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Core ideas 

• The stochasticity of 3D root architecture models needs to be recognized by 

statistical analysis. 

• Probability density functions, regression and correlation analyses elucidate the 

impact of model input parameters on different CRootBox measures.  

• Distributions of ratios of root system measures are highly asymmetric. 

• Multivariate approaches (copulas) are envisioned for future root architecture 

model analysis.                            
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Abstract  

Background and aims The connection between the parametrization of 3D root archi-

tecture models and characteristic measures of the simulated root systems is often not 

obvious. We used statistical methods to analyze the simulation outcome of the root 

architecture model CRootBox and build meta-models that determine the dependency 

of root system measures on model input parameters. 

Methods Starting with a reference parameter set, we varied selected input parame-

ters one at a time and used CRootBox to compute 1000 root system realizations as 

well as their root system measures. The obtained data sets were then statistically 

analyzed with regard to dependencies between input parameters, as well as distribu-

tions and correlations between different root system measures. 

Results While absolute root system measures (e.g. total root length) were approxi-

mately normal distributed, distributions of ratios of root system measures (e.g. root tip 

density) were highly asymmetric and could be approximated with inverse gamma dis-

tributions. We derived regression models (meta-models) that link significant model 

parameters to 18 widely used root system measures, and determined correlations 

between different root system measures. 

Conclusions Statistical analyses of 3D root architecture models improve understand-

ing of the impacts of input parametrization on specific root architectural measures. 

Our developed meta-models can be used to determine the effect of parameter varia-

tions on the distribution of root system measures without running a full simulation. 

Model intercomparison and benchmarking of root architecture models is still missing. 

Our approach provides a means to compare different models with each other and 

with experimental data.  
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Introduction 

Root architecture and phenotypic plasticity determine a plant’s success to acquire 

below-ground resources such as water and nutrients (Lynch 2007). Experimental in-

vestigation of root system development, however, is a laborious task due to the 

opaque nature of the soil that makes direct measurements difficult. Researchers 

therefore usually resort to simplified experimental designs and derive root system 

measures from plants grown in artificial systems such as hydroponics or rhizotron 

boxes (Nagel et al. 2015, Atkinson et al. 2015) or from observations through rhizo-

tubes in the field, where only small sections of the root system are visible (Garré et 

al. 2012). Several studies, however, showed that lab and field derived phenotypic 

root properties are poorly related and extrapolation from single root observations to 

the entire root system is delicate (Wojciechowski et al. 2009, Poorter et al. 2016).  

 A possibility to overcome these limitations are 3D root architecture models, which 

allow to generate large numbers of different root systems from a range of plant-

specific and environmentally influenced input parameter sets (Schnepf et al. 2018) 

and use them to deduce characteristic root traits. Models of root architecture and 

function have become readily available (Dunbabin et al. 2013, Schnepf et al. 2018, 

Postma et al. 2017, Pagès et al. 2014) and provide a means to efficiently analyze 

different plant species and their performance in different environments (Meunier et al. 

2016). Most models use comparable input parameter sets that include parameters  

influencing the total size of a root system (e.g. growth speed, branching density) as 

well as the shape of a root system (e.g. tropism and  tortuosity parameters) (Bingham 

and Wu 2011). Furthermore, most models have stochastic components such that the 

same parameter set may produce many different realizations. However, to our 
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knowledge, none of these models has so far been subject to thorough statistical 

analysis regarding the dependence of root system measures on model parameteriza-

tion. We chose a terminology which explicitly distinguishes between the “model input 

parameters”, from which we compute the 3D root architecture using CRootBox, and 

statistical “measures”, which we compute from the resulting 3D root architecture. 

Both could be ecological “traits”. For example both the model input parameter 

“branching angle” and the “root length density” could be considered traits. 

Measures to characterize root architectures 

Classical measures to characterize root system architecture include total root length, 

root surface area and root volume. While total root length is related to the soil volume 

explored by the root system, root surface area is important for uptake and exudation 

mechanisms that occur across the root-soil interface, and root volume can be seen 

as a measure of carbon investment into a specific root structure. The number of 

branches (or number of root tips) gives information about the degree of branching 

within a root system. Maximum rooting depth and maximum horizontal spread of the 

root system are negatively correlated and determine whether the root system is of 

steep and deep (Lynch 2013) or of shallow appearance which has direct implications 

on root foraging. While deep rooting plants can take up water from deeper soil layers 

and are thus advantageous in dry climates and during drought periods, shallow root-

ing plants enhance the exploration of topsoil layers where nutrient availability is 

greatest in many soils (Lynch and Brown 2001). Irrespective of the specific location, 

the convex hull determines the smallest convex set that encloses the whole root sys-

tem, while the rhizosphere volume is a measure of the soil volume that is actually 

influenced by the root system. The size of the rhizosphere volume depends on the 

effective soil diffusion coefficient, which varies for different nutrients, as well as on 
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root age, root length and radius and overlap between rhizospheres of individual 

rootaxes, i.e. the foraging performance (Landl et al. 2018).  

