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Summary

The aim of the paper is to apply point processes to root data modelling. We propose a new approach to
parametric inference when the data are inhomogeneous replicated marked point patterns. We generalize
Geyer’s saturation point process to a model which combines inhomogeneity, marks and interaction between
the marked points. Furthermore, the inhomogeneity influences the definition of the neighborhood of points.
Using the maximum pseudolikelihood method, this model is then fitted to root data from mixed stands of
Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) to quantify the degree
of root aggregation in such mixed stands. According to the analysis there is no evidence that the two root
systems are not independent.

Key words: bivariate spatial point process, Geyer’s saturation pointprocess, inhomogeneity, interaction,
replicated point patterns, root modelling.

1 Introduction

Statistical analysis and modelling of complex point patterns is a challenging topic in modern spatial statis-
tics (Baddeley et al., 2006; Diggle, 2003; Finkenstädt, Held and Isham, 2006; Illian et al., 2008). For
example, such point patterns arise by observing plant rootsin soils. Typically, available data come from
field experiments when one or several root systems are sectioned by a profile wall and root ends within
the wall are mapped. The root data are characterized as inhomogeneous (mainly vertically), clustered and
small sampled patterns. Each of these properties is a subject of intense research in recent time (see the
references below). Obviously, a much more difficult task is given when these properties appear simultane-
ously for the point patterns under investigation.

Previous works on the root distribution in pure stands report that the vertical root intensity can be
described as a one-dimensional depth function (Parker and van Lear, 1996; Schenk, 2005) with the greatest
root density in the top soil layers for most forests (Jacksonand Caldwell, 1996). Yet, it turned out that a
vertical homogenization cannot eliminate clustering properties of root patterns. Therefore, some models
for clustering should be applied to the data. For root patterns in pure stands inhomogeneous Matérn cluster
point processes have been fitted (Fleischer et al., 2006) using a vertical homogenization based on the depth
root density.
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However, this approach cannot be used for root data in mixed stands, since the vertical root distribu-
tions of different species may be different (Schmid and Kazda, 2001) and thus the homogenization step
cannot be applied. Moreover, the Matérn cluster process does not allow to model interaction between roots
of different species. Our approach to model interspecific interaction of roots in mixed stands is to use
inhomogeneous marked Gibbs point processes which are able to represent both long-range inhomogene-
ity in the vertical direction as well as short-range variability of the intensity (clustering). The novelty of
the present paper is the introduction and combination of several ingredients of an inhomogeneous marked
Gibbs point process model. Let us describe them briefly.

Inhomogeneity.There exist several approaches to include inhomogeneity inGibbs models. One of them
is to allow a parameter controlling the intensity to depend on location (Baddeley and Turner, 2000; Ogata
and Tanemura, 1986; Stoyan and Stoyan, 1998). This seems natural when the range of interaction does
not vary from one location to another, being motion-invariant. Another approach suggested in Jensen and
Nielson (2000) and Nielson and Jensen (2004) uses transformations of Gibbs point processes, where all
interaction functions, including one-point interactions, are subject to local dependency that implies some
anisotropy effect which may be undesirable in applications. A possible way to overcome this drawback
is local scaling (Hahn et al., 2003) where two-points and higher order interaction functions depend on
location. Our paper presents a different approach to accommodate inhomogeneity in Gibbs models. We
allow the one-point interaction function controlling the intensity to vary in space as in the first class of
models cited above, while the influence zones, a neighborhood relation, of roots are allowed to depend
on the vertical variation of root density. We believe that the suggested way to model inhomogeneity
is appropriate for this application, since the size of the interaction distance increases with depth, while
the rest of the long-range inhomogeneity can be explained bya parameter responsible for changing the
intensity of the point process.

Clustering. The class of pairwise interaction point processes, a special class of Gibbs point processes,
is often used in applications (Diggle et al., 1994). However, such processes are suitable for modelling
regularity but not clustering (Baddeley and van Lieshout, 1995; Grabarnik and Särkkä, 2001; Møller,
1999). Various ways to overcome this difficulty were proposed in the literature, e.g. area-interaction
point processes (Baddeley and van Lieshout, 1995) and continuous random cluster Markov point processes
(Møller, 1999). However, it is not clear how to generalize them to the multivariate case. Another class of
Gibbs models capable to produce a variety of clustered patterns was proposed in Grabarnik and Särkkä
(2001). These point processes are an extension of Geyer’s saturation model (Geyer, 1999) and can be
generalized to the marked or multivariate case. We choose the bivariate saturation point process model
on the basis of the parsimonious principle. Here, only one parameter is needed to describe one type of
interaction. Additional parameters which potentially control clustering can be chosen ad hoc, for example
by some trial experiments.

