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Abstract A stochastic network model is developed which describes the 3D
morphology of the pore space in fibre-based materials. It has the form of a
random geometric graph, where the vertex set is modelled by random point
processes and the edges are put using tools from graph theory and Markov
chain Monte Carlo simulation. The model parameters are fitted to real image
data gained by X-ray synchrotron tomography. In particular, they are specified
in such a way that the distributions of vertex degrees and edge lengths, re-
spectively, coincide to a large extent for real and simulated data. Furthermore,
the network model is used to introduce a morphology-based notion of pores
and their sizes. The model is validated by considering physical characteristics
which are relevant for transport processes in the pore space, like geometric
tortuosity, i.e., the distribution of shortest path lengths through the material
relative to its thickness.
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1 Introduction

A stochastic network model is developed which is based on methods from
stochastic geometry and spatial statistics; see [12] and [21] for comprehensive
surveys on recent results in these fields. It describes the 3D morphology of pore
systems in fibre-based materials and can be used for scenario analyses e.g. with
the objective of developing improved materials and technologies for renewable
energies. In particular, porous materials are considered where the solid phase
consists of a rather complex system of curved fibres. They mainly run parallel
to some fixed 2-dimensional plane, say the x-y plane, forming wafers with
small thicknesses (along the z-axis) which can be seen as stacks of thin layers
of fibres. Such nonwoven-type materials are used e.g. in the gas-diffusion layer
(GDL) of polymeric fuel cells; see Figure 1.

Fig. 1 2D SEM image of the considered nonwoven-type GDL

Recently, several models for the solid phase of GDL, in particular for the
fibre system itself, have been proposed where the pore space is considered as
complementary set ([16], [17], [36], [43], [48]). However, this indirect descrip-
tion of pore space often leads to very complex geometric structures, i.e., it is
described by huge sets of voxels, which make numerical simulations of trans-
port processes quite complicated and computer time consuming, especially for
large domains.

In the present paper, a stochastic network model is developed which has
the form of a random geometric graph, representing the pore space directly.
It can be applied e.g. to investigate transport processes in GDL on a large
scale. Furthermore, the model can be used to introduce a morphology-based
notion of pores and their sizes. The model parameters are fitted to real image
data gained by X-ray synchrotron tomography. In particular, they are speci-
fied in such a way that the distributions of vertex degrees and edge lengths,
respectively, coincide to a large extent for real and simulated data.
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The vertex set of the random geometric graph is constructed by a stack of
2D point processes, which can be seen as a point process in 3D, whose points
have continuous x- and y-coordinates, but discrete z-coordinates. Then, by
‘smearing’ the z-coordinates in an appropriate way, a point process in 3D is
obtained, where all three coordinates of its points are continuous random vari-
ables. These points can physically be interpreted as candidates for pore cen-
tres. Their minimum distances to the solid phase, so-called contact distances,
can be seen as marks which describe pore sizes. Note that in the network
extracted from synchrotron data, the contact distances of neighbouring ver-
tices are strongly (positively) correlated. Thus, they cannot be modelled just
by independent marking, but a certain moving-average procedure is proposed,
which mimics this correlation structure quite well. For details concerning point
processes in multidimensional spaces and their statistical inference and simu-
lation, we refer e.g. to [4], [15], [28] and [41].

The edges are constructed combining tools from graph theory and Markov
chain Monte Carlo (MCMC) simulation; see e.g. [22] and [45]. Candidates for
vertex degrees, i.e. the numbers of edges outgoing from vertices, are sampled
in an independent and identically distributed (iid) way, using the histogram of
vertex degrees which has been computed from synchrotron data. This is fol-
lowed by an acceptance-rejection procedure which ensures that the conditions
of the Erdös-Gallai theorem are fulfilled, regarding the existence of graphs for
a given configuration of vertex degrees. Then, for an admissible configuration
of vertex degrees, edges are put using the well-known Hakimi-Havel algorithm
of graph theory. However, this algorithm does not take into account the loca-
tions of vertices, which means that in general the distribution of edge lengths
computed from synchrotron data is not fitted well. Thus, in order to minimize
this discrepancy, the Hakimi-Havel algorithm is supplemented by an MCMC
procedure to rearrange edges in such a way that the distribution of vertex
degrees is kept fixed and, simultaneously, the fit of the empirical distribution
of edge lengths computed from synchrotron data is improved.

Finally, the network model is validated by considering characteristics like
the minimum spanning tree and geometric tortuosity, i.e., the distribution of
shortest path lengths through the material relative to its thickness. It turns
out that both characteristics coincide quite nicely for real and simulated data.

As already mentioned above, the network model developed in the present
paper is motivated by computer-based scenario analyses with the general ob-
jective of developing improved materials and technologies for renewable ener-
gies. In particular, our model has been fitted to synchrotron data for nonwoven-
type materials used e.g. in the GDL of fuel cells which is responsible for trans-
port/diffusion of oxygen and hydrogen towards the electrode, where electricity
is produced. Furthermore, as a by-product of the electrochemical processes in
low temperature fuel cells, liquid water is produced which has to be drained
off. Note that all these transport processes take place in the pore phase of the
GDL, i.e., the phase which is not occupied by fibres or binder, see e.g. [27].

Recently, several models have been proposed in literature describing the
solid phase of fibre-based GDL, i.e., the fibres themselves and the binder ([16],
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[17], [36], [43], [48]). However, these models are focused on GDL materials of
paper-type where the fibres can be approximated by straight lines. For the solid
phase of nonwoven-type GDL with clearly curved fibres, no stochastic models
are available so far which would describe their microstructure sufficiently well.
However, there can also be found models for fibre-based materials and their
analysis in the literature in other contexts, see e.g. [3], [10].

Moreover, an important disadvantage of the microstructure models exist-
ing so far for the solid phase of paper-type GDL is that the pore space is only
described indirectly, as complement of the solid phase. This results in a de-
scription of the pore space by a huge set of voxels which complicates numerical
computations especially with respect to run time and memory requirements.
Furthermore, it restricts the size of domains in which the microstructure of
GDL can be analysed by numerical computations. At first glance, an alter-
native could be to reduce the resolution of data, but this would coarsen the
microstructure which causes inaccuracies. Thus, to avoid these conflicts be-
tween run time and accuracy, we propose a direct description of the pore
space by 3D random geometric graphs. The advantages of this representation
are manifold. First of all, the pore space is now described directly and nu-
merical computations on the edges of a graph can be done relatively easily. In
addition, the proposed graph model is off-grid, i.e., the computations on the
graph can be realized in terms of Euclidean coordinates which do not depend
on any given resolution.