To compare root systems of different plant species with each other, ratios of root sys-

tem measures are used. Normalizing the number of root tips, total root length, root 

surface area and root volume by the volume of the convex hull results in root tip den-

sity, root length density, root surface area density and root volume density. We chose 

the convex hull since our simulations refer to the root system of a single plant. In field 

conditions, the volume of convex hull would be replaced by the volume of the sam-

pled soil and potentially, root systems from several plants would contribute to the root 

system measures. While root length density is one of the most widely measured traits 

in many lab or field experiments (Zuo et al. 2004, Van Noordwijk et al. 1985), root 

surface area density is the most relevant parameter in water flow and solute transport 

models (Couvreur et al. 2014).  

Root water and nutrient uptake as well as transport towards the shoot is determined 

by root hydraulic properties, which are thus - next to root architecture parameters - 

key components for root system functioning (Vadez 2014). To describe the hydraulic 

architecture of an entire root system, root hydraulic properties such as radial and axi-

al conductivities are related to root system measures. Root hydraulic architecture 

measures include root system equivalent conductance (Krs) and standard root water 

uptake fraction (SUF), which represent respectively the ability of the root system to 

take up a certain water volume under a given water potential difference between the 

root collar and an homogeneous soil and the water uptake by a root segment relative 

to the total water uptake of the root system. These variables were calculated by solv-

ing the water flow in the generated root system architectures under homogeneous 

soil conditions, using the algorithm of Meunier et al. (2017). A water potential was 
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imposed at the root collar and the resulting stem sap flow was used to calculate the 

root system conductance. The water uptake by each single segment served then to 

derive the standard uptake fraction of each individual segment. The root hydraulic 

conductivities (function of root age and order) were taken from Doussan et al. (2006) 

and considered as identical for all root systems.  The mean depth of standard root 

water uptake is then the product of SUF and the depth of the respective root segment 

summed up over all segments. To allow comparisons of the hydraulic architecture of 

differently sized root systems, the root system equivalent conductance is normalized 

by root length respectively root surface area (Couvreur et al. 2012). A further im-

portant measure for the characterization of root water uptake is the root half mean 

distance (HMD) which affects water depletion in the soil and is  

Table 1: Characteristic root system measures 

Variable Units Name and description 

RL cm total root length 
RSA cm2 total root surface area 
RV cm3 total root volume 
zmax cm maximum rooting depth 
rmax cm maximum horizontal spread (radius of the confining cylinder) 
Conv cm3 volume of the convex hull 
NR  - number of root tips / branches 
Vrhizo cm3 rhizosphere volume for phosphate 
RND cm3 NR/conv (root tip density)  
RLD cm cm-3 RL/conv (root length normalized with the volume of the convex hull) 
RSAD cm2 cm-3 RSA/conv (root surface area normalized with the volume of the con-

vex hull) 
RVD cm3 cm-3 RV/conv (root volume normalized with the volume of the convex hull) 
VDrhizo cm3 cm-3 Vrhizo/conv (rhizosphere volume for phosphate normalized with the 

volume of the convex hull) 
Krs cm2 d��� equivalent conductance of the root system 

Krs A d�� Krs/RSA (equivalent conductance of the root system per unit root ar-

ea) 
Krs L cm d�� Krs/RL equivalent conductance of the root system per unit root length 

zSUF cm mean depth of standard root water uptake 
HMD cm half mean distance between roots 
†(cm2 d��) �(cm³ hPa-1 d-1) 
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approximated with the classical approach by Newman (1969) as  HMD = (π RLD)-0.5 

where RLD is the root length density.  An overview of the different characteristic root 

system measures analyzed in this work is given in Table 1. 

Statistical tools to analyze characteristic root system measures from 

root architecture model outputs 

 

Statistical methods have so far been mainly used to group different root systems into 

plant functional types (Bodner et al. 2013) or similar genotypes (Chen et al. 2017) 

based on principal component analysis. Furthermore, nonlinear least-square fitting 

has been used to fit model parameters based on modelled and measured root 

lengths in homogeneous root groups (Zhang et al. 2003). Bingham and Wu (2011) 

analyzed the effect of varying model input parameters on two root system measures, 

total root length and root distribution in the soil profile in a sensitivity analysis. Pagès 

(2011) investigated the impact of different model input parameters as well as interac-

tions between these parameters on the foraging performance of a root system. 