Parameter estimation.The estimation of parameters is problematic for Gibbs models. Since a direct
maximization of the likelihood is unfeasible, Monte Carlo approximation of the likelihood can be an ap-
propriate solution (Geyer, 1999; Møller and Waagepetersen, 2004). A computationally easier alternative
approach is the maximum pseudolikelihood method (Baddeleyand Turner, 2000; Goulard, Särkkä and
Grabarnik, 1996) which was taken here because it does not require heavy computations for the maximiza-
tion. Although we do not use simulation for the estimation ofparameters, a simulation algorithm based on
Markov chain Monte Carlo (MCMC) methodology is presented inthis work because it is used for checking
the goodness-of-fit of the estimated model.

Replicated patterns.Frequently, methods of spatial statistics operate with data when only one single
point pattern is available. Less attention has been paid to replicated data, i.e. several profile walls. An
extension of the estimation method to replicated data is straightforward if we allow the parameters to vary
across replicates and assume common values for interactions (Diggle, Mateu and Clough, 2000; Mateu,
2001). A more advanced technique based on generalized linear mixed modelling was proposed by Bell
and Grundwald (2004), where the assumption of a common interaction parameter for all replicates can be
relaxed.
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Besides presenting a new approach to deal with the above mentioned challenges, our aim of the point
process modelling of root data is to quantify the degree of root aggregation in mixed stands of Norway
spruce (Picea abies(L.) Karst.) and European beech (Fagus sylvaticaL.). Thus, we are going to model
intraspecific and interspecific interactions between rootsof different species. The study of root patterns
provide information which allows us to better understand subsurface processes in tree stands and how roots
exploit soil resources. A further advantage of the stochastic modelling of roots is that it can be used for the
improved estimation of root biomass by a root-wall intersection counting (Grabarnik, Loic and Bengough,
1998).

Note that roots are actually fibres in 3D, but we consider points in 2D. Krasnoperov and Stoyan (2004)
showed that for stationary and isotropic fibre processes thepair correlation function of the 2D point process
of the (centre) points of the fibre sectioning profiles can be used as the estimator for the reduced pair
correlation function of the 3D fibre process. The reduced pair correlation function refers to the case where
only the fibre point pairs from two different fibres are included. We can assume isotropy of the root fibre
processes but not stationarity. However, after the transformations, we have first-order stationarity with
respect to each species. Therefore, the univariate 2D second-order properties based on the transformed
point patterns on the profiles can be used to gain informationabout the 3D second-order properties of the
root system. Thus, for example, if the 2D second-order properties indicate the absence of interaction, then
there is no evidence that the roots themselves interact in 3D.

Stereological methods of an analysis of gradient structures which in fact are relevant to our experimental
situation were studied in Hahn et al. (1999). Their approachwas model-based using gradient Boolean and
gradient Poisson-Voronoi tessellation models. In the Boolean model diameters of spherical grains were
location-dependent.

The paper is organized as follows. In Section 2 we briefly describe the data, i.e. the acquisition of
the profile walls of roots of the two tree species,P. abiesandF. sylvatica. In Section 3 we introduce a
generalized version of Geyer’s saturation point process which combines inhomogeneity, locally dependent
neighbor relation and interaction between the marked points. The model fitting of this generalized model to
replicated point patterns is described in Section 4. Furthermore, Section 5 proposes a simulation algorithm
for this generalized model. In Section 6 we present the results of the model fitting to root data in mixed
stands ofP. abiesandF. sylvatica. Finally, in Section 7 we give a short discussion of the presented method
and the obtained results.

2 Data description

For details of site description, pit excavation, root mapping and previous results, see Fleischer et al. (2006)
and Schmid and Kazda (2001, 2002, 2005). Investigations in the present paper are based upon these articles
and thus only a short summary of the most important facts regarding the root data is given here.

Data collection took place near Wilhelmsburg, Austria (4805’51” N, 1539’48” E) in mixed stands of
P. abiesandF. sylvaticalocated between pure stands of both species. One experimental plot of about
0.5 ha was selected within each stand. The area was situated at an altitude of 480m, an aspect of NNE
and an inclination of 10%. The tree population was 55 years old, the dominant tree height was 28m
and the stand densities ofP. abiesand F. sylvatica(16.1 and 26.1m2/ha) were similar to each other.
The soils with only thin organic layer (about 4cm) can be classified as stagnic cambisols developed from
Flysch sediments. Annual rainfall in Wilhelmsburg averages 843mm with a mean summer precipitation
from May to September being 433mm. The mean annual temperature is8.4◦C, and the mean summer
temperature is15.7◦C.