We also mention that the idea to represent pore systems by 3D graphs
is not completely new; see e.g. [5] and [44]. But no off-grid models exist so
far which could be used for stochastic simulation and scenario analysis based
on real 3D image data. On the other hand, some authors consider grid-based
graph models for the pore space of GDL; see [13], [38] and [39]. But these graph
models for the pore space do not take into account its real microstructure. The
pores are located just on a grid and the models are calibrated with respect to
global physical characteristics as, e.g., permeability. In contrast to this type of
global model fitting, the model which we propose in the present paper is fitted
to local microstructural characteristics of the pore space. They are computed
from real 3D image data gained by means of X-ray synchrotron tomography;
see [14] and [26].

In addition, fibre-based materials with other applications than GDL in fuel
cells have been investigated with techniques from spatial statistics and stochas-
tic geometry. For instance, a multi-layer model for the fibres of nonwoven mats
with application to coalescers is discussed and analysed in [1]. Furthermore,
several techniques have been developed to extract pore sizes from (2D and
3D) simulated fibre-based materials, wherefore specific properties of randomly
placed fibres in the plane are used, see e.g. [9], [31], [33], [34].

The paper is organized as follows. In Section 2, the 3D image data are
described which are used to fit the graph model. Then, in Section 3, the vertex
model based on random point processes is explained. In Section 4, the marking
of vertices is described, whereas in Section 5 the edge model is introduced.
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Some issues of model validation are discussed in Section 6. Finally, Section 7
summarizes the results.

2 Preprocessing of image data

In this section, the 3D image data are described gained by means of X-ray syn-
chrotron tomography. Then, their binarization and skeletonization is briefly
explained. In particular, the construction of vertices and edges of graphs rep-
resenting the pore space is described, and a morphology-based approach to
the notions of pores and their sizes is given.

2.1 Data description

In order to fit a random graph model to the microstructure of real GDL mate-
rials, we use 3D image data which are gained by means of X-ray synchrotron
tomography as described e.g. in [14] and [26]. These data are grey scale im-
ages which have to be preprocessed. This is done in the same way as in [43],
i.e., first using a certain filter to smooth the data, then to binarize them by
(global) thresholding, and, subsequently, using an opening to remove small ob-
jects which are not connected to the fibre system. The binarization threshold
is chosen such that the estimated porosity in the resulting binary image, i.e.,
the volume fraction of the pore space, is about 75%. Further details on this
type of morphological image processing can be found in e.g. [18], [30] and [40].

In order to keep the computational effort for extracting graphs from real
data at a reasonable level, we consider cutouts of the original 3D data set.
These cutouts are cuboids with 512× 512× 100 voxels, which corresponds to
images of size 768µm × 768µm × 150µm. To randomize the locations where
the cutouts are taken we apply a bootstrap, i.e., the locations of cutouts are
chosen at random; see e.g. [23]. We consider 50 such data sets as our sample
drawn from the original (synchrotron) data. Notice that the corresponding
cuboids do not have to be completely disjoint.

2.2 Extraction of graphs

Note that a 3D image of (segmented) synchrotron data is given as a stack
of 2D binary images, i.e., the 3D information is given as a 3D matrix with
entries being equal to 0 and 1 representing occupied voxels (solid phase) and
pore space, respectively. To extract a graph from the voxelized pore space, a
skeletonization of pore space is applied. The principal idea is to change voxels
belonging to the pore space into background voxels in such a way that just a
thin line is left over with thickness of one voxel, where the connectivity of the
skeleton should be the same as the connectivity of the original pore space. An
example in 2D is shown in Figure 2, where Figure 2(a) displays three objects
(white). We are interested in skeletonization of the black phase between these
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objects as our focus is directed to pore space. Figure 2(b) shows the skeleton of
the pore space. For this skeletonization in 3D, we use an algorithm described
in [11]. Subsequently, the skeleton is transformed into vector data by classi-
fying skeleton voxels into ‘end voxels’, ‘line segment voxels’, and ‘junctions’,
respectively, where all voxels of the skeleton with exactly one neighbour are
said to be end voxels, all voxels with exactly two neighbours are line segment
voxels, and all voxels with more than two neighbours are junctions. If a junc-
tion consists of more than one voxel, the centre of gravity is assumed to be
the location of the junction.

Fig. 2 Skeletonization in 2D: a) pore space (black), b) skeletonized pore space (black line
in pore space), c) transformation into vector data

The end voxels and junctions form the vertices of the graph to be con-
structed. Connecting some pairs of them by line segments leads to a 3D graph.
An example in 2D is shown in Figure 2(c). Note that such a connection of ver-
tices will be represented by a polygonal track instead of just by one single
segment if the connection is not straight but curved.

To reduce boundary effects in fitting our model to the extracted graphs,
we apply a minus sampling, i.e., we neglect data which are too close to the
boundary of the sampling window.

2.3 Detection of pores

A problem in computing pore size distributions for materials with high poros-
ity (of about 75%) is the (unique) definition of pores as geometrical objects.
However, using the 3D graph introduced in Section 2.2, we can consider all
vertices of the graph as potential pore centres; see also [44]. The pore size is
then the spherical distance of such a pore centre to the solid phase. But, if
we took all vertices as pore centres, some pores would be contained partially
or completely in other pores. Therefore only those vertices are considered as
pore centres, which are not contained in larger pores, otherwise the number
of small pores would be overestimated.

The following algorithm is used to determine the pore size distribution.
For each potential pore, i.e. vertex of the graph, the spherical distance to the
solid phase is computed. This can be done very efficiently using a distance
transformation as described e.g. in [32]. The potential pores are then ordered
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according to their sizes. Beginning with the largest pore, all other potential
pores with pore centres belonging to that pore are deleted from the list of
potential pores. Then, for the largest remaining (i.e. not yet deleted) pore the
same procedure is realized, and so on. The result is a set of pores which can
mutually overlap, but no pore contains a centre of another pore. An illustrating
example is given in Figure 3. In Figure 3(a) all potential pores are shown,
i.e., each vertex is seen as a potential pore centre and the balls around are
the corresponding pores. In Figure 3(b) only those balls are shown which are
classified as pores.