The connection between the complex parametrization of 3D root architecture models 

and characteristic measures of the simulated root systems is often not obvious. Meta-

models, which can determine the effect of parameter variations on any of the different 

measures without running a full simulation, have recently been developed for root 

hydraulic measures (Meunier et al. 2017); for root system measures, however, they 

are completely missing. To our knowledge, no stochastic root architecture model has 

so far been thoroughly analyzed with statistical methods.  
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Objectives 

The objective of this work is to use statistical analysis methods to investigate the de-

pendency of key root system measures on model input parameters using the exam-

ple root architecture model CRootBox, which was chosen for its speed, efficiency and 

flexibility as well as its acceptance within the root modeling community. For future 

work, it would, however, be beneficial to also apply the presented analysis methods 

on other root architecture models and even experimental data sets to allow compari-

sons of different simulators and validate dependencies between root system 

measures and model input parameters with experimental data.  

In this study, we  

● Analyze the distributions of characteristic measures of root architecture, e.g. 

maximum rooting depth with respect to model parameters of interest, e.g. ini-

tial growth speed. �

● Derive statistical meta-models to link changes in individual model input pa-

rameters to the distributions of characteristic measures of root architecture. 

These meta-models will be helpful for CRootBox users to estimate the impact 

of a parameter change on the model’s outcome. �

● Elucidate correlations between different measures of root architecture  

● Compute the correlation changes between different architecture measures due 

to variations in individual model parameters�

 

�  
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Material and methods 

The root architecture model CRootBox 

CRootBox is a recent root architecture model (Schnepf et al. 2018). It is written in 

C++, but also has a Python binding that allows scripting in Python for most applica-

tions. Furthermore, a web application that is based on CRootBox enables the user to 

quickly create, modify and export root architectures from a database of currently 22 

plant species.  

CRootBox is fully described in Schnepf et al. (2018). Briefly, it is a generic model that 

is not focused on a specific plant species but is able to simulate the root architectures 

of any monocotyledonous and dicotyledonous plant. It distinguishes different types of 

roots, i.e., tap root, basal roots, shoot borne roots and lateral roots, and each root 

type is defined by a set of different model parameters. Basal and apical root zone 

define the length of the unbranched root before the first and behind the last branch, 

respectively. Branch spacing describes the distance between two successive 

branches and thereby determines branching density respectively the number of 

branches for a specified maximum root length. Root elongation is defined by a nega-

tive exponential function whose initial slope is determined by the initial growth speed 

(following the approach by Pagès et al. 2004) and whose asymptote is specified by 

the maximal root length. The insertion angle defines the angle from the vertical under 

which primary roots emerge (a larger angle thus leads to a more shallow root sys-

tem), while the branching angle describes the initial angle between a branch and its 

parent root. The model is stochastic because of two aspects. Firstly, the reorientation 

of a newly emerged root segment of defined length is determined by a random opti-

mization algorithm that selects from N randomly computed values of the deflection 

angle σ the value with the closest proximity to the desired growth direction (tropism). 



���

We refer the reader to Appendix A, section “Changes in root tip heading” of Schnepf 

et al. (2018) for details. Secondly, all parameters are assumed to be normal distribut-

ed with user-defined mean and standard deviation. Thus, each realization of the 

same parameter set results in a different root system with variability depending on 

the standard deviations of the model input parameters, the type of tropism, and the 

random deflection angle σ. For our statistical analysis, we used the model parame-

ters of the sample plant Zea mays as a reference data set. The parameter set was 

derived from the CRootBox model parameter database (Schnepf et al. 2018, Leitner 

et al. 2014) and is shown in Table 2. If the model structure remains the same, the 

dependency of root system measures on model input parameters is expected to re-

main qualitatively similar for different parametrizations, and the use of one single ref-

erence parameter set is thus justified. As specified in the analysis section below, we 

performed altogether 53�000 simulations of 3D root architectures based on the refer-

ence parameter set and its variations. A 3D visualization of a particular realization of 

this root system is shown in Fig 1.  

Table 2: Model parameter set of Zea Mays derived from the CRootBox model parameter da-
tabase (Zea_maize_4_Leitner_2014) (Schnepf et al., 2018, Leitner et al., 2014)  

Variable Units Description Axial roots  1st order lat-
erals 

   

Value (std) Value (std) 
lb cm basal root zone  0.5 (0.5) 0 (-) 
la cm apical root zone 18.1 (1.81) 8.8 (-) 
ln cm branch spacing 0.5 (0.5) 1.2 (0.12) 
lmax cm maximum root length 180.1 

(18.01) 
8.8 (-) 

r cm d-

1 
initial elongation rate 2.94 (0.294) 0.75 (0.075) 

a cm root radius 0.13 (0.013) 0.05 (0.005) 
Θ ° insertion/branching angle 80 (8.0) 85 (8.5) 
tropism N  - number of additional trials 0.5 (-) 0.5 (-) 
tropism σ ° cm-1 range of the random deflection 

angle 

5.7 (-) 5.7 (-) 

tropism type  - - gravitropism  exotropism  
maxB  - maximal number of basal roots 5 (-) 
simtime d simulation time 60 
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Analysis methods�

We selected six model input parameters from the reference parameter set in Table 2 

that we expected to have diverse effects on root architecture development. For each 

of these six parameters we chose a minimum and maximum value based on lower 

and upper parameter bounds of Zea Mays found in literature (Leitner et al. 2010, 

Leitner et al. 2014, Pagès et al. 2014, Postma and Lynch 2011). Standard deviations 

of the parameters were kept constant (Table 3). We then varied the means of each of 

the six parameters one at a time in 4 increments in the case of N, 9 increments in the 

case of � and in 10 increments otherwise between the identified minimum and maxi-

mum value resulting in 53 different parameter sets altogether. Subsequently, we 

used CRootBox to simulate � � ���� root system realizations for each of the 53 pa-

rameter sets and computed their characteristic root system measures (Table 1). Fig. 

1 shows a 3D visualization of a particular realization of a root system generated with 

the standard input parameter set given in Table 1.  Fig. 2 shows 3D visualizations of 

the root systems generated with the minimum and maximum  

 

Table 3: Ranges of analyzed model input parameters of basal roots 

Model parameter Unit Reference (std) Minimum (std) Maximum (std) 

ln, axial root (cm) 0.5 (0.5) 0.5 (0.5) 2 (0.5) 

maxB (-) 5 (-) 4 (-) 40 (-) 

r (cm d-1) 2.94 (0.294) 1 (0.294) 3 (0.294) 

σ (° cm-1) 5.7 (-) 0 (-) 5.7 (-) 

θ (°) 80 (8.0) 40 (8.0) 85 (8.0) 

N (-) 0.5 (-) 0 (-) 2 (-) 
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Fig. 1 3D visualization of root architectures simulated by CRootBox using the refer-

ence parameter set of Table 1.  

 

Fig. 2 3D visualization of root architectures simulated by CRootBox using the refer-

ence parameter set of Table 1 and setting the six input parameters selected for varia-

tion one at a time to minimum and maximum values of the respective parameter 

range (Table 2). 
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parameter values specified in Table 2. The obtained data sets were then analyzed 

statistically as described in the following paragraphs. 

The probability distribution of a random root system measure � is described by n 

sample values ��� � � � � �� that can be visualized e.g. by a histogram. As a first step, we 

estimated the probability density function �� of � using a nonparametric approach, 

namely a kernel density estimator (KDE). A KDE of �� � is defined as �����	
�� �

�
��
� ����� ���
��� , where the Gaussian kernel ����� � � ���� � ���� is used with 

��� � ����
�
�
������ �

�
��. The bandwidth �  0 is selected using Scott’s rule (Scott 

1979). Intuitively, each point � is assigned a value ����� �� corresponding to the dis-

tance between�� and the �-th realization �� of the random root system measure �. 

The superposition of all these values of every sample forms a KDE. One advantage 

of a KDE compared to directly investigating the histogram is that it is much easier to 

get an understanding of the underlying probability distribution because a KDE is not 

based on discrete bins and produces smooth estimates of the density function. How-

ever, being a nonparametric estimator it does not give the concise representation of a 

parametric approach. 

We account for this in a further step where we fit and compare several types of par-

ametric distributions. An important type of probability distributions is the normal distri-

bution given by the density ��� � ������
�
�
������ �

�!�
�� � "� with mean " and var-

iance �2  0. Furthermore, for skewed data, several parametric distributions are 

available. The log-normal distribution is given by  � � ����#�where # denotes a 

normal distributed random variable. Another important example is the gamma distri-

bution given by the density ��� � ������� � $�%��� � $&����'�(�%& for �  � 

with shape (  �, scale %  0 and location parameter $� where ' denotes the gamma 
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function. The inverse-gamma distribution is defined as follows: Let # be gamma-

distributed, then � � ��#� is inverse-gamma-distributed and the density of � is given 

by� ��� � ���'�$��� � %������������� � % with shape $  0, scale �  0 and 

location parameter %. The parameters of the above (parametric) probability distribu-

tions were estimated using the maximum-likelihood method; the type of the paramet-

ric distribution was chosen manually by comparing the visual fit of its density to the 

KDE.  