In these stands 20 soil pits were excavated, leading to 7 vertical profile walls that are analyzed in the
following. The other profile walls could not be used due to extreme unequal numbers of roots ofF. sylvatica
andP. abies. On each wall all coarse roots were identified and divided into living and dead. All living small
roots (25mm) were marked with pins and digitally photographed. These pictures were evaluated and a
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Fig. 1 Original bivariate point patterns from mixed stands ofP. abies(•) andF. sylvatica(+)

coordinate plane was drawn over each profile wall, so that every root corresponds to a (marked) point in
the plane. After the root mapping, the ends of roots within the profile walls are regarded as realizations of
a stochastic planar bivariate point process observed within the sampling windowW with area|W | = 200
cm (width)× 100cm (height) (Fig. 1).

It was shown in Schmid and Kazda (2001) that the vertical rootdistributions ofP. abiesandF. sylvatica
in these mixed stands can be approximated by an exponential and a Gamma distribution, respectively (see
also Section 3 in this paper). The fitted parameters of these distributions arêη = 11.92 for P. abiesand
α̂ = 2.382, β̂ = 10.81 for F. sylvatica.

Note that the number of points in each profile wall is rather small, but the only possibility to enlarge the
sampling window would be with respect to the horizontal direction (there are no roots above and below
our current sampling windows). The problem which would arise then is the horizontal inhomogeneity, i.e.
the profile wall would range too close to a beech tree or sprucetree, respectively, such that the number
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of detected roots and the interactions between the roots would then be influenced by non-equal sampling
conditions. Therefore, the only way to increase the data setin this experiment is to increase the number of
replications.

3 Model description

One could try to model the bivariate point pattern of root locations by two independent Matérn cluster point
processes, one forP. abiesand one forF. sylvatica. However, then we would lose from the very beginning
the possible interaction between the two species. We have decided to model the root locations by Gibbs
point processes, which are often used as models for point patterns with interactions.

Since our root data is clustered (Schmid and Kazda, 2005), the simplest interaction model, the Strauss
process (Strauss, 1975), is not applicable (Møller, 1999).We believe that using instead Geyer’s saturation
point process (Geyer, 1999) would be a good choice on a parsimonious basis. Grabarnik and Särkkä (2001)
extended the saturation process introducing models with a more general interaction structure. In the present
paper we generalize Geyer’s model to the bivariate case and include inhomogeneity in the model.

A bivariate point process can be considered as a marked pointprocessX = {(Xn; m(Xn))} where
marksm attached to every point of the point process are binary variablesm ∈ {1, 2} and therefore,
the processX consists of two componentsX(1) = {(Xk; 1)} andX(2) = {(Xj; 2)}. Note that in the
following, we will write x(i) instead of(x; i) for a pointx of type i for easier reading of some formulae
below. In our case we specify that mark 1 refers toP. abiesand mark 2 toF. sylvatica. It is characteristic for
marked Gibbs point processes that they are defined by a density functionf with respect to the distribution
of the homogeneous independently marked Poisson referenceprocess with intensity 1 onW (Goulard et
al., 1996; Møller and Waagepetersen, 2004).

3.1 Bivariate inhomogeneous saturation point process

Let us foremost recall the saturation point process introduced by Geyer (1999) to replace the Strauss
process for clustered data. Let us preliminarily ignore themarks, and give the original definition of the
process. A (non-marked) point processX is called a saturation process if the density functionf (with
respect to the Poisson reference process of unit intensity)has the form

f(x) = abn
∏

x∈x

γmin{d,Nx(x)},

wherex ⊂ IR2 denotes any finite point configuration,a > 0 is a normalizing constant,b controls the
intensity of the point processX , n is the number of elements of the setx, γ is the interaction parameter,
d is the saturation threshold (an upper bound on the contribution to the densityf of any single point), and
Nx(x) is the number of neighbors inx of the pointx ∈ x. In the original model, two points are said to be
neighbors if they are closer to each other than some fixed distance. Furthermore,γ < 1 indicates repulsion,
γ > 1 clustering, andγ = 1 the Poisson case.