Fig. 3 Definition of pores: a) all vertices of the graph with spherical distances to the solid
phase, b) deletion to those balls which are not classified as pores

The notion of pore size distribution is of special interest in electrochemistry,
because characteristics of this type can be accessed directly from real GDL by
porosimetric methods such as mercury or water porosimetry; see e.g. [2] and
[25]. However, note that the results of physical porosimetric measurements
do not coincide with the pore size distribution of graphs extracted from 3D
images, because the analysis of e.g. mercury porosimetry results uses lots of
assumptions about the structure of pores which are not fulfilled for real GDL
materials; see e.g. [24]. A systematic comparison of our results for pore size
distributions based on graphs extracted from 3D images with those obtained
by porosimetric methods will be the subject of a forthcoming paper. Note that
a similar attempt has been considered in [29].

2.4 Modified graph describing the pore system

According to the morphology-based definition of pores given in Section 2.3, we
slightly modify the graph considered in Section 2.2, where we delete all those
vertices which have not been classified as pore centres. This implies that those
edges such that at least one of their endpoints is deleted, have to be changed as
well. Note that these endpoints are then shifted towards the vertices classified
as pore centres in whose pores they are located in. This is done in a way
that all pores which were connected before are still connected in the modified
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graph, see Figure 4(a). Furthermore, if there are some overlapping pores which
have no common edge, we add such an edge to the graph, see Figure 4(b).

Fig. 4 Modification of the graph: a) elimination of vertices that are no pore centres, b)
adding of edges if pores overlap

3 Stochastic modelling of vertices

The stochastic network model is constructed in two steps. First, the vertices
of the random geometric graph are modelled which is described in this section.
Then, for a given set of vertices, the edge set is constructed which is explained
in Section 5.

3.1 Multi-layer representation

The basic idea for modelling the vertices of the 3D graph described in Sec-
tion 2.2 is to use a multi-layer representation of vertices. This is motivated by
the microstructure of real GDL; see Figure 5 which shows the profile of the
fibre-based porous material. In Figure 5 it is clearly visible that the fibres are
orientated (more or less) horizontally. Thus, they can be seen as a stack of thin
layers formed by planar fibre systems. Therefore it is plausible to assume that
also the complement of the fibres, i.e. the pore space, has such a multi-layer
structure. Note that a similar approach has been used in [43] to model the
solid phase of paper-type GDL.

The fibres of the nonwoven-type GDL considered in the present paper have
a thickness of about 9 to 10µm. So we assume that the fibre system forms a
stack of thin layers (parallel to the surface of the GDL), each with a thickness
of 9µm. Furthermore, we decompose the 3D point pattern of vertices into the
same type of thin layers, with the same thickness of 9µm. In order to model
these layers of vertices we project all points of a given layer onto its base, being
parallel to the x-y plane, say. These 2D point patterns are then the data basis
for fitting our vertex model.
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Fig. 5 Profile of a nonwoven-type GDL

3.2 Point-process model

For establishing an adequate point process model for the vertices we start with
analysing the given set of vertices of the 3D graph introduced in Section 2.2.
Therefore, we use the pair-correlation function (or g-function) g : [0,∞] →
[0,∞) which can be interpreted as follows. For values r, where g(r) is larger
than 1, there are more point pairs with distance r to each other compared to a
Poisson point process with the same intensity as the currently considered point
process. If g(r) is smaller than 1 for a value r, there are less point pairs with this
distance and, in particular, if g(r) vanishes for a value of r, there are no point
pairs with such a distance. Thus, the pair-correlation function in Figure 6
estimated from the point pattern of vertices of the 3D graph introduced in
Section 2.2 indicates strong clustering of vertices with an unusually high peak
at small distances of about 4 to 5µm; see e.g. [15] for estimators of the g-
function. This suggests the idea to fit a clustered point-process model with
narrow and, simultaneously, elongated clusters.

Fig. 6 Pair–correlation functions for real (dashed line) and simulated data (grey solid lines)
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3.2.1 Generalized Thomas process and its pair-correlation function

As a model for the (projected) 2D point patterns described in Section 3.1,
we thus use a generalized Thomas process with elliptically shaped clusters;
see e.g. [7]. This cluster model has the following structure. The parent points
form a stationary Poisson point process with intensity λp. The random number
of child points per cluster is Poisson distributed with expectation c, and the
random deviations of child points from their parent points are given via a 2D
normal distribution N(o, C), with expectation vector o and covariance matrix

C =
(

σ2
1 0
0 σ2

2

)
.

Additionally, according to the uniform distribution on the interval [0, 2π), the
child points of each cluster are jointly rotated around their parent point. In this
way, it is ensured that the generalized Thomas process is isotropic, although
it possesses elliptically shaped clusters. Note that as points of the generalized
Thomas process, only the child points are considered.

To fit the generalized Thomas process, its pair-correlation function gθ :
(0,∞) → [0,∞) is considered, where θ = (λp, σ

2
1 , σ2

2). Note that the value
gθ(r) is proportional to the frequency of point pairs with distance r > 0 from
each other. The following formula holds (see e.g. [7], [47]):

gθ(r) = 1 +
1

4πλpσ1σ2
exp

(
−r2 σ2

1 + σ2
2

8σ2
1σ2

2

)
I0

(
r2 σ2

1 − σ2
2

8σ2
1σ2

2

)
, r ≥ 0 ,

where I0 denotes the modified Bessel function which can be evaluated by

I0(z) =
∞∑

k=0

(1/4z2)k

(k!)2
, z ∈ IR .

3.2.2 Model fitting

The pair-correlation function is estimated for overall 50 cutouts of synchrotron
data, where a standard (boundary-corrected) estimator is used; see e.g. [15].
As already mentioned above, each cutout is divided into thin layers with a
thickness of 9µm and the vertices are projected onto their bases. The pair-
correlation function is then estimated for all these 2D data sets separately and
the pointwise average of the estimated pair-correlation functions is computed
which will be denoted by ĝ(r) in the following.

