatial correlation is
modelled globally in W .

Note that the dataset on which the R-vine copula is fitted consists of ob-
servations for different past hours t ∈ {t1, . . . , tk} and different 9 × 9 areas
V t
1 , . . . , V

t
nt
⊂ W . However, for fitting the copula, this dataset is considered as

realizations of one single random vector (Y1, . . . , Ym) for one single (abstract)
9×9 area V = {v1, . . . , vm} with m = 81, as introduced in Section 3. Therefore,
in the following, V = {v1, . . . , vm} does not refer to one specific area within W ,
but to an unspecified quadratic set of m = 81 grid points and their relative
positions to each other for which the random vector (Y1, . . . , Ym) is defined.
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To fit the R-vine copula, the library pyvinecopulib Vinecopulib (2023) is
used, where pyvinecopulib requires that the univariate (marginal) distribu-
tions of Yi for i ∈ {1, . . . ,m} fitted to the historical precipitation data are
either continuous or discrete. Thus, since the distribution of precipitation
amounts has an atom at 0mm, we consider a discretized marginal distribu-
tion for each i ∈ {1, . . . ,m}, represented by its cumulative distribution function
Gi : RYi → [0, 1]. Next, using Gi, we transform the precipitation amount yi
observed at vi ∈ V to obtain ui = Gi(yi) ∈ [0, 1].

The R-vine copula is now fitted to the vectors (u1, . . . , um) of transformed
precipitation amounts, where the fact is used that an R-vine copula is built by a
set of bivariate copulas. Thus, in the fitting process, pyvinecopulib determines
the most suitable copula family for each of these bivariate copulas with the
help of the Bayesian information criterion (BIC). For the results derived in
this paper, the bivariate copulas are chosen from all available parametric copula
families provided by pyvinecopulib (independent, Gaussian, Student, Clayton,
Gumbel, Frank, Joe, BB1, BB6, BB7, BB8). However, to reduce computational
costs, we truncate the R-vine copula considering only five trees within the vine
structure, i.e., for each of the m = 81 arguments of the R-vine copula, the
correlation structure with five other suitably chosen arguments is considered.
For more details regarding truncated vine copulas and vine copulas in general,
we refer to Joe and Kurowicka (2011). Exemplary samples from the fitted R-vine
copula can be compared to a set of randomly chosen observations in Figure 9
in the Appendix.

4.3 Generating samples of predicted precipitation amounts

In the following, we describe how to generate a sample (x1
i , . . . , x

N
i ) of predicted

precipitation amounts for an hour t > tc and for each of the m = 81 grid points
of each 9× 9 area V t

1 , . . . , V
t
nt
⊂W , where i ∈ {1, . . . ,m}.

As described in Section 3, the C3-model has been modified to generate quan-
tiles of the predicted distributions of precipitation amounts for each grid point
in W . For our purpose, the C3-model has been trained to generate vectors
q = (q1, . . . , q100) of 100 α-quantiles, where the values of α are evenly spaced
between 0.0001 and 0.9999. Then, for each grid point in V t

1 ∪ . . . ∪ V t
nt
, we

select N = 20 values at random among the components of the correspond-
ing vector q = (q1, . . . , q100). To ensure that these values are spread out
across the entire support of the predicted precipitation distribution, the com-
ponents of q = (q1, . . . , q100) are divided into N = 20 consecutive groups
(q1, . . . , q5), (q6, . . . , q10), . . . , (q91, . . . , q95), (q96, . . . , q100), each consisting of five
quantiles from which one quantile is selected at random. Note that this proce-
dure is similar to the stratified sampling approach discussed in Hu et al. (2016).
The stratified sampling approach guarantees that the drawn samples cover the
entire density for each grid point. This approach also ensures that the samples
for grid points with similar densities have similar values. This prevents scenar-
ios where, e.g. two neighbouring grid points have similar densities but vastly
different samples because one grid point received all samples from the upper
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tail and the other from the lower tail. In the following, the matrix of the N
quantiles drawn from q for each of the m = 81 grid points within a given 9× 9
area will be denoted by x = (xj

i , i ∈ {1, . . . ,m}, j ∈ {1, . . . , N}) ∈ Rm×N .

4.4 Hill climbing algorithm for ensemble generation

To find a set of permutations σ = {σi, i = 1, . . . ,m} that maximizes the like-
lihood L(σ) introduced in Equation (5), a hill climbing algorithm (Skiena,
1998) is applied. This algorithm starts with a set of random permutations
σ = {σi, i = 1, . . . ,m}, i.e., for each grid point i ∈ {1, . . . ,m} the quantiles
in (x1

i , . . . , x
N
i ) are rearranged at random. These arrangements are iteratively

changed such that the value of the evaluation function L(σ) increases with each
step, where the algorithm is structured as follows, see also Algorithm 1 in the
Appendix. :

1. The inputs of the algorithm are the matrix x = (xj
i , i ∈ {1, . . . ,m}, j ∈

{1, . . . , N}) ∈ Rm×N , which contains N predictions for each of the m grid
points, and the m-variate density function g : RY → [0,∞) introduced in
Section 3.