However, we have two types of roots and some inhomogeneity inthe point patterns and therefore, we
define a bivariate inhomogeneous version of the above saturation point process. A marked point process
X in W ⊂ IR2 with mark space{1, 2} is called a bivariate inhomogeneous saturation point process if its
densityf (with respect to the bivariate unit rate Poisson reference process with independent marks) has the
form

f(x) = abn1
1 bn2

2

∏

x∈x(1)

b′1(x)γ
min{d1,N

1,x(1) (x)}

1 γ
min{d12,N

1,x(2) (x)}

12 (1)

∏

x∈x(2)

b′2(x)γ
min{d2,N

2,x(2) (x)}

2 γ
min{d12,N

2,x(1) (x)}

12 ,
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wherex = {x(1),x(2)} with x
(i) = {x

(i)
1 , . . . , x

(i)
ni }. Furthermore,a > 0 is the normalizing constant,bi

controls the intensity of the processX(i), b′i(x) is the depth density function at locationx of X(i), andni

is the number of points ofx(i) in W . The within-species interaction parameter for typei is γi, anddi is the
saturation threshold ofX(i) (upper bound on the number of neighbors). The parameterγ12 describes the
inter-species interaction, andd12 is the upper bound on the number of neighbors of different type counted
for a given point. Finally,Ni,x(j)(x) is the number of points ofx(j) in the neighborhood of a pointx of
typei, andj 6= i.

Note that the densityf of a homogeneous version of the bivariate saturation process has the same form
as in (1) but without the termsb′i(x), i = 1, 2. Furthermore, the inter-species interaction parameterγ12

equals 1 if the two patterns are independent.

3.2 Modelling of inhomogeneity

We define that two pointsx ∈ x
(i) andy ∈ x

(j), i, j = 1, 2, are neighbors if their influence regions overlap.
For the definition of the influence region, we use the following approach: We take circles with interaction
radiusri (i = 1, 2) and transform them vertically according to the exponential and Gamma distribution,
which results in quasi ellipsoidal influence regions (Fig. 2). More precisely, the influence regionIi(x) of a
pointx = (w, h), wherew is the horizontal andh is the vertical coordinate, respectively, of typei is given
by

Ii(x) = {(u, v) : (u − w)2 + hW [Fi(v) − Fi(h)]2 ≤ r2
i },

whereFi denotes the depth distribution function for typei, i.e.

F1(h) = 1 − e−
1
η

h

and

F2(h) =

h∫

0

1

Γ(α)βα
sα−1e

−s
β ds,

hW = 100 cm denotes the height of the sampling window and the parametersη, α andβ are given in
Section 2. The reason for choosing such influence regions is that the expected number of neighbor points
would then be equal in each depth.

Making a homogenization by a transformation of the influencezones we do not take out all inhomogene-
ity occurring in the data. Further variability in space can be controlled by allowing the intensity parameters
of our model to depend on location.

Recall that in our model additional parametersb′i(x) controlling the intensities of points are used to
model the inhomogeneity with respect to the vertical axis. These functions are assumed to have the fol-
lowing forms:

b′1(w, h) =
1

η′
e
− 1

η′ h

and

b′2(w, h) =
hα′−1e

− h
β′

Γ(α′)β′α′

for P. abiesandF. sylvatica, respectively, whereη′, α′, β′ > 0 are some parameters.
There are different possibilities to choose the parametricform of the b′i(x) functions, i.e. different

functions may be used for different root systems. Note thatP. abieshas a sinker root system andF. sylvatica
possesses a heart root system. We chose the exponential and Gamma distributions, respectively, since the
same shape differences are still present in the inhomogeneity functionsb′i(x) after the homogenization of
the influence zones.
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Fig. 2 Influence regions forP. abies(•) andF. sylvatica(+)

It is necessary to stress that if there is no interaction between points, i.e. allγ are equal to 1, the
estimated parametric functionsb′i(x) in the model coincide with the intensity functions normalized by the
overall intensities. In contrast, the interactions between the roots (or points in the data) affect the estimated
inhomogeneity parameters and thus estimates ofη′, α′ andβ′ can differ from the values of the parameters
η, α andβ of the depth distributions which are used in the modelling ofthe influence zones.

To show this effect we made several simulation experiments with a non-marked version of the inhomo-
geneous saturation model introduced in (1). The results thereof are visualized in Fig. 3. For simplicity
we considered only the exponential distribution withη′ = 0.2 in a sampling windowW = 1 × 1 with
circular influence regions (r1 = 0.02) and a saturation thresholdd1 = 4. It is obvious that if the interaction
parameter changes, then the intensity of points changes as well. A similar observation was made in Stoyan
and Stoyan (1998) for inhomogeneous hard core point processes.
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(a)γ1 = 0.6, b1 = 500, η′ = 0.2 (b) γ1 = 1.4, b1 = 70, η′ = 0.2

Fig. 3 Realizations of (non-marked) inhomogeneous saturation point processes for which inhomogeneity terms are
equal

3.3 Conditional intensity

In order to simulate the point process and to estimate the model parameters, the conditional intensities
λi(u,x) are needed. They are defined as a ratio of density functions and heuristically, they tell us how
likely it is to have a point at locationu with marki given that the rest of the marked point pattern coincides
with x. The conditional intensitiesλi(u,x) depend only on the marked pointu(i) and its neighbors inx
and do not include any normalizing constant.