In order to fit the Thomas process to data, four parameters have to be
determined: λp, c, σ2

1 and σ2
2 , where a minimum-contrast method can be used

with respect to the pair-correlation function. This means that the following
minimization problem has to be solved:

f(θ) =

r2∫
r1

(ĝ(r)− gθ(r))
2 −→ min
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for an appropriately chosen pair r1, r2 > 0. Then a minimum–contrast estima-
tor θ̂ = (λ̂p, σ̂

2
1 , σ̂2

2) for θ is given by θ̂ = arg minθ f(θ). The mean number c of
child points per cluster is estimated using the formula

ĉ =
λ̂

λ̂p

,

where λ̂ denotes the natural estimator of the over all intensity λ which can
be estimated quite easily, just by counting the number of all points in the
sampling window divided by its volume. On a scale where one distance unit
corresponds to 1.0µm, the result of this fitting is λ̂p = 0.000533, ĉ = 2.28,
σ̂2

1 = 4.5, σ̂2
2 = 78.75. Thus, the estimated variances σ̂2

1 and σ̂2
2 are rather

different, which means that the fitted Thomas process has clusters with clearly
elongated shapes.

3.2.3 ‘Smearing’ of points along the z-axis

Finally, the projection of vertices in z-direction onto the bases of thin layers
mentioned in Section 3.1 has to be reversed. To incorporate this reversal step
into the vertex model, we proceed in the following way.

Note that besides clustering, a certain hard-core effect is observed in the
point pattern of vertices of the 3D graph introduced in Section 2.2. This is a
result of the skeletonization and transformation into vector data, respectively,
because possible vertices which are too close together are identified as one sin-
gle vertex. Therefore, also in the vertex model, a (small) hard–core distance
has to be included. Furthermore, analysing the z-coordinates observed in the
point pattern of vertices of the 3D graph, it can be seen that they are almost
uniformly distributed, see Figure 7. Besides, looking at the pair-correlation
function given in Figure 6, we see that there are many point pairs with a
distance of about 4 to 5µm. In order to incorporate all these structural prop-
erties into the 3D vertex model, we do not shift the points of the 2D Thomas
processes independently from each other along the z-axis. But we apply a de-
pendent shifting which is based on the following property of exponential dis-
tribution: For any fixed k ≥ 1, let Z1, . . . , Zk ∼ Exp( 1

k ) be independent and
exponentially distributed random variables. Then min{Z1, . . . , Zk} ∼ Exp(1)
and, therefore, exp (−min{Z1, . . . , Zk}) ∼ U(0, 1).

We use this property for k = 4. Thus, considering a sample of a Thomas
process which has n > 0 points in the sampling window, we associate these
points with independent random variables Z1, . . . , Zn ∼ Exp( 1

4 ) and, for the
ith point of these n points, i = 1, . . . , n, we consider its three closest neighbours
with indices i1, i2, i3 ∈ {1, . . . , n}\{i}, say. Then, we shift the ith point within
the corresponding layer along the z-axis, according to
exp (−min{Zi, Zi1 , Zi2 , Zi3}) ∼ U(0, 1) (suitably scaled to the thickness of
the layer). This dependent shifting along the z-axis ensures that the principal
structure of the clustered Thomas processes does not change.
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Fig. 7 Estimated distribution of z–coordinate of vertices for some layers

Finally, to incorporate a hard-core distance into the model, we apply a
subsequent shift of the points along the z-axis if two points are too close
to each other. Therefore we look at that pair of points of the complete 3D
point pattern which are closest to each other and choose one of these two
points at random. This point is then again shifted along the z-axis within the
corresponding layer, according to a uniformly distributed random variable.
This is repeated until the required hard-core distance of 3µm is achieved for
all points, or if no further improvement is possible.

3.3 Model validation

In order to validate the point-process model proposed in Section 3.2, we con-
sider two different characteristics of stationary point processes: the distribution
function of (spherical) contact distances H : [0,∞) → [0, 1], and the nearest-
neighbour-distance distribution function D : [0,∞) → [0, 1]. Note that H(r)
is the probability that the distance from an arbitrary location in IR3, chosen
at random, to the closest point of the point process is not larger than r, r > 0.
Similarly, D(r) is the probability that the distance from an arbitrary point of
the point process, chosen at random, to its nearest neighbour within the point
process is not larger than r, r > 0.

Furthermore, we show that the pair-correlation functions computed from
real and simulated 3D point patterns, respectively, are quite similar to each
other.

To verify whether the 3D point-process model fits real data sufficiently well,
we estimate H(r) and D(r) for all 50 cutouts of vertex sets extracted from
synchrotron data, where standard (boundary-corrected) estimators are used;
see e.g. [15]. The pointwise averages of these estimates are denoted by Ĥ(r)
and D̂(r), respectively. Then, we compute pointwise 96% confidence bands for
the two point-process characteristics mentioned above, where we generate 50
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samples of the 3D point-process model with the estimated parameters as given
in Section 3.2.2 in an sampling window of 768µm × 768µm × 150µm. These
bands are plotted as grey solid lines.

Fig. 8 Spherical–contact–distance distribution functions for real (dashed line) and simu-
lated data (grey solid lines)

The results for H(r) are visualized in Figure 8 which shows that the em-
pirical distribution function Ĥ(r) computed from real data (plotted as black
dashed line) is more or less within the confidence band obtained from sim-
ulated data (grey solid lines). Furthermore, the results for D(r) are given in
Figure 9. Also for this characteristic the estimates D̂(r) (black dashed line) are
within the confidence band obtained from simulated data (grey solid lines).

Regarding the pair-correlation function, the estimate ĝ(r) which has been
computed for the 3D vertex sets extracted from synchrotron data, does not
match the confidence band of simulated data perfectly; see Figure 6. However,
the main structural properties of ĝ(r) as the hard–core distance, the large
peak at about 4µm, and the declining rate of the tail towards the level of 1 are
not too different from corresponding properties of the pair-correlation function
computed from simulated data.

Considering all three characteristics together, we can conclude that the 3D
vertex model introduced in Section 3.2 fits quite well to real data described in
Section 2.

4 Marked point processes

In the preceding section we introduced a stochastic point-process model for
the vertex set itself extracted from synchrotron data. In order to describe
the pore space in more detail, we now extend this point-process approach to
marked point processes, considering two different types of marks: the spherical
distances of vertices to solid phase, and the numbers of edges emanating from
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Fig. 9 Nearest–neighbour–distance distribution functions for real (dashed line) and simu-
lated data (grey solid lines)

vertices. In the first case the marks are closely related with the notion of pore
sizes introduced in Section 2.3, whereas the second kind of marks is the degree
of vertices, also called the coordination number in physics and geology. Later
on, in Section 5, the distribution of vertex degrees will be used in order to
model the edges of the random geometric graph.