2. As already mentioned above, the algorithm starts with a set of random
permutations σ = {σi, i = 1, . . . ,m}, i.e., there is no (spatial) correlation
between the rows (x1

i , . . . , x
N
i ) of x after applying the set σ of random

permutations.

3. Iterate over each synthetic ensemble member (xj
1, . . . , x

j
m) for j ∈ {1, . . . , N}:

(a) Find k ∈ {j, . . . , N} such that g(xj
1, . . . , x

k
p, . . . , x

j
m) is maximized for

each grid point p ∈ {1, . . . ,m}. If k ̸= j switch xj
p and xk

p in order to im-

prove g(xj). (b) Repeat step (a) until no values in x have been switched.

4. Return x. Note that at this step of the algorithm, the variable x contains

the ordered values that were referred to as {(x(j)
1 , . . . , x

(j)
m ), j = 1, . . . , N}.

The idea of reordering samples drawn from marginal distributions in or-
der to obtain realistic ensemble members is also used in the approaches of the
“Schaake shuffle” (Clark et al., 2004) and “ensemble copula coupling” (Wilks,
2006). However, in those approaches, the permutations for each grid point are
provided either by a given set of ensemble members or directly by a set of his-
torical observations. In contrast, the approach considered in the present paper
is based on a fitted copula model.

For the results stated in this paper, N is chosen to be 20; however, the last
member is omitted since the number of values from which the algorithm can
choose at a grid point decreases as j ∈ {1, . . . , N} increases, the quality of the
synthetic members, therefore, decreases for higher values of j. The decrease in
quality is depicted in Figure 2, where it is shown that this effect mainly affects
the last member j = N .
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4.5 Validation scheme

The copula model proposed in this paper is validated with the help of a rolling-
origin scheme (Armstrong and Grohman, 1972). In this scheme, the available
dataset is split by the “current time” tc, into a “past” and a “future”. Through-
out the validation, the ”current time” tc is incrementally shifted from the start
to the end of the dataset in chronological order. In each step, the model is
updated on the ”past” data while the “future” data is used to validate model
predictions. This approach is especially suitable for datasets with a time axis
and also because it closely simulates operational conditions.

Furthermore, in each step, the model is applied to randomly chosen, non-
overlapping areas of size 9×9, as described at the beginning of this section. Each
application results in 19 synthetic ensemble members. Based on these synthetic
ensemble members, the probability is estimated that the total precipitation
amount within the area exceeds a given threshold. The resulting validation
scores are discussed in the following section.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.5

1.0

Figure 2: Relative quality of all synthetic ensemble members (x
(i)
1 , . . . , x

(i)
m )

evaluated in the dataset (∼ 50000 in total) compared to the first mem-

ber (x
(1)
1 , . . . , x

(1)
m ) within the same 9 × 9 area for the lead time +3h.

The relative quality is expressed by the distribution of the quotient

log(g(x
(i)
1 , . . . , x

(i)
m ))/log(g(x

(1)
1 , . . . , x

(1)
m )) for i = 2, . . . , 20 with 90% winsoriza-

tion. Note that the distributions of the relative qualities looks essentially the
same for other lead times. In other words, generating synthetic ensemble mem-
bers one after another reduces the number of values to choose from within each
iteration of the hill-climbing algorithm. This effect is most noticeable for the
last member for which only one value per grid point is left, i.e., the last ensemble
member contains all values not used in previous synthetic members. This figure
illustrates the quality drop-off that occurs for ensemble members for which the
hill climbing algorithm has fewer values to choose from.

5 Validation of synthetic rainfall fields

We want to assess how well the copula-based technique proposed in this paper,
referred to as “COPULA” in the following, models realistic spatial dependencies
and to which extent the original requirements of a consistent and calibrated
combination forecast are retained. To achieve this, we compare synthetic rainfall
fields generated by “COPULA” with three groups of benchmarks.
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First, we utilize both input forecasts, “ICON” and “STEPS”. Since both
serve as input for the C3-model, forecasts based on the output of the C3-model
are expected to be at least as good as either input forecast.

Secondly, we examine extreme cases of spatial correlation. The minimum
spatial correlation is realized by randomly arranging the values drawn from
the C3-model at each grid point as described in Section 4. Conversely, the
maximum possible spatial correlation is obtained when the sample values are
sorted in ascending order; consequently, the first synthetic ensemble member
comprises the lowest values at each grid point, followed by the second lowest
ones, and so forth until the last ensemble member containing the highest values
for every grid point. However, we only discuss the sorted arrangement since
the random arrangement reveals poor results across all considered metrics. The
sorted arrangement is named “C3 sorted” in this context.