The conditional intensityλ(u,x) for the (non-marked) Geyer point process foru /∈ x is given by (Geyer,
1999)

λ(u,x) = bγmin{d,Nx(u)}
n∏

x∈x

γmin{d,N
x∪{u}(x)}−min{d,Nx(x)}.

For the bivariate inhomogeneous saturation point process,the conditional intensities are given by

λi(u,x) =
f(x ∪ {u(i)})

f(x)
= bib

′
i(u)γ

min{di,Ni,x(i) (u)}+
P

x∈x
(i) δi,u(x)

i γ
min{d12,N

i,x(j) (u)}+
P

x∈x
(j) δji,u(x)

12 ,

if u 6∈ x
(i), wherex = {x(1),x(2)},

x ∪ {u(i)} =

{
{x(1) ∪ {u},x(2)} if i = 1,

{x(1),x(2) ∪ {u}} if i = 2,

δi,u(x) =

{
1 if Ni,x(i)(x) < Ni,x(i)∪{u}(x) ≤ di,

0 otherwise,

and

δji,u(x) =

{
1 if Nj,x(i)(x) < Nj,x(i)∪{u}(x) ≤ d12,

0 otherwise.
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In case ofu ∈ x
(i) the formulae forλi(u,x), δi,u(x) andδji,u(x) are modified as

λi(u,x) =
f(x)

f(x \ {u(i)})

= bib
′
i(u)γ

min{di,Ni,x(i)\{u}
(u)}+

P

x∈x
(i)\{u}

δi,u(x)

i γ
min{d12,N

i,x(j) (u)}+
P

x∈x
(j) δji,u(x)

12 ,

δi,u(x) =

{
1 if Ni,x(i)\{u}(x) < Ni,x(i)(x) ≤ di,

0 otherwise,

and

δji,u(x) =

{
1 if Nj,x(i)\{u}(x) < Nj,x(i)(x) ≤ d12,

0 otherwise.

4 Model fitting

For the estimation of model parameters it is assumed that thedensityf(x; θ) is known up to some parameter
vectorθ = (θ1, ..., θp). To estimateθ, we have chosen to use the pseudolikelihood method (Baddeley and
Turner, 2000; Goulard et al., 1996). Only the conditional intensitiesλi(x,x; θ) which do not depend on
the unknown normalizing constant are needed in order to write down (and maximize) the pseudolikelihood
function and therefore, the method is computationally convenient. Also, it is known how to estimate the
overall parameters from replicated point patterns by this method.

4.1 Pseudolikelihood method

The pseudolikelihood function of a marked point process with two marks is given by (Goulard et al., 1996)

PL(θ;x) =
∏

x∈x(1)

λ1(x,x) exp(−

∫

W

λ1(u,x)du)
∏

x∈x(2)

λ2(x,x) exp(−

∫

W

λ2(u,x)du),

where the conditional intensitiesλi(x,x) = λi(x,x; θ) depend on the unknown parameter vectorθ.
Substituting the conditional intensities for the bivariate inhomogeneous saturation point process and

taking the logarithm, we obtain the log pseudolikelihood function which is used for the estimation of
model parameters:

log PL(θ;x) = n1 log b1 +
∑

x∈x(1)

log b′1(x) + n2 log b2 +
∑

x∈x(2)

log b′2(x)

+ log γ1


 ∑

x∈x(1)

[min{d1, N1,x(1)(x)} +
∑

y∈x(1)\{x}

δ1,x(y)]




+ log γ2


 ∑

x∈x(2)

[min{d2, N2,x(2)(x)} +
∑

y∈x(2)\{x}

δ2,x(y)]




+ log γ12


 ∑

x∈x(1)

min{d12, N1,x(2)(x)} +
∑

x∈x(1)

∑

y∈x(2)

δ21,x(y)




+ log γ12


 ∑

x∈x(2)

min{d12, N2,x(1)(x)} +
∑

x∈x(2)

∑

y∈x(1)

δ12,x(y)




−

k∑

s=1

λ1(z
(1)
s ,x)w(1)

s −

k∑

s=1

λ2(z
(2)
s ,x)w(2)

s ,
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where the two sums
∑k

s=1 λ1(z
(1)
s ,x)w

(1)
s and

∑k

s=1 λ2(z
(2)
s ,x)w

(2)
s are approximations of the integrals∫

W
λ1(u,x)du and

∫
W

λ2(u,x)du, respectively. The dummy pointsz(i)
1 , ..., z

(i)
k , k = 252, i = 1, 2,

together with the data pointsx(i) ∈ X induce a Voronoi tessellation ofW andw
(i)
s is the weight of the

dummy pointz(i)
s , i.e. the area of the Voronoi cell with nucleusz

(i)
s . This method has been proposed by

Berman and Turner (1992) for far fewer data and dummy points which saves CPU time and provides the
same results as quadrature rules. Here, the dummy points lieon an equidistant grid and they-coordinate is
transformed according to the density function defining the influence regions, since most of the points are
located in the upper part of the sampling window. The estimates of the parametersb1, b2, γ1, γ2, γ12, η, α
andβ are obtained by maximizing this log pseudolikelihood function with respect to them.