Additionally, so-called Q-Q (quantile-quantile) plots were used to evaluate the good-

ness of fit. More precisely, a Q-Q plot is a method to visually compare two distribu-

tions. Let �� and �� be cumulative distribution functions. The Q-Q plot is then given 

by � ) ���
�������

���� for �� * �����where ��� denotes the inverse function of  �, 

the so-called quantile function. In our case �� is the empirical distribution function of 

the sample � � ���� � � � � �� and it is thus possible to rewrite the formula above as 

� ) ���
��� �

�
� ��� for � � �� � �� where ��� is the (standardized) order statistics of the 

sample �. It is clear that if the two distributions fit perfectly, we get a straight line with 

a 45° angle. If the Q-Q plot is steeper than this line, then �� is more dispersed than 

�� and vice versa. This allows us in particular to compare the skewness (“S-shape”) 

and the tails of the two distributions graphically. For further information on Q-Q plots, 

see Gibbons and Chakraborti (2010). 

To analyze the dependency of a descriptor � of a root system measure (dependent 

variable) on an input parameter�� (regressor variable) we use polynomial regression 

models. That is, our model is �� � �� 	 ��� 	 ������The coefficients �� �are determined 

by the ordinary least squares method. The decision if a polynomial of degree 1 or 2 is 

used, i.e. whether �2 is fixed to be 0, is done manually by maximizing the coefficient 
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of determination �� which is computed using leave-one-out cross-validation (Hastie 

et al. 2009). In our case, for a selected model input parameter we are mapping its 

value �� for example, to the mean value � �
�
�
� ���
���  of all realizations ��� � � � � �� of a 

root system measure given��.  

In the above paragraph we discussed how descriptors of single root system 

measures can depend on a given input parameter, but it is also of great interest if 

and how root system measures depend on each other. For this reason we consider 

the sample correlation coefficient +,��� - � � ��� � ��-� � -���� � �.�/��0��
��� �

where �� - are the sample means and �/�� �0� are the sample variances of � �

���� � � � � �� and - � �-�� � � � � -��� In our case ��and � correspond to samples of two 

characteristic root system measures � and�# of a given input parameter configura-

tion.   

Results and discussion 

All the analysis can be reproduced by using the data in HDF5 format and the Jupyter 

Notebook which can be downloaded from our publication archive on the github re-

pository of CRootBox:  

https://github.com/Plant-Root-Soil-Interactions-

Modelling/CRootBox/tree/master/publication%20archive/VZJ%202018. The resulting 

pdf of the Analysis can also be downloaded there.  

In the first part of this section, we present probability density functions of different root 

system measures and their variation with different input parametrization. In the se-

cond part, dependencies between input parameters and root system measures are 

described in detail. The third part is dedicated to correlations between individual ar-

chitecture measures and variations in these correlations due to parametrization. Due 
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to the large amount of data, we only focus on selected results; the complete analysis 

can be found in the supplementary material S1: Complete Analysis.pdf (available at 

“https://github.com/Plant-Root-Soil-Interactions-

Modelling/CRootBox/tree/master/publication%20archive/VZJ%202018”).  

Probability density functions 

All absolute root system measures (i.e. zmax, rmax, conv, RL, RSA, RV, NR, Vrhizo) 

were approximately normal distributed. The parameters of the fitted normal distribu-

tions, however, varied with changing model input parameters. Root measures based 

on ratios (i.e. RND, RLD, RSAD, RVD, and VDrhizo) were distributed according to the 

complex distribution function for ratios of correlated normal distributed variables de-

rived by Hinkley (1969). In most cases they showed skewed probability distributions, 

which could be well approximated with inverse gamma distributions, whose parame-

ters, again, depended on the model input parametrization. This can be illustrated by 

the example of root tip density (RND): For low values of maxB, the probability distribu-

tion of RND is strongly positively skewed, while the skewness becomes less for larg-

er values of maxB (Fig 3). In most cases the Q-Q plots showed good agreement be-

tween sample data and theoretical fit suggesting that the fitted normal respectively 

inverse gamma distributions are valid approximations. The probability distributions for 

all root system measures are provided in the supplementary material S1. It follows 

from the differences in skewness that it is required to correctly sample from these 

distributions to appropriately represent root system/plant diversity. Otherwise, we 

could miss some ‘extreme’ root systems that might be the most suited in extreme 

conditions such as water stress, drought stress, nutrient limitations etc. 
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Fig. 3   Contrasting probability density functions, shown as histogram (blue bars), 

kernel density estimation (blue line) and fitted parametric model, and Q-Q plots for 

root tip density at A) a low (maxB = 4.0) and B) a high value (maxB = 40.0) of maxB 

(=number of axial roots). The parametric model in this case is an inverse-gamma dis-

tribution with parameters A) $ � 8.068, � �0.01237, % � 0.0006525 and B) $ � 

71.16, � �0.3982, % = 0.0004433.  
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Regressions 

In this section, we describe and interpret the impact of selected model input parame-

ters on root system measures using the fitted regression models. An overview of the 

relationships is given in Table 4. Fig 4 visualizes the dependency of root system 

measures on model input parameters by means of three examples. 