4.1 Spherical contact distances

In case of spherical contact distances of vertices, we fit a gamma distribution
as their (Palm) mark distribution. However, it turns out that in the network
extracted from synchrotron data, the contact distances of neighbouring ver-
tices are strongly (positively) correlated. Thus, they cannot be modelled just
by independent marking, but a certain mowing-average procedure is proposed,
which mimics this correlation structure quite well.

4.1.1 Data analysis

In a first step we analyse the spherical contact distances to solid phase for
the vertices extracted from synchrotron data. Their histogram is shown in
Figure 10. It can be nicely fitted by a gamma distribution Γ (ρ, ζ) with pa-
rameters ρ > 0 (rate) and ζ > 0 (shape) using the method of moments, see
e.g. [6]. Its density function fΓ (ρ,ζ) : IR → [0,∞) is given by fΓ (ρ,ζ)(x) =

1I{x≥0}
ρζ

Γ (ζ)x
(ζ−1) exp(−ρx). More precisely, let x1, . . . , xn be the observed

spherical distances, then the estimator for ρ is given by m̂1/(m̂2 − (m̂1)2)
and for ζ by (m̂1)2/(m̂2 − (m̂1)2) with m̂k = 1

n

∑n
i=1 xk

i , k = 1, 2. For the pa-
rameters of this gamma distribution (black curve in Figure 10), the averaged
values of ρ = 1.077 and ζ = 7.331 have been obtained, where the averages
extend over all 50 cutouts from synchrotron data. Note that due to the es-
timation of the spherical distances from 3D image data with a resolution of
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1.5µm, i.e., we can only observe discrete values, we summarized the results
in a histogram with only some bins which can be seen as a smoothing of the
data.

Fig. 10 Histogram of spherical distances of vertices to the solid phase and density function
of the fitted gamma distribution (black solid line)

Furthermore, the correlation structure of spherical contact distances has
been analysed using the so-called mark correlation function κ : (0,∞) →
[−1, 1] of stationary marked point processes, where κ(r) is the correlation of
the marks of an arbitrary pair of points, chosen at random, with distance
r > 0 from each other. Note that although κ is not a correlation function in
the strict sense, see the discussion in [35], we use this notion (introduced in
[42]) since it can be found in various standard textbooks like [15]. Similar to
the estimation of the functions g(r), H(r), and D(r) discussed in Sections 3.2
and 3.3, the mark correlation function is estimated for all 50 cutouts extracted
from synchrotron data; see e.g. [15]. The pointwise average of these estimates
is denoted by κ̂(r). It is shown in Figure 11 (black dashed line) and can be
interpreted as follows. Vertices which are located close to each other have
strongly (positively) correlated contact distances and, vice versa, the spherical
contact distances of vertices which are far away from each other are more or
less uncorrelated.

4.1.2 Moving-average model for dependent marking

To incorporate the correlation structure mentioned above into the model, we
proceed similar as in Section 3.2.3, now using the fact that the family of
gamma distributions possesses a well known stability property with respect to
convolution.

If there are n > 0 points in the sampling window, we first associate these
points with independent random variables Z1, . . . , Zn ∼ Γ (ρ, ζ/3), distributed
according to the gamma distribution shown in Figure 10, where ρ = 1.077 and
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Fig. 11 Mark–correlation functions for spherical distances of real (dashed line) and simu-
lated (grey solid lines) data

ζ = 7.331. Then, for the ith point of these n points, i = 1, . . . , n, we consider
its three closest neighbours with indices i1, i2 ∈ {1, . . . , n} \ {i}, say. As mark
of the ith point, we finally choose the sum Zi + Zi1 + Zi2 , where we use the
fact that the sum of independent gamma distributed random variables is again
gamma distributed. More precisely, it holds that

Zi + Zi1 + Zi2 ∼ Γ (ρ, ζ) .

This dependent marking of points ensures that the principal structure of the
empirical mark correlation function κ̂(r) computed in Section 4.1.1 is captured
quite well; see Figure 11. In this figure, pointwise 96% confidence bands are
shown (grey solid lines), which were computed from 50 samples of the 3D
point-process model with the moving-average marking as described above.

4.1.3 Detection of pores

For simulated vertex sets and their spherical contact distances, sampled from
the model of a marked point process as described in Sections 3.2 and 4.1.2, we
can proceed exactly in the same way as in Section 2.3 in order to detect pore
centres within the vertex set of potential pore centres. Furthermore, for a given
subset of vertices detected as pore centres, we can compute the distribution of
their marks, i.e. pore sizes. Thus, still another possibility of model validation
is given, comparing this distribution with the pore size distribution which has
been computed in Section 2.3 for real data.

At first glance, one might think that the edge set of the random geometric
graph to be constructed could be built in a similar way, directly from simu-
lated vertex sets and their spherical contact distances. For example, just by
connecting all those pairs of pore centres whose distances from each other are
smaller than the sum of their pore radii. However, this happens only for a few
pairs of pore centres, i.e., only a few pores overlap mutually. This means that
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most edges of the random geometric graph to be constructed should be covered
by pores only partially, whereas their middle parts can be interpreted e.g. as
‘throats‘ between pores. Therefore, in order to build an edge model, we used
another approach combining tools from graph theory and MCMC simulation,
which will be explained in the following sections.

4.2 Degrees of vertices

An important characteristic for describing the connectivity of a graph are
the degrees or coordination numbers of its vertices, i.e., the number of edges
emanating from vertices. Thus, we now consider the vertex degrees as marks
for the point-process model of vertices introduced in Section 3.2. However, our
analysis is not directly based on the graph extracted from synchrotron data as
described in Section 2.2, but on the modified graph of pore centres introduced
in Section 2.4.

4.2.1 Data analysis

We first computed the empirical distribution of vertex degrees for the mod-
ified graph, which is shown in Figure 12(a). Then, we computed the mark-
correlation function of vertex degrees, in the same way as this has been de-
scribed in Section 4.1.1 for spherical contact distances. The result is presented
in Figure 12(b), which shows that there is almost no correlation between ver-
tex degrees. Thus, at first glance, it seems that the degrees of vertices could be
modelled in an iid way, according to the distribution shown in Figure 12(a).
However, this would get into conflict with the fact that not for each configura-
tion of vertex degrees, a graph can be constructed. A possible solution of this
problem is to combine iid sampling from the distribution shown in Figure 12(a)
with a certain acceptance-rejection procedure which leads to admissible con-
figurations of vertex degrees.