4.2 Replicated point patterns

Unlike point patterns which are typically analyzed by methods of spatial statistics, root data are seldom
sufficiently large. A way to get more data is to sample independently several patterns and combine so-
called replicated point patterns in one data set.

Extending the estimation method developed for a single point pattern to the replicated case is straight-
forward (Diggle et al., 2000). Under the assumption that thek point patterns are realizations of independent
and identically distributed point processes we can construct a pooled pseudolikelihood

log PL(θ;x1, ...,xk) =

k∑

s=1

log PLs(θ;xs),

where PLs, s = 1, ..., k is the pseudolikelihood of thesth replication. Maximization oflog PL(θ;x1, ...,xk)
with respect toθ yields the estimates of the unknown parameters.

The assumption that the unknown parameters are identical for all replications can be relaxed. One way
to do this is to condition on the number of points in each replicated point pattern (Diggle et al., 2000). An
approach based on generalized linear mixed models is given in Bell and Grunwald (2004), where the use
of models with random effects allows us to relax an assumption on a common interaction parameter.

4.3 Correction of edge effects

Because of the small numbers of roots, we have chosen to use periodic boundary conditions (Ripley, 1977)
for edge correction. In our case this means that the samplingwindow W is wrapped onto a cylinder by
identifying the opposite sides ofW which are parallel to they-axis, so that points at these two opposite
edges of the sampling window may be considered neighbors. There are no roots above or below the
sampling window, and therefore no edge correction parallelto thex-axis is needed.

4.4 A priori chosen parameters

The parameters which have to be specified a priori for the estimation procedure were obtained from further
data analyses as well as from biological reasoning:

• For the radius of the influence regions we homogenized the data with respect to the vertical axis
(Fleischer et al., 2006) and estimated the mean univariate pair correlation functions for both tree
species (Fig. 4). The interaction radius seems to be around 20 cm and 10cm, and thus we chose
r1 = 10 cm andr2 = 5 cm as influence ranges forP. abiesand F. sylvatica, respectively. The
homogenization has been done separately forP. abiesandF. sylvaticawith η̂, α̂ andβ̂ from Section
2.

• The saturation thresholds were set tod1 = d2 = d12 = 4, since we believe that more than4 neighbors
seem to have no larger influence than just4 neighbors.
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Fig. 4 Estimated mean univariate pair correlation functionsg(r) for homogenized data ofP. abies(left) andF. sylvat-
ica (right) with pointwise 99% envelopes (shown by thin lines) of CSR

5 Simulation

Although we do not use simulations for the estimation of the parameter vectorθ, a simulation algorithm
is presented. It is needed in this study for the goodness-of-fit testing. As it is the case for Gibbs point
processes, a direct sampling is not feasible because of the intractability of the normalizing factor. A way to
overcome this problem is to use a MCMC algorithm (Robert and Casella, 2004). We simulate the bivari-
ate saturation point process by means of the Metropolis-Hastings algorithm (Møller and Waagepetersen,
2004), which allows us to simulate a Gibbs point process witheither random or a fixed number of points.
In the latter case updates are realized by shifting single points, whereas in the former case updates are per-
formed by deaths, births and (optional) shifts. We use an algorithm where the updates can only be births or
deaths of points. We chose a probability for the birth proposal asp = 0.5. The starting point configuration
was the empty set. The number of iterations was set to 10000. The algorithm can be described as follows:

Step 1: Decide which mark will be considered
Choose marki to be 1 with probability 0.5 and 2 otherwise.
Step 2: Update the point configurationx by a birth or a death
Propose a birth with probabilityp, i.e. generate a new pointq(i) with mark i in W and acceptq(i) with
probabilitymin{λi(q,x)1−p

p

|W |
ni+1 , 1}, otherwise propose a death, i.e. pick randomly a points(i) of x

(i)

and removes(i) from x with probabilitymin{λ−1
i (s,x) p

1−p
ni

|W | , 1}.
Step 3: Repeat steps 1 and 2 altogether 10000 times and take the resulting point configurationx as a final
realization.