Lastly, we consider post-processed values drawn from the C3-model arranged
according to the ranks of one input ensemble forecast each using the “Schaake
shuffle” to reintroduce a dependence structure. These configurations are called
“C3+ICON” and “C3+STEPS”. Here, the “Schaake shuffle” is applied to the
C3-model output and the forecasts of “ICON-D2-EPS” and “STEPS-DWD”,
respectively, are used as source of spatial correlation. Due to the atom at 0mm
in the distribution of precipitation amounts, there may not always be a fully
specified ranking provided by the considered ensemble forecast. In such cases
where ties occur within the ranking, they are resolved randomly. Furthermore,
it should be noted that “STEPS” consists of 30 ensemble members, while we
draw only 20 values for each grid point from the distributions provided by
the C3-model. Consequently, to apply the “Schaake shuffle”, out of these 30
ensemble members from “STEPS”, 20 are selected randomly as a source of
spatial correlation.

For the evaluation of the core requirements, we first computed traditional
metrics such as bias, Brier skill score and reliability for approximately 50000
(sub-) regions V ⊂W that we have been drawn at random for each considered
hour within our three months period and for all lead times, see Section 2. Thus,
the dataset consists of 1761 forecast hours for each lead time, where the average
number of evaluated sub-regions per forecast hour is equal to 28, 4. These tra-
ditional metrics mentioned above have been computed for threshold exceedance
probabilities to get easily interpretable information about the systematic model
error (bias), the forecast quality regarding both model and forecast error (Brier
skill score), and the conditional frequency bias (reliability).

Moreover, to get a better insight into the spatial structure of the synthetic
rainfall fields and their realistic appearance, we identified objects as sets of con-
nected grid points, in which precipitation occurs, by a standard segmentation
method using 4-connectivity and, furthermore, evaluated the parameters of a
fitted exponential variogram model. Based on the identified objects, we com-
puted their number, overall area, scaled volume, and weighted centre distance.
Note that the latter two metrics were initially introduced in Wernli et al. (2008).
In addition, we assessed the model performance by the aggregation metrics D0

and D1, which were introduced in Tobin et al. (2012). For a discussion of these
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object-based metrics, see also Rempel et al. (2017).
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Figure 3: Observed precipitation amounts and realizations of 1 h forecasts
of the six considered models (“ICON”, “STEPS”, “COPULA”, “C3 sorted”,
“C3+ICON”, “C3+STEPS”) for a randomly chosen subset of 9×9 grid points.
The colour scale is given in millimetres. Precipitation amounts above the upper
end of the colour scale are shown in black.

5.1 Visual Inspection

Figure 3 depicts an exemplary observation at the top for a randomly chosen
sub-region V ⊂ W and forecast hour, together with the ensemble members of
the NWP forecast (“ICON”) and the precipitation nowcasting (“STEPS”). Note
that “ICON” provides 20 ensemble members, while “STEPS” has 30. The syn-
thetic ensemble members resulting from the copula model (“COPULA”) with
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restored spatial dependencies are illustrated as a fourth category. As discussed
in the previous section and illustrated in Figure 2, the quality of the last syn-
thetic ensemble member generated by the hill climbing algorithm differs vastly
from previous iterations and is therefore omitted. Thus, “COPULA” shows only
19 ensemble members. Finally, the three benchmarks “C3 sorted”, “C3+ICON”
and “C3+STEPS” are shown. Recall that “C3+ICON” and “C3+STEPS” refer
to the “Schaake shuffle” applied to the output of the C3-model, where each in-
put forecast is used as the source for spatial correlation, respectively. For each
ensemble, the members illustrated in Figure 3 are sorted in ascending order of
the total amount of precipitation within the considered area.

It can be seen that each ensemble forecast exhibits different spatial correla-
tion patterns. “ICON” ensemble members appear relatively smooth, while the
ensemble members of “STEPS” show a high level of variation between neigh-
bouring grid points. This is because the effective resolution of “ICON” is lower
than the resolution of the considered grid, while the native grid of “STEPS”
has an even higher resolution, as discussed in Section 2. When considering the
ensemble members of “COPULA”, we see that the proposed model reintroduced
spatial features, i.e., values at neighbouring grid points are more similar com-
pared to grid points further apart. When comparing the “COPULA” ensemble
and “C3 sorted”, we see that the sorted version is much smoother since it is the
arrangement with the highest possible correlation between grid points. Addi-
tionally, it is noticeable that both forecasts resulting from the “Schaake shuffle”
display a comparable spatial structure to their corresponding input forecasts;
specifically, “C3+ICON” appears smoother while “C3+STEPS” exhibits a more
contoured field. Furthermore, similar structures, such as the diagonal lines ob-
served in “ICON” and “C3+ICON”, are evident. Note that the precipitation
amounts for the ensemble members generated by “COPULA”, “C3 sorted”,
“C3+ICON” and “C3+STEPS” are provided by the C3-model and differ only
in their arrangement to synthetic ensemble members.