Fig. 12 Coordination number analysis: a) estimated distribution of the coordination num-
ber; b) estimated mark–correlation functions
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4.2.2 Admissible configurations of vertex degrees

In order to solve the problem mentioned in the previous section, we propose
a two-step algorithm for generating admissible configurations of vertex de-
grees. Supposing that the sample of the random graph to be constructed has
n vertices in the sampling window, we generate an iid sample d1, . . . , dn > 0
of candidates for vertex degrees according to the distribution shown in Fig-
ure 12(a). Then, using the Erdös–Gallai theorem of graph theory, see e.g. [45],
[46], we check whether d1, . . . , dn is an admissible configuration of vertex de-
grees. For this purpose, we rearrange the numbers d1, . . . , dn > 0 in descending
order getting the sequence d′1 ≥ d′2 ≥ . . . ≥ d′n > 0, say. In accordance with the
Erdös–Gallai theorem, a simple graph, i.e., each pair of vertices has at most
one direct connecting edge, can be constructed possessing the configuration
d1, . . . , dn > 0 of vertex degrees if and only if d1 + d2 + . . . + dn is even, and
for all k = 1, . . . , s, where s is determined by

d′s ≥ s and d′s+1 < s + 1 ,

it holds that
k∑

i=1

d′i ≤ k(k − 1) +
n∑

i=k+1

min{k, d′i} .

If the sequence d1, . . . , dn > 0 of potential vertex degrees fulfils these condi-
tions, we can construct a graph with n vertices and vertex degrees d1, . . . , dn >
0; see Section 5.1 below. Otherwise, we reject the sample d1, . . . , dn > 0 and
generate a new one according to the distribution shown in Figure 12(a). This
procedure is repeated until a sequence of vertex degrees is generated which
fulfils the conditions of the Erdös–Gallai theorem.

5 Stochastic modelling of edges

We now describe a stochastic model for putting the edges of the random geo-
metric graph which combines tools from graph theory and MCMC simulation.
In particular, the model is constructed in such a way that the distributions
of vertex degrees and edge lengths, respectively, coincide to a large extent for
real and simulated data.

As already mentioned in Section 4.2, candidates for vertex degrees are
sampled in an iid way, according to the distribution shown in Figure 12(a).
Recall that this is followed by an acceptance-rejection procedure which ensures
that the conditions of the Erdös-Gallai theorem are fulfilled.

Then, assuming that an admissible configuration of vertex degrees is given,
edges are put using the well-known Hakimi-Havel algorithm of graph theory.
However, this algorithm does not take into account the locations of vertices,
which means that in general the distribution of edge lengths computed from
synchrotron data is not fitted well. In order to minimize this discrepancy, the
Hakimi-Havel algorithm is supplemented by an MCMC procedure to rearrange



Random geometric graphs 19

edges in such a way that the distribution of vertex degrees is kept fixed and,
simultaneously, the fit of the empirical distribution of edge lengths computed
from synchrotron data is improved.

5.1 Hakimi-Havel algorithm

Suppose that the considered sample of the random graph to be constructed
has n vertices in the sampling window and that an admissible configuration
d1, . . . , dn > 0 of vertex degrees is given which has been sampled in an iid way,
according to the distribution shown in Figure 12(a). Furthermore, suppose
that the integers d1, . . . , dn > 0 are numbered in descending order, i.e., d1 ≥
d2 ≥ . . . ≥ dn > 0.

Then, a preliminary version of the edge set is constructed using an algo-
rithm which is based on the classical Hakimi–Havel theorem, see e.g. [45]. This
theorem states that there exists a simple graph with n vertices and degree se-
quence d1 ≥ d2 ≥ . . . ≥ dn > 0 if and only if there exists one with n − 1
vertices and degree sequence d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn.

This leads to the following algorithm: Suppose that a sequence d1 ≥ d2 ≥
. . . ≥ dn > 0 of vertex degrees is given, which fulfils the conditions of the
Erdös-Gallai theorem. Assign the vertex degrees d1, . . . , dn at random to the n
vertices. Connect the vertex with degree d1 with those vertices having degrees
d2, . . . , dd1+1. Then, pick a vertex with the largest residual (i.e. free) degree,
say d′, and connect this vertex with d′ of other vertices, with which it is not yet
connected and which have the largest residual degrees. Repeat this procedure
until no free degrees are left.

The result of this construction is a random graph whose distribution of
vertex degrees fits to the corresponding empirical distribution of vertex de-
grees estimated from synchrotron data; see Section 4.2.1. However, note that
the algorithm described above does not take into account the locations of ver-
tices, which means that in general the distribution of edge lengths observed
in real image data may not be fitted very well. Thus, in order to minimize
this discrepancy, the Hakimi-Havel algorithm is supplemented by an MCMC
procedure to rearrange edges in such a way that the distribution of vertex
degrees is kept fixed and, simultaneously, the fit of the empirical distribution
of edge lengths computed from synchrotron data is improved.

5.2 Distribution of edge lengths

In Figure 13(a) the empirical distribution of edge lengths is shown which has
been computed for the modified graph extracted from synchtrotron data; see
Section 2.4. It turned out that a shifted gamma distribution Γ (ρ, ζ, c) with
parameters ρ = 2.10 (rate), ζ = 0.11 (shape), and c = 4.5µm (shift) can be
fitted to this empirical distribution, using maximum-likelihood estimation or
the method of moments, see e.g. [6].
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Thus, the goal is to construct a random geometric graph which fits suffi-
ciently well both the distribution of vertex degrees considered in Section 4.2.1
and the shifted gamma distribution of egde lengths mentioned above.