Variations in branch spacing ln have no influence on root system measures defining 

the shape of the root system (zmax, rmax, conv), but significantly impact total root sys-

tem size, Vrhizo and root hydraulic architecture measures (Krs, Krs L, Krs A). Absolute 

measures defining the total size of a root system (RL, RSA, RV, NR), Vrhizo as well as 

ratios including these measures (RND, RLD, RSAD, RVD, VDrhizo) decrease nonline-

arly with larger branch spacing. The half mean distance between roots (HMD) in-

creases linearly with greater values of ln. As expected, Krs, which predominantly de-

pends on the surface of the root system, decreases nonlinearly with greater values of 

ln. Measures of unit root system conductance (Krs L, Krs A), however, increase with 

greater ln, which is caused by a greater decline rate in Krs than in RL or RSA. Due to 

the length difference between apical and basal root zone (apical root zone is general-

ly longer), which becomes important when laterals are scarce, ZSUF increases nonlin-

early with greater values of ln. 

In contrast to branch spacing, variations in the insertion angle θ have no impact on 

measures defining the total size of a root system (RL, RSA, RV, NR), Vrhizo or root 

hydraulic architecture measures (Krs, Krs L, Krs A), but strongly influence the shape of a 

root system. A greater insertion angle leads to a shallower root system and thus to 

lower zmax and zSUF and larger rmax. The volume of the convex hull increases linearly 

with greater θ. Ratios including a measure describing the total size of the root system 

as well as conv (RND, RLD, RSAD, RVD, VDrhizo) decrease nonlinearly with greater 
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θ. A larger insertion angle leads to a more widespread root system and thus also to a 

larger HMD. 

A greater number of axial roots maxB leads to a linear increase in measures describ-

ing the total size of the root system (RL, RSA, RV, NR) as well as Vrhizo. It also in-

creases the likelihood of single roots to grow deeper and to spread wider and thus 

results in greater Zmax, rmax and conv. An increase in zSUF is perceptible, however, not 

statistically significant. Ratios including conv (RND, RLD, RSAD, RVD, VDrhizo) in-

crease linearly with increasing maxB. A larger number of axial roots leads to a denser 

root system and thus to a decrease in HMD. While Krs increases with greater values 

of maxB, measures of unit root system conductance (Krs L, Krs A) decrease due to a 

lower growth rate of Krs than of RL or RSA.  

Higher initial growth speed r leads to increases in root system measures defining the 

total size of a root system (RL, RSA, RV, NR) as well as Vrhizo and Krs. This increase 

is nonlinear, because root elongation follows a negative exponential function whose 

initial slope is determined by the initial growth speed and whose asymptote is speci-

fied by the maximal root length. Higher values of r also lead to greater zmax, rmax, conv 

and zSUF. Ratios that include both a measure describing the total size of the root sys-

tem and conv (RND, RLD, RSAD, RVD, VDrhizo) decrease nonlinearly with increasing 

values of r. This is caused by a larger growth rate of conv than of root measures de-

scribing the size of the root system with increasing r. Greater values of r lead to a 

larger and thus wider spread root system, which results in a nonlinear increase of 

HMD. Again, the growth rate of Krs with greater values of r is lower than that of RL or 

RSA, which leads to a nonlinear decrease of Krs L and Krs A. 

Similar to the insertion angle θ, variations in the range of the random angle deflection 

σ have no impact on measures defining the total size of a root system (RL, RSA, RV, 
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NR), on Vrhizo or on root hydraulic architecture parameters (Krs, Krs L, Krs A), but greatly 

influence the shape of a root system. This influence, however, is complex: Greater 

values of σ lead to both greater root tortuosity and a stronger impact of gravitropism. 

The way in which variations of σ influence root system measures thus depends on 

the parametrization of the insertion angle θ as well as on the number of trials N. For 

N > 0 (tropism type ‘gravitropism’) and θ > 1, greater values of σ increase the proba-

bility of vertical reorientation of a root segment and thus lead to higher values of zmax 

and zSUF and lower values of rmax. The measures conv and HMD, in contrast, first in-

crease up to a certain threshold value with greater values of σ and then decrease 

again. This is explained with the predominant influence of tortuosity for smaller val-

ues of σ, which leads to a less dense root system. When σ becomes larger, the influ-

ence of gravitropism outweighs tortuosity and the root system becomes denser. Rati-

os including conv (RND, RLD, RSAD, RVD, VDrhizo) as a denominator first decrease 

down to a certain threshold value for increasing values of σ and then increase again. 

Variations in the number of trials N also do not affect measures defining the total size 

of a root system (RL, RSA, RV, NR), Vrhizo or root hydraulic architecture parameters 

(Krs, Krs L, Krs A), but greatly influence the shape of a root system. A larger number of 

N leads to a stronger gravitropic response and thus to higher zmax and zSUF, respec-

tively lower rmax. The volume of the convex hull decreases linearly with increasing N. 