5.2 Traditional metrics

The results depicted in Figure 4 for bias (left), Brier skill score (centre), and re-
liability (right) for thresholds from 0.62mm up to 3.7mm are shown for “COP-
ULA” (green), “C3 sorted” (light green), “C3+ICON” (cyan), “C3+STEPS”
(red), “ICON” (blue) and “STEPS” (orange). For lower threshold values of
0.62mm and 1.23mm, the systematic error in area probabilities derived from
“COPULA” and “C3 sorted” is higher than for the other considered model out-
puts. Conversely, at higher thresholds of 2.47mm and 3.70mm, “COPULA”
and “C3 sorted” demonstrate improved bias compared to all other models.

Regarding the Brier skill score depicted in the centre column of Figure 4,
all models based on samples derived from the C3-model exhibit comparable
forecast quality with a smooth transition from “STEPS” at +1h to “ICON”
+4h. However, enhancements over “ICON” are negligible for lower thresholds
at later lead times.

The reliability depicted in the right column of Figure 4 indicates that mod-
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els based on samples obtained from the C3-model exhibit improved reliability
compared to both input forecasts. Specifically, “C3+ICON” is the most reliable
for a threshold value of 0.62mm; however, “COPULA” and “C3 sorted” appear
to improve as thresholds increase.

Comparing these results for area probabilities with those from the grid point
perspective in Rempel et al. (2022), it can be seen that there is no large decline
in the results based on a traditional forecast verification. That indicates that our
core requirements of a calibrated and consistent combination are still fulfilled
and that the calibration of marginal distributions also improves the prediction
of area probabilities.

+1h +2h +3h +4h +5h +6h
0.02

0.00

0.02

0.04

0.
62

m
m

Bias

+1h +2h +3h +4h +5h +6h
0.2

0.0

0.2

0.4

0.6

0.8
Brier skill score

+1h +2h +3h +4h +5h +6h
10 6

10 5

10 4

10 3

10 2
Reliability

+1h +2h +3h +4h +5h +6h
0.02

0.00

0.02

0.04

1.
23

m
m

+1h +2h +3h +4h +5h +6h
0.2

0.0

0.2

0.4

0.6

0.8

+1h +2h +3h +4h +5h +6h
10 6

10 5

10 4

10 3

10 2

+1h +2h +3h +4h +5h +6h
0.02

0.00

0.02

0.04

2.
47

m
m

+1h +2h +3h +4h +5h +6h
0.2

0.0

0.2

0.4

0.6

0.8

+1h +2h +3h +4h +5h +6h
10 6

10 5

10 4

10 3

10 2

+1h +2h +3h +4h +5h +6h
0.02

0.00

0.02

0.04

3.
7m

m

+1h +2h +3h +4h +5h +6h
0.2

0.0

0.2

0.4

0.6

0.8

+1h +2h +3h +4h +5h +6h
10 6

10 5

10 4

10 3

10 2
ICON
STEPS
COPULA
C^3 sorted
C^3+ICON
C^3+STEPS

Figure 4: Bias, Brier skill score and reliability for threshold exceedance proba-
bilities predicted by the models “COPULA” (green), “C3 sorted” (light green),
“C3+ICON” (cyan), “C3+STEPS” (red), “ICON” (blue) and “STEPS” (or-
ange).

To further demonstrate the ensemble calibration of area probabilities, Fig-
ure 5 depicts reliability diagrams for every forecast lead time for a threshold of
2.47mm. These diagrams allow for a more detailed insight into the reliability
as the scores depicted in Figure 4. Here, the curves for “COPULA” and “C3

sorted” are close to the leading diagonal, suggesting that the calibration per-
formed by the C3-model (Rempel et al., 2022) also enhances the calibration of
area forecasts. Conversely, both models resulting from the “Schaake shuffle”
exhibit less calibrated reliability diagrams; however, they still demonstrate im-
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proved performance compared to their respective input forecasts. Furthermore,
the occurrence of probabilities close to 1 decreases with increasing forecast un-
certainty, i.e., for increasing thresholds and longer lead times. This decrease
is indicated by an increasing truncation of the curves. Compared with this,
the input forecasts of “ICON” and “STEPS” reveal a lead-time invariant and
increasing overforecast, respectively.
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Figure 5: Reliability (top) and frequency diagrams (bottom) for threshold ex-
ceedance probabilities (2.47mm) predicted by the models “COPULA” (green),
“C3 sorted” (light green), “C3+ICON” (cyan), “C3+STEPS” (red), “ICON”
(blue) and “STEPS” (orange).