Fig. 13 Edge length analysis. Images show the length distribution for edges from a) the
modified graph and a (shifted) fitted gamma distribution (black solid line); b) the graph
generated by the HH–algorithm; c) the graph after MCMC–simulation

5.3 Rearrangement of edges

The graph constructed in Section 5.1, using the Hakimi-Havel algorithm, does
not fit the empirical edge-length distribution sufficiently well which has been
computed from real data; see Figure 13(b). Thus, in order to get a better fit,
the Hakimi-Havel algorithm is supplemented by an MCMC procedure which
rearranges the edges in such a way that the distribution of vertex degrees is
kept fixed and, simultaneously, the fit of the empirical distribution of edge
lengths computed from synchrotron data is improved. For further details on
Markov chains and MCMC simulation see e.g. in [22].

Our MCMC algorithm is based on the following idea. Let V = {v1, . . . , vn}
denote the vertex set considered, and let E = {e1, . . . , ek} be an edge set gen-
erated by the Hakimi-Havel algorithm, say. Furthermore, for any not directly
connected pair of edges ei, ej , where i 6= j, we denote their endpoints by vi1 ,
vi2 and vj1 , vj2 , respectively. Then we consider all (three) possible connections
of the four vertices vi1 , vi2 , vj1 , vj2 by not directly connected pairs of edges
and evaluate the suitability of these edge pairs. Eventually, the original pair
of edges is replaced by another pair of edges which is evaluated better, where
the evaluation depends on the distance between the (empirical) length distri-
bution of the current set of edges and the shifted gamma distribution obtained
in Section 5.2.

More precisely, in order to decrease the discrepance between the (empirical)
edge-length distribution of the current set of edges and the shifted gamma
distribution fitted in Section 5.2 to real data, we consider two different Markov
chains. First, we run an auxiliary Markov chain that eliminates all those edges
which are too long, replacing them by shorter ones. This Markov chain is
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defined in the following way. An edge, say ei, of the edge set E = {e1, . . . , ek}
is chosen with probability

pi =
|ei|

max1≤`≤n|e`|
, i = 1, . . . , k ,

and another edge, say ej , i 6= j, among those edges which are not directly
connected to ei is chosen with probability pj = |ej |/max1≤`≤n|e`|, where |e|
denotes the length of edge e. Subsequently, all three possible edge combinations
which can be constructed by the endpoints vi1 , vi2 , vj1 , vj2 of the chosen edges
ei, ej are evaluated, where the ‘value’ ηij of a pair of edges ei, ej is defined
as the sum of their (current) selection probabilities, i.e. ηij = pi + pj . If any
of the other two possible edge pairs has a smaller value than ei, ej , then the
edges ei, ej are replaced by that pair of edges. Otherwise, the pair ei, ej is not
replaced. This procedure is continued as long as no further improvement is
found.

Note that the evaluation of edges by this Markov chain just depends on
their lengths, preferring edges which are short. In other words, we replace a
pair of edges ei, ej if one of the other two, not directly connected pairs of edges
has a shorter summary length. The result is a graph where edges are as short
as possible. Furthermore, the MCMC algorithm described above helps to avoid
numerical problems in computing the selection probabilities of the following
(main) Markov chain which is defined in a similar way.

Let fΓ (r) denote the density of the shifted Γ–distribution derived in Sec-
tion 5.2. The empirical edge-length density of the current configuration of
edges is denoted by f̂(r). Then an edge ei is chosen with probability

p̃i = max

{
0, 1− fΓ (|ei|)

f̂(|ei|)

}

and another edge ej among those edges which are not directly connected to ei

is chosen with probability p̃j = max{0, 1− fΓ (|ej |)/f̂(|ej |)}. Subsequently, all
three possible edge combinations which can be constructed by the endpoints
vi1 , vi2 , vj1 , vj2 of the chosen edges ei, ej are evaluated, where the ‘value’ η̃ij

of a pair of edges ei, ej is defined as the sum of their (current) selection prob-
abilities, i.e. η̃ij = p̃i + p̃j . If any of the other two possible edge pairs has
a smaller value than ei, ej , then the edges ei, ej are replaced by that pair of
edges. Otherwise, the pair ei, ej is not replaced. Thus, the idea of this Markov
chain is to eliminate edges e which have lengths occurring more often then
required, i.e, fΓ (|e|) < f̂(|e|).

A realization of the random geometric graph model, where the edge lengths
have been fitted to real data by the above described MCMC simulation, can
be seen in Figure 14. Note that Figure 14 just shows a small cutout of a
realization of the network model describing the pore space of a GDL.
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Fig. 14 Small cutout of a simulated 3D random geometric graph

5.4 Discussion of MCMC simulation

Note that the rearrangement of edges according to the MCMC procedure
described in Section 5.3 does not change the distribution of edge degrees.
Moreover, the degrees of the individual vertices are not changed at all. On the
other hand, the discrepance between the (empirical) edge-length distribution
of the finally generated set of edges and the shifted gamma distribution fitted
in Section 5.2 is essentially improved; see Figure 13(c).

However, we are aware of the contingency that it might be possible that
not all predetermined edge-length distributions can be achieved by our MCMC
procedure. This mainly depends on the spatial structure of vertex locations
which has an essential influence on possible edge-length distributions. For ex-
ample, if there is a hard-core distance of 5µm between vertices, no edge with
length smaller than 5µm can be generated. Such a ’lower bound’ for the edge-
length distribution, i.e., a distribution of edge-lengths with as much as possible
probability mass next to zero, can be approximated using the first (auxiliary)
Markov chain described in Section 5.3.

For the image data considered in the present paper, such a ’lower bound’
was found by this preprocessing Markov chain. Then, the second (main) Markov
chain shifted the probability mass away from zero and, as a result of this, the
predetermined shifted Γ -distribution had a good chance to be approximated
well.

Another reason why in the present case the predetermined distribution
could be fitted well, originates from the fact that all other components of the
stochastic network model have been fitted quite well to real data. In partic-
ular, the vertex model has nicely been fitted to the vertices extracted from
synchrotron data; see Section 3.3. Furthermore, there is practically no differ-
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ence between the distributions of vertex degrees for real and simulated data,
respectively.

Note that in the MCMC procedure described in the previous section we
considered the Kolmogorov distance of the predetermined and the current
(empirical) edge-length distributions as a stopping criterion. Besides, we also
fixed a maximum number of possible edge rearrangements. If this number was
reached before the Kolmogorov distance fallen below a given threshold, then
the simulation was stopped anyway, and the current configuration of the graph
is seen as a sample from the random geometric graph to be constructed.