6 Results

Data analysis was done by using the GeoStoch library. Note that GeoStoch is a Java-based library sys-
tem developed by the Institute of Applied Information Processing and the Institute of Stochastics at Ulm
University which can be used for stochastic-geometric dataanalysis and spatial statistics (Mayer, Schmidt
and Schweiggert, 2004). See also the internet description of this project underhttp://www.geostoch.de.
For the maximization of the pseudolikelihood (see Section 4), existing software (R, 2006) for non-linear
optimization has been used.

Homogeneity of replicated samples.To show that it is reasonable to assume that point patterns of
the various profile walls are sampled from the same distribution, we plotted the individually estimated
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Fig. 5 EstimatedL(r) − r functions of each of the 7 profile walls for homogenized data of P. abies(left) andF.
sylvatica(right) with pointwise 99% envelopes (shown by thick lines)of the fitted model

Lii(r) − r functions for the homogenized data in Fig. 5. Furthermore, we computed pointwise 99%
envelopes for theL(r) − r function based on 2000 simulation runs of the fitted model using only one
replication. The estimated functions show the same statistical behaviour and run inside the envelopes,
except for two curves ofF. sylvatica. The curve which clearly runs outside the envelopes in Fig. 5is
estimated from the second profile wall on the left side in Fig.1, where the number of roots ofF. sylvaticais
low and hence, variability of the estimate of theL-function is high. Thus, the model seems to be appropriate
for each individual profile wall. From a biological point of view the assumption of an independent and
identically distributed sample seems to be legitimate because the profile walls were dug each at a different
place, where the surrounding (biological) conditions seemto have been similar (see Section 2).

Second-order statistics.Fig. 4 shows the estimated mean univariate pair correlationfunctions of the
homogenized data which have already been used to obtain values for the interaction radii. The pointwise
99% envelopes for CSR are calculated by simulating the homogeneous Poisson point process7 times in
W (using 7 different estimated intensities) and estimating the replicatedgii-functions for this simulation
run. From 200 simulation runs we then compute the pointwise envelopes. Since the estimated functions
are above the corresponding CSR envelopes, both species seem to have clustered root patterns. Thus, there
is some indication that the parametersγ1 andγ2 cannot be eliminated from our model. Note that the pair
correlation function is usually used for exploratory analysis of data while Ripley’sK- (or L-) function is
used for testing but here we use the pair correlation function for both purposes.

Estimates of parameters.The estimated values of the parametersb1, b2, γ1, γ2, γ12, η
′, α′ andβ′ for

each individual point pattern are unstable, since there aretoo few points in each sampling window. But
using the method described in Section 4.2 for replicated spatial point patterns, we obtain the following
estimates:

• The parameters for the depth distributions of the roots ofP. abiesandF. sylvaticaare estimated as
η̂′ = 10.515, α̂′ = 2.0246 andβ̂′ = 12.323, respectively.

• The parametersb1, b2 which control the intensities are estimated asb̂1 = 0.0524 andb̂2 = 0.1194 for
P. abiesandF. sylvatica, respectively.

• The interaction parametersγ1, γ2 andγ12 are estimated aŝγ1 = 1.3294 andγ̂2 = 1.3165 for P. abies
andF. sylvatica, respectively and̂γ12 = 0.9445.

Note that changing the interaction radii and the saturationthresholds alters slightly the obtained values
of the parameters, but the qualitative interpretation remains the same.
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Fig. 6 Realizations of the estimated bivariate inhomogeneous saturation point process (P. abies•, F. sylvatica+)

data 7 replications 14 replications
b̂1 0.0524 0.0498± 0.0098 0.0483± 0.0057

b̂2 0.1194 0.1144± 0.0141 0.1097± 0.0065
γ̂1 1.3294 1.2907± 0.0907 1.2974± 0.0411
γ̂2 1.3165 1.3250± 0.0761 1.3416± 0.0486
γ̂12 0.9445 0.9250± 0.0525 0.9476± 0.0264

η̂′ 10.515 10.127± 0.823 10.142± 0.480

α̂′ 2.0246 2.0079± 0.3163 2.0883± 0.2214

β̂′ 12.323 12.869± 2.202 12.074± 1.304

Table 1 Mean values and standard deviations of the parameter estimates based on 50 simulations of 7 (middle) and
14 (right) replicates together with the values estimated from the data (left)

Fig. 6 shows two typical realizations of the bivariate inhomogeneous saturation point process obtained
by the Metropolis-Hastings algorithm described in Section5 using the parameters mentioned in the present
section and in Section 4.4.