We want to assess not only the forecast quality of exceedance probabilities
in terms of bias, Brier skill score, and reliability, but also the statistical be-
havior of predicted precipitation amounts. To achieve this, probability integral
transform (PIT) diagrams (Czado et al., 2009) for areal precipitation amounts
predicted by the three models “STEPS”, “ICON”, “COPULA”, and the con-
sidered benchmarks “C3 sorted”, “C3+ICON”, and “C3+STEPS” for various
lead times are presented in Figure 6. In such diagrams, the horizontal axes are
defined as the normalized value ranges of the forecasts, whereas the numbers
of bins are equal to the ensemble sizes. The actually occurred precipitation
amounts are sorted into the respective ensemble member’s bin with an equal
or higher rainfall amount forecast. Thus, events in the first (last) bin represent
observed rainfall amounts below (above) the forecast value range.

Note that each bin of a PIT diagram corresponds to an interval between two
ensemble members for a given metric. In cases where the considered metric is
identical for two or more ensemble members, the corresponding intervals have
length zero and observations with the same metric cannot be unambiguously
assigned to one bin. When considering metrics like precipitation amounts, this
is a common occurrence due to the atom in the distribution at 0mm. To mend
this, we use the approach presented in Equation (1) in Czado et al. (2009),
where such observations are randomly assigned to one of the bins in question.

For both raw input ensemble forecasts, many observed precipitation amounts
are in the first and last bin, respectively, revealing an underdispersive behaviour,
i.e., the ensemble does not cover the whole range of observations. The overes-
timation at the lower percentile might be induced by non-precipitation cases
but also by an overforecast of the precipitation amount, the latter, especially
for “ICON” forecasts. However, it should be noted that this result may be
sensitive to the QPE that we have used as observation. On the other hand,
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“STEPS” shows deficiencies with higher precipitation amounts. This may be
induced by the cascade of autoregressive processes that reduces the maxima of
intensity and cannot cover the range of growth/decay processes of precipitation.

With precipitation sums based on synthetic rainfall fields generated by “COP-
ULA”, we can at least cover the observed range of values at the upper bound.
However, many cases with less precipitation are not covered. For this, also
non-precipitation cases may play a role. Since at least a few values drawn from
the upper tail of the probability distributions predicted by the C3-model are
always positive, the total precipitation amount within synthetic ensemble mem-
bers is often positive and not zero. This could be underpinned by the sorted
arrangement depicted in the right column of Figure 6. In these diagrams, the
sorted ensemble exhibits no outliers at both bounds due to a larger range of
predicted area precipitation sums compared to “COPULA”. This more exten-
sive range is achieved because the sorted ensemble is the arrangement with the
lowest and highest possible precipitation amount within one ensemble member
each. However, the frequency of larger precipitation amounts is higher in the
sorted arrangement, since most of the observed rainfall is below the median.
Thus, the sorted arrangement achieves the best PIT diagrams compared to the
other three models.

The “Schaake shuffle” applied to values drawn from the C3-model is illus-
trated in the two right columns of Figure 6 (a) and (b). In the unconditional
case depicted in Figure 6a), the number of events where areal precipitation is
overestimated is clearly higher for forecasts with the “Schaake shuffle” than for
“COPULA” and “C3 sorted”. This suggests a spatial mismatch between the
post-processed precipitation distributions of the C3-model and the input fore-
casts’ spatial dependence structures. It also suggests that the copula approach
exhibits an improved dependence structure as it models spatial dependencies
more accurately. This is further supported by the conditional case in Figure 6b),
where at least one grid point exhibits precipitation, as “C3+ICON” still demon-
strates an overestimation of areal precipitation compared to both “COPULA”
and “C3 sorted”. At the same time, “C3+STEPS” displays the underdispersive
behavior characteristic of the original “STEPS” forecast. Additionally, one can
observe a lead-time-dependent shift towards higher ensemble members in all
considered models.
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Figure 6: Probability integral transform (PIT) diagrams for area precipitation
amounts predicted by the three models “STEPS”, “ICON”, “COPULA”, and
the considered benchmarks “C3 sorted”, “C3+ICON”, and “C3+STEPS” for
lead times of +1 h (top), +3 h (centre), and +6h (bottom). Here, the values
observed in different hours are assigned to bins in the histogram, whereby the
borders of the bins are given by the values predicted by the ensemble members
of the corresponding ensemble forecast, i.e., the binned events indicate whether
the observations are below or equal to the prediction of the respective ensemble
member. Thus, events in the first (last) bin represent observations below (above)
the lowest (highest) forecast. The orange horizontal line is drawn at y = 1
and marks the bar height required for the ideal PIT diagram, i.e., the uniform
distribution. Note that the scales of the y-axes differ between the PIT diagrams.