6 Validation of the network model

In the preceding sections of this paper, the validation of the stochastic network
model has been accomplished only by means ‘local’ characteristics of various
model components. We now consider two structural characteristics of the whole
model in order to validate it. They are relevant to transport properties of pore
space and have not been used for model fitting.

6.1 Minimum spanning tree

An important structural characteristic which describes the connectivity of
graphs is the so-called minimum spanning tree (MST). It is based on the
concept of thinning a graph with the aim to minimize its total length and, at
the same time, to keep its connectivity preserved. In our context, the MST is
a very useful structural characteristic, because the skeletonization algorithm
considered in Section 2.2 preserves principal connectivity properties of the
complete 3D pore space. So a global validation of the random geometric graph
model with respect to connectivity seems to be reasonable.

Note that the total length of a graph is just the sum of the lengths of its
edges. In other words, the principal idea of the MST is to look at a graph where
as many edges as possible are removed without changing the connectivity, i.e.,
all vertices which have been connected before are still connected. Note however
that the sequences of vertex degrees of the original graph and its MST are not
the same.

In order to practically compute the MST, Prim’s algorithm can be used;
see e.g. [8] and [19]. The property which is used for model validation is the
relative length ρ of the MST in comparison to the length of the original graph,
i.e., we consider the ratio

ρ =
length of the MST

length of the original graph
,

which provides important information about the connectivity of the graph.
Note that the numerical results which we obtained for the MST of real and
simulated data, respectively, are very similar to each other; see Table 1.
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Table 1 Tortuosity and MST results

tortuosity MST
mean value standard deviation rel. length

Real data 1.35 0.11 0.38
Simulated graph 1.41 0.15 0.40
Rel. failure 4% 27% 5%

6.2 Geometric tortuosity

Other basic characteristics of porous media, which are considered when in-
vestigating transport properties, are their porosity and, in order to describe
the pathways through the materials, their tortuosity. Note that tortuosity is a
physical characteristic which is usually defined as the ratio of the mean effec-
tive path length of a fluid through the pore space of a porous material and the
material thickness, or, in other words, the mean extension of the real pathway
compared to the minimum distance between two points chosen at random; see
e.g. [20] and [37]. Note that this notion of tortuosity is given just by a single
number, which is not really a morphology-based characteristic.

On the other hand, the notion of geometric tortuosity, which has been in-
troduced in [44], describes the microstructure of pore space in more detail,
dealing with the distribution of shortest path lengths through a porous ma-
terial, i.e., it allows for the consideration of probability distributions and not
just mean values.

In order to compute the lengths of shortest paths from top to bottom of
GDL material, along the edges of the 3D graph representing the pore space,
we first have to determine the starting points of these paths. Therefore a
stationary planar Poisson point process with some intensity λ > 0 is simulated
on the top of the GDL. Recall that the sampled point patterns then follow the
principle of complete spatial randomness. Choosing this model for the starting
points of shortest paths, we had in mind that e.g. gas molecules can start their
diffusion/migration at any point of the GDL surface with the same probability
and independent of each other (in ex situ experiments).

Note that the starting points of shortest paths generated by the Poisson
model mentioned above were not yet included into the random geometric graph
model described in the preceding sections. So we had to add these points to the
graph, where each point of the Poisson point process simulated on the top of
the GDL was connected to the closest vertex of the random graph representing
the pore space.

Then, beginning from the starting points, the shortest paths along the
edges from top to bottom were determined using Dijkstra’s algorithm; see,
e.g., [8] and [19]. This analysis has been done both for the graphs extracted
from real 3D data and for simulated graphs, where we obtained mean values
and standard deviations as given in Table 1; for the distributions of shortest
path lengths see Figure 15.



Random geometric graphs 25

Fig. 15 Tortuosity distributions of modified graphs: a) for graphs extracted from real data;
b) for simulated graphs

Although there is no perfect matching of these ‘local’ tortuosity character-
istics for real and simulated data, respectively, the difference between the two
mean values is relatively small and also the principal shapes of the two his-
tograms representing the distributions of shortest path lengths are relatively
close to each other. This shows that the stochastic network model proposed in
the present paper is an appropriate tool in order to investigate the geometry
of and transport processes in the pore space of this type of GDL.

7 Summary and conclusions

In the present paper, we developed a model for random geometric graphs
in 3D, where we showed that our model can successfully be fitted to graph
structures extracted from real image data. The model is built in several steps.
We first modelled the vertices of the graph to be constructed using a multi-
layer approach, i.e., by a stack of (smeared) 2D point processes, where the 3D
point process model obtained in this way has been validated using different
morphological image characteristics from stochastic geometry. Then, for any
given point pattern in 3D, we considered a depending marking of points, using
spherical contact distances as marks which are closely related to the physical
notion of pore size. In a third step, we proposed an edge model to reconnect a
given set of vertices according to a prespecified distribution of vertex degrees.
For this purpose we assigned a sequence of vertex degrees as marks to the
vertices and checked whether such a configuration of vertex degrees allows
the construction of a graph or not. If possible, an algorithm based on the
Hakimi-Havel theorem of graph theory was used to construct a preliminary
graph. However, since this algorithm does not take into account the locations
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of vertices, we finally applied an MCMC simulation to rearrange edges in order
to get a better fit to geometric properties of graphs observed in real image data.

These steps altogether led to a 3D random geometric graph which can be
simulated relatively easily. A realization of this network model can be seen
in Figure 14. Moreover, by partitioning the model construction into different
steps, our stochastic network model becomes quite flexible having the potential
to be successfully applied also to other porous materials than those considered
in the present paper.

To validate the 3D geometric graph model, morphology-based image char-
acteristics were considered which were not used for model fitting. They are
related to physical properties of the fibre-based porous material analysed in
this paper. One of these characteristics was the relative length of the minimum
spanning tree which was used for analysing the connectivity of the graph. The
other one was geometric tortuosity, i.e., the ratio of the shortest path length
through a material and the material thickness. Note that also this morphology-
based image characteristic is very important in order to investigate transport
processes in porous materials.

In an ongoing research we are analysing the statistical properties of trans-
port processes along the edges of the stochastic network model developed in
the present paper. Note that there are clear computational advantages to in-
vestigate the properties of transport processes on geometric graphs, i.e. on
one-dimensional structures instead of considering a complete 3D model. In
particular, the graph representation of pore space enables the consideration of
much larger domains and, simultaneously, keeping computer time at reason-
able low levels.
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