Ratios including a measure describing the total size of the root system as well as the 

volume of the convex hull (RND, RLD, RSAD, RVD, VDrhizo) increase linearly with 

increasing N. A larger number of trials leads to a denser root system and thus to a 

smaller HMD. 
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Table 4: Dependences between root architecture measures (y-axis) and model input pa-
rameters (x-axis): direct or indirect and linear or nonlinear relationships respectively no corre-
lation, regressions with R2>0.9 are shown in red 

Root  
system 
measures 

Root input parameters 
 

Branch 
spacing  
(ln) 

Insertion 
angle 
(θ) 

Maximal 
number of 
basal roots  
(maxB) 

Initial 
elongation 
rate  
(r) 

Range of 
the random 
deflection 
angle  
(σ) 

Number of trials 
(N) 

Total root 
length (RL) 
   
Total root 
surface area 
(RSA) 
   

Total root 
volume (RV)  
   

Maximum 
rooting depth 
(zmax) 
    

Horizontal 
spread (rmax) 
   

Volume of 
the convex 
hull (conv) 
   

Number of 
root tips 
(NR) 
   

Rhizosphere 
volume 
(Vrhizo) 
   

Half mean 
distance 
between 
roots (HMD)   

Root tip 
density 
(RND)    

Root length 
density 
(RLD)  
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Root surface 
area density 
(RSAD)    

Root volume 
density 
(RVD)    

Rhizosphere 
volume per 
volume of 
the convex 
hull (VDrhizo)    

Equivalent 
conductance 
of the root 
system (Krs)   

Equivalent 
conductance 
of the root 
system per 
unit of root 
length (Krs L)   

Equivalent 
conductance 
of the root 
system per 
unit of root 
area (Krs A)   

Mean depth 
of standard 
root water 
uptake 
(ZSUF)   
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Fig. 4  Three examples visualizing the dependency of root system measures on 

model input parameters: maximum rooting depth zmax as influenced by elongation 

rate r,  maximum horizontal spread rmax as influenced by the range of the random 

angle deflection σ and root tip density RND (number of root tips per convex hull) as 

influenced by the number of primary roots maxB. 

Researchers from both plant and soil communities agree that it is important to under-

stand the interactions between root and soil to better understand plant water and nu-

trient acquisition (Vetterlein et al. 2018) and soil science (Gregory 2006).  Plant 

breeding increasingly focused on roots (Bodner 2015, Lynch 2007). Wasson et al. 

(2012) for example discuss root traits that help increase deep water uptake. They are 

directly related to the root hydraulic architecture and are included in the set of our 
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model input parameters: axial and radial resistance, maximal root length, branch 

spacing. With our approach, it is now possible to quantify the effect of changing both 

the mean and the variance of those parameters on different root system measures. 

For example, a deeper root system is postulated to be desirable for increased deep 

water uptake, and two strategies are discussing for achieving this goal: (a) an in-

creased elongation rate of basal roots or (b) a steeper insertion angle. Our Table 4 

shows that the mean depth of root water uptake ZSUF increases with increasing inser-

tion angle as well as with increasing elongation rate r. However, increasing r results 

in an increased root volume RV while this parameter is not influenced by changing 

the insertion angle. Taking RV as a proxy for carbon costs, our approach thus is a 

tool to quantify increased costs associated with strategy (a).  

 

Correlations between different root system measures 

We quantified correlations between all root system measures.  

An interesting finding was that some of the correlation coefficients varied across the 

parameter space. Each entry in the correlation matrix shown in Fig. 5a is again a ma-

trix in which each line corresponds to one of the selected model input parameters 

and the different values that were chosen for each parameter. Each color in the small 

matrix thus corresponds to the basic model setup in which one parameter was 

changed according to the value outlined in the small matrix in Fig. 5b. We observe 

that all of the density measures (RND, RLD, RSAD, RVD) have constant strong cor-

relations between each other, irrespective of the chosen parameters. Root surface 

area density RSAD is for example always strongly correlated with the root length  
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Fig. 5   Correlations between the different root system measures and their variations 

across the parameter space. Each entry in the correlation matrix (a) is again a matrix 

in which each line corresponds to one of the selected model input parameters. Each 

color in the small matrix corresponds to the basic model setup in which one parame-

ter was changed according to the value outlined in the small matrix (b). 

density RLD. In a similar way, the rhizosphere volume is always strongly positive cor-

related with the root length, whereas there is a constant strongly negative correlation 
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between the half mean distance between roots, HMD, and the densities such as the 

root length density. As anticipated, maximum horizontal spread and maximum rooting 

depth are negatively correlated, although the strength of the correlation varies across 

the parameter space. Such changes in strength of correlation can also be observed 

for the correlation between equivalent conductance of the root system K, and the 

maximum horizontal spread rmax.  