5.3 Object-based metrics and estimated variogram mod-
els

To highlight the benefits of the restoration of spatial dependencies and to com-
pare the resulting precipitation structures in each ensemble member with that
of the radar observation, we consider PIT diagrams of various object-based
metrics in Figure 7. As an object, we define a contiguous area in the sense
of a 4-connectivity where grid points exceed an hourly precipitation sum of
0.1mm. The metrics consist of the total area of all objects and their number.
Furthermore, we consider two metrics of the SAL-index (Structure, Amplitude,
Location; (Wernli et al., 2008)). First, the scaled volume provides information
about the average shape of identified objects. It is given by the precipitation
mass of an object normalized by its maximum and additionally weighted with
this mass. Here, the precipitation mass of an object is defined as the sum of the
rainfall amount at each associated grid point. Second, the weighted centre dis-
tance describes the average distance between single objects and the total centre
of mass and provides information about the aggregation of precipitation. The
averaging is also based on the precipitation mass to favour larger objects. In ad-
dition, we assess D0 and D1, which are components of SCAI (Simple Convective
Aggregation Index; (Tobin et al., 2012)). The metrics D0 and D1 represent the
geometric and arithmetic mean of the distances for all possible pairs of objects.

The evaluation results for the three models “STEPS”, “ICON”, “COPULA”,
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and the considered benchmarks “C3 sorted”, “C3+ICON”, and “C3+STEPS”,
are divided into two groups. First, we consider results based on the whole
dataset, depicted in the six left columns of Figure 7. Second, instances without
any observed precipitation are removed for the six columns on the right. This
implies that at least at one grid point within the 9× 9 sub-region V ⊂ W , the
observed hourly rainfall must be ≥ 0.1mm. “ICON” and “STEPS” reveal a
tendency to underestimate the respective values in all metrics since there is a
peak of observations in the last bin. This peak is even more distinct for the
conditional case on the right, indicating many cases in which no precipitation is
forecast or observed. The peak may be induced by cases where no precipitation
is forecast at all. One should be aware that we statistically evaluated sub-
regions with an edge length of ≈ 20 km so that forecast errors in location (e.g.
spatial shifts in forecast precipitation) strongly influence the depicted results.
In some cases, “ICON” and “STEPS” overestimate the area, whereby “STEPS”
further overestimates the weighted centre distance. This may be attributable to
situations where only one smaller object is identified in the observation. Since
precipitation fields in “ICON” are smoother, one can assume that, in general,
the number of objects is smaller. Therefore, if only one object is detected,
the centre of masses is “equal to itself”, and the weighted centre distance is
zero. Compared to both input forecasts, models based on the output of the
C3-model exhibit fewer outliers. Among these, the “COPULA” model produces
almost perfect PIT diagrams followed by the “C3 sorted”, consistently display-
ing a small peak in the upper end of the PIT diagram. While both benchmarks
resulting from the “Schaake shuffle” show a downward slope accompanied by
some outliers, with “C3+ICON” consistently outperforming “C3+STEPS”. This
slope underpins the lower spatial correlation structure compared to the “COP-
ULA” results, since the frequency to have objects identified even in the first
ensemble members is increased. Therefore, the observed null event is binned on
one of the first members. In the conditional case on the right, the PIT diagrams
are less homogeneous among the considered metrics; however, for all metrics,
“COPULA” or “C3+ICON” achieves the best calibration.
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Figure 7: PIT diagrams as in Figure 6 but for various object-based metrics. Top-
down are the area and the number of objects, scaled volume and weighted centre
distance of SAL, D0 and D1 of SCAI. Results are shown for “STEPS”, “ICON”,
“COPULA”, and the considered benchmarks “C3 sorted”, “C3+ICON”, and
“C3+STEPS” for +1 h lead time. Results for other lead times are omitted since
they are essentially identical. The six columns on the left-hand side show the
results for the whole dataset, while the six columns on the right-hand side are
restricted to instances where precipitation was observed within the considered
9×9 sub-region V ⊂W . The orange horizontal line is drawn at y = 1 and marks
the bar height required for the ideal PIT diagram, i.e., the uniform distribution.
Note that the scales of the y-axes differ between the PIT diagrams.

The forecasts of “C3 sorted” also show an underestimation of the metrics.
However, at least a few ensemble members are above the observed values since
the frequency in bins of the upper percentiles is also increased. Furthermore,
at least the maximum value of the “C3 sorted” ensemble forecast seems to
reproduce the observed values since the maximum peak is in the second last
bin. Compared to the raw drawn values, the forecasts of “COPULA” reveal a
nearly uniform distribution for the whole dataset. For the conditional case, the
distribution of observed values is still skewed. However, the frequency begins to
increase at lower percentiles. This indicates that the forecasts of copula exhibit
a more realistic representation of spatial structures in terms of such a set of
object-based metrics.

As an additional technique to assess the spatial structure of synthetic rain-
fall fields, we fit an exponential variogram model (e.g. (Journel and Hui-
jbregts, 1978)) and compare the estimated fitting parameters. These parame-
ters, namely, nugget, sill, and effective range, are shown in Figure 8 for lead times
of +1 h, +3 h, and +6h. Again, we consider the whole dataset (six columns on
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the left-hand side) and the conditional case (six columns on the right-hand side).
Nugget describes the portion of non-spatial variance, whereas sill represents the
limit of the variogram. The effective range is the distance where 95% of the sill
is exceeded.

For the unconditional case, “ICON” and “STEPS” forecasts display an un-
derdispersive behavior in all three metrics. In contrast, for models based on the
C3-model output, “C3 sorted” consistently achieves the most calibrated PIT
diagrams followed by “COPULA”, which exhibits a downward slope through-
out. Notably, both “Schaake shuffle” benchmarks significantly underperform
all other models. However, uncertainties in fitting the exponential variogram
model could be a reason for this overestimation.

In the conditional case, variogram parameter-based metrics exhibit higher
variability than object-based metrics. It can be seen that models based on the
C3-model consistently outperform both input forecasts; however, none consis-
tently perform best for all considered metrics and lead times.
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Figure 8: PIT diagrams as in Figure 6 and Figure 7 but for various variogram
parameters of an exponential variogram model, which are the nugget, effective
range, and sill. Results are shown for “STEPS”, “ICON”, “COPULA”, and
the considered benchmarks “C3 sorted”, “C3+ICON”, and “C3+STEPS” for
the lead times of +1 h, +3 h, and +6h. The six columns on the left show the
results for the whole dataset, while the six columns on the right are restricted
to instances where precipitation was observed within the considered 9× 9 sub-
region V . The orange horizontal line is drawn at y = 1 and marks the bar
height required for the ideal PIT diagram, i.e., the uniform distribution. Note
that the scales of the y-axes differ between the PIT diagrams.

6 Conclusion

Many post-processing techniques for weather forecasts apply statistical correc-
tions to a forecast individually for each location considered. Thus, the inher-
ent spatial correlation of the input forecast is lost, and the statistically post-
processed output includes only marginal distributions. However, the spatial
correlation between locations is required to predict quantities in larger areas,
e.g., the amount of rainfall within a river basin. This necessitates the develop-
ment of models that reintroduce the spatial correlation into such post-processed
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forecasts.
Several methods have been developed for this purpose, and they are usually

based on rearrangement methods such as the “Schaake shuffle” (Clark et al.,
2004) or “ensemble copula coupling” (Schefzik et al., 2013). However, for these
techniques, a close relationship between the source of the spatial correlation and
the post-processed marginal distributions is required. Furthermore, the ranks
should be unambiguous to obtain realistic results. These conditions are fulfilled
in applications where only one post-processed ensemble forecast is rearranged.
Here, the spatial information is derived directly from a suitably selected set of
historical observations or the origin ensemble forecast.

The conditions of a close relationship and unambiguous ranks are no longer
met for seamless probabilistic precipitation forecasts as provided by the C3-
model (Rempel et al., 2022). The output of this model represents an opti-
mal combination of forecasts of the two ensemble prediction systems: “STEPS-
DWD”, a precipitation nowcasting scheme, and “ICON-D2-EPS”, a short-range
high-resolution NWP-model. Therefore, the output of the C3-model reveals a
mixture of the distributions of the input forecasts. Furthermore, it is worth
noting that the C3-model’s output combines both input forecasts. As a result,
the output may have discrepancies, such as spatial shifts, when compared to
each input forecast separately. These shifts can be greater than the sub-regions
considered in this study. Therefore, the input ensemble forecasts may not be ap-
propriate for transferring the spatial correlation structure as a close relationship
is not guaranteed.

To overcome these limitations, in the present paper, we propose and apply a
model that uses an R-vine copula fitted to historical precipitation observations
to model the joint distribution of precipitation amounts at adjacent locations.
It does not require such a close relationship and can be applied in cases, such
as the combination model C3, where the marginal output distributions differ
significantly from each input ensemble forecast. In addition, inferring spatial
correlations from a set of historical observations or another ensemble forecast
requires a ranking without ties of the predicted events for each location, which
is not always given for meteorological quantities such as precipitation, whose
probability distribution has an atom at 0mm. Deriving spatial correlations
from a joint probability distribution avoids this problem.