Other root system measures show correlations that even change from slightly nega-

tive to slightly positive, as in the case of the correlation between the equivalent con-

ductance of the root system per unit root length, Krs L, and the densities such RLD, 

although the correlations are only weak. This makes sense as per definition Krs L is 

dependent of the root length itself (RL) and not on the soil volume explored by this 

root system. Consequently, its (negative) correlation with the root length RL itself is 

stronger.  

In the correlation between the volume of the convex hull, conv, and the maximal root-

ing depth, zmax, we also observe that there are a few parameterizations in which the 

correlation is positive. In the basic setup, the root system is parameterized such that 

it shows gravitropism. Hence, as long as the parameter σ is large enough, the root 

system becomes steeper over time due to gravitropism. This is at the cost of volume 

of convex hull - the steeper the root system the smaller the convex hull. Hence there 

is a negative correlation between the maximum rooting depth and the volume of the 

convex hull. However, if σ is small, then the root system does not show gravitropism, 

such that an increase in maximum rooting depth will also mean an increase in vol-

ume of convex hull and thus a positive correlation between conv and zmax. 
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Fig. 6a shows the nonlinear change in correlation between maximum rooting depth 

and horizontal spread with a varying range of the random deflection angle σ, which 

could be approximated with a quadratic polynomial with a minimum at σ = 0.7. For 

increasing values of σ below 0.7, the decrease rate in maximum rooting depth is thus 

larger than the growth rate in horizontal spread. For increasing values of σ above 0.7, 

the decrease rate in maximum rooting depth is then smaller than the growth rate in 

horizontal spread. Fig. 6b shows the nonlinear change in correlation between maxi-

mum rooting depth and horizontal spread with a varying range of the insertion angle 

θ: While the correlation is approximately constant for smaller values of θ, it becomes 

more negative as θ increases, meaning that the decrease rate in maximum rooting 

depth is larger than the growth rate in horizontal spread with increasing values of θ.  

 

 

Fig. 6 Correlation between rooting depth and horizontal spread as a function of the 

model input parameter σ (a) and θ (b).  

 

From the point of view of ecology, our modelling and analysis approach provides a 

tool to predict which model input parameters (“root traits”) will/need to be tuned in 

order to achieve a given measure in a given environment (“root system trait”) and 
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how the link between the two also depends on the parameter variance (see also 

Landl et al. 2018).  

 

Conclusions 

CRootBox is a mechanistic root architecture model with stochastic components. Us-

ing statistical methods, we analyzed characteristic root system measures of root sys-

tems simulated with CRootBox. We found that absolute root system measures have 

a normal probability distribution while ratios of root system measures have an inverse 

gamma distribution. The general shapes of the regression curves that determine the 

effect of parameter variations on root system measures as illustrated in Table 4 are 

expected to remain qualitatively similar for other parameterizations. Furthermore, we 

found that correlations between different root system measures are also variable 

across the parameter space.  

In conclusion, we presented statistical analysis of the simulation outcome of the 3D 

root architecture model CRootBox that helped to understand the impact of model 

structure and model parameterization on characteristic root system measures. Other 

root architecture models use different approaches to describe processes of root sys-

tem development. The effect of these different approaches on simulated root system 

measures, however, has never been analyzed systematically. Our presented method 

can be applied to select root traits (model input parameters) in order to achieve a cer-

tain outcome (root system measure). It can also be used to intercompare different 

root architecture models including the effects of their stochasticity. It can also be 

used to compare probability distributions of root system measures obtained from 

simulations and experimental data (e.g. from 3D root images). Compared to experi-
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ments, model simulation can usually be repeated much more often; in this work, the 

number of replications for each parameter set was 1000. Thus, experimental data 

could be used to inform and parameterize root architecture models, which can then in 

turn be used to create realistic, data-driven scenarios for further investigations. The 

meta-models derived here are simple polynomial regression models. In the future, 

this work shall be extended to more complex statistical methods including multivari-

ate approaches such as copulas, which provide mathematical tools to build meta-

models for vectors of (correlated) root system measures, instead of doing this for 

each individual measure separately.  

Supplementary material 

The complete statistical analysis is available as supplemental data S1. It is structured 

according to the different root system measures considered in this paper. For each 

individual root system measure and input parametrization, a probability density func-

tion as well as kernel density estimation (purple line) are plotted. Fitted normal re-

spectively inverse-gamma distributions are represented by a red line. Q-Q plots show 

the goodness of fit of the estimated functions. Thereafter, regressions showing the 

dependency between variations of input parameters and root system measures are 

presented. Finally, correlations are shown between root system measures and their 

dependency on variations of input parameters. 
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