In order to evaluate the performance of the proposed model, we considered
several validation metrics such as bias, Brier skill score and reliability diagrams
for precipitation amounts within sub-regions of 9 × 9 grid points. The results
were compared to both input forecasts as well as three benchmarks. The first
benchmark is the sorted C3-model output having a maximum in spatial correla-
tion. The other two are the “Schaake shuffle” applied to the C3-model forecasts
using “STEPS-DWD” and “ICON-D2-EPS”, respectively, as source for the spa-
tial correlation structure. As a result, it could be shown that the calibration of
the marginal distributions by the previously applied combination model carries
over to all considered C3-based models, which exhibit a noticeable enhancement
in forecast quality compared to both input forecasts. Although the “Schaake
shuffle” benchmarks appear to perform better for lower precipitation thresholds,
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the Copula model and “C3 sorted” achieve superior aggregated validation scores
for higher thresholds.

The proposed method has been evaluated on a dataset that includes several
parts from different years. Furthermore, observations for randomly chosen areas
from the entire available sampling window were used to train the R-vine copula
model. We assume that the historical observations of precipitation amounts are
statistically invariant in space and time. Therefore, the R-vine copula models
the multivariate climatological precipitation distribution, ensuring that the pre-
sented results are less likely to be outliers based on the choice of the considered
time frame or locality and, hence, more robust.

Furthermore, the spatial correlation is directly evaluated using object-based
metrics such as the number of connected area components, distance metrics
between precipitation clusters, and variogram parameters. The object-based
metrics indicate that the output from the proposed copula model exhibits the
most realistic precipitation patterns compared to all other forecast models con-
sidered in this paper. Concerning variogram-based metrics, “C3 sorted” demon-
strated superior performance. Even if the benchmarks employing the “Schaake
shuffle” are, on average, comparable with “COPULA” in terms of the tradi-
tional gridpoint-wise evaluation metrics, they did not achieve the same level
of calibration and clearly underperform all models in terms of variogram-based
metrics.

The present paper evaluates the performance of the copula model for areas
consisting of 9×9 grid points on real-world data. In addition, similar to the ap-
proach presented in Lerch et al. (2020), further investigation into the behaviour
of our proposed approach concerning its spatial dependence structure could be
carried out through an analysis of synthetic scenarios. Furthermore, to apply
the model to more general cases, such as river catchments, the model requires
some modifications, which will be investigated in a forthcoming study. Such a
modification could be the extension of the R-vine copula model to higher di-
mensions in order to include more grid points. This, however, would lead to
increased algorithmic complexity and might not be directly feasible, depending
on the size of the area. To take this into account, another modification could be
the adaption of the hill climbing algorithm such that the existing copula for 9×9
areas is used to determine the permutation of values at a given grid point, i.e.,
for determining a permutations σi only the local neighbourhood is considered.
Besides considering more general areas, including additional information into
the R-vine copula fitting procedure would be interesting, e.g., the local orogra-
phy or the distinction of convective and stratiform precipitation patterns, which
could further improve the reconstruction of spatial correlation.

7 Statements

Data availability statement: The data used in this study is experimental
and is not yet available for public access. New forecasts generated by a further
improved NWP configuration named “ICON-D2-RUC” as well as forecasts of
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“STEPS-DWD” will be publicly accessible at opendata.dwd.de by the end of
2024.
Funding statement: The authors did not receive any funding for this article’s
research, publication, or authorship.

8 Appendix

Algorithm 1 Synthetic Ensemble Optimization with Hill Climbing

1: procedure Hill Climbing(x, g) ▷ x ∈ Rm×N contains N predictions for
m grid points

2: ▷ g is the density function fitted in Section 3
3: for j ∈ {1, . . . , N} do ▷ Iterate over all synthetic ensemble members
4: repeat
5: c← False

6: for p ∈ {1, . . . ,m} do ▷ Iterate over all grid points (in random
order)

7: k ← argmaxk∈{j,...,N} g(x
j
1, . . . , x

k
p, . . . , x

j
m) ▷ Find best

prediction for p
8: if k > j then ▷ true, if switching xk

p with xj
p improves g(xj)

9: xj
p ↔ xk

p ▷ Predictions in members j and k switch places
10: c← True ▷ c = True indicates that a change has been

made to x
11: end if
12: end for
13: until ¬c ▷ Stop if no improvement has been made for any grid

point in xj

14: end for
15: return x ▷ x contains the ordered values referred to as
{(x(j)

1 , . . . , x
(j)
m ), j = 1, . . . , N}

16: end procedure
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Figure 9: Left: Randomly chosen precipitation observations. Right: Ran-
dom samples drawn from the R-vine copula model. Notes: Observations and
samples without any precipitation were discarded. High values above the color
scale are shown in black. Note that the copula models the general distribution
observed in the historical observations irrespective of their location or time,
i.e., the samples from the copula have no corresponding counterpart within the
dataset of observations.
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