Accuracy of the estimates.In order to investigate the accuracy of the estimates, we simulated 50 real-
izations of our fitted model with 7 and 14 replications, respectively, and fitted the model to the simulated
replicated data. The mean and standard deviations of the estimated parameters are presented in Tab. 1. It
can be seen that the estimates obtained are reliable enough when using replicates (as in the experiment) to
enlarge the data set, and doubling the number of replications, i.e. doubling the acquisition of profile walls,
can improve the results reasonably. Furthermore, the estimated parameter̂γ12 = 0.9445 is not significantly
different from 1 indicating that the two root patterns are independent. Note that the interaction parameters
γ1 andγ2 look similar, but since we chose different interaction radii, the strength of interaction differs, too.
Therefore, there is no reason to simplify our model so that ithas the same interaction parameter for each
species.

Model validation. For the model validation (here goodness-of-fit testing), wecompute the pointwise
envelopes for the univariateLii-functions,i = 1, 2, of the homogenized data. The homogenization is done
as in the case of the pair correlation function with respect to the vertical axis with the estimated parameters
η̂, α̂ andβ̂ from Section 2 separately forP. abiesandF. sylvatica.

First, we obtain estimateŝL11(r) andL̂22(r) as an average of those for each single homogenized point
pattern. Then, we simulate the bivariate inhomogeneous saturation point process7 times inW (because of
7 sampling windows) using the algorithm described in Section 5 and estimate the replicatedLii-functions
for this simulation run. From 200 simulation runs we computepointwise envelopes. If the estimated
functions are inside the corresponding envelopes, the model can be considered as appropriate. Fig. 7
shows the envelopes for the estimatedLii(r) − r functions ofP. abiesandF. sylvatica, respectively.
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Fig. 7 Estimated mean univariateL(r) − r functions for homogenized data ofP. abies(left) andF. sylvatica(right)
with pointwise 99% envelopes (shown by thin lines) of the fitted model

Note that it is not possible to use theL12-function, since the vertical depth densities forP. abiesandF.
sylvaticadiffer and thus the homogenization approach is not applicable.

7 Discussion

A new approach of modelling and analyzing inhomogeneous replicated marked point patterns has been
presented. We fitted a bivariate inhomogeneous saturation point process to the roots ofP. abiesandF.
sylvaticain mixed stands. The novelty of this approach is the inclusion of the specific inhomogeneity which
does not only appear in the density function of the bivariateinhomogeneous saturation point process, but is
also reflected in the definition of the neighborhood, i.e. theinfluence region of the roots. Another challenge
was the fitting of replicated point patterns, where we used the maximum pseudolikelihood method. Note
that the presented approach can easily be extended to more than two types of roots.

For model validation we only considered a point process characteristic of the homogenized univariate
point patterns. We computed envelopes for the estimated averagedLii-functions (Fig. 7). ForF. sylvatica
the chosen model seems to be a good fit, but for short distancesthe estimatedL-function ofP. abieshits
the envelope. Nevertheless, altogether for both tree species, this simple model seems to be appropriate.

The estimated interaction parametersγ1 andγ2 seem to be quite similar, i.e. in mixed stands the roots
of P. abiesare clustered as strongly as the roots ofF. sylvatica, but in a larger region. A further reduction
of the model could be obtained by the assumptionγ1 = γ2, which from a biological point of view is not
reasonable. Moreover, our estimated interspecific interaction parameter̂γ12 is not significantly different
from 1, i.e. there is no clear evidence that interspecific interaction between roots ofP. abiesand roots ofF.
sylvaticaoccurs in the data set. Note that we used a model with only one cross-interaction parameter,γ12.
The model can be extended to have two parameters,γ12 for the type1 affected by neighbor points of type
2 andγ21 for the type2 affected by neighbor points of type1. Allowing γ12 6= γ21 would then result in
a model with non-symmetric cross-interaction - this is a feature which is not considered in Gibbs models
literature so far. However, given the small number of roots in each point pattern, we have taken only one
cross-interaction parameter in order not to increase the number of parameters too much.

The spatial distributions of roots ofP. abiesand F. sylvaticain pure stands have been modelled by
inhomogeneous Matérn cluster point processes (Fleischeret al., 2006) and the roots ofP. abiesshow
stronger clustering in a smaller region of attraction than the roots ofF. sylvatica. Our results suggest that
the stronger clustering of roots ofP. abiescompared to roots ofF. sylvaticain pure stands is also present
in mixed stands. Note that although the estimates of the interaction parameters are close, the regions of
attraction are not the same for the two species. The interaction distances were determined by means of
the univariate pair correlation function and were fixed for the estimation of the other model parameters.
A more profound discussion of the structural differences between the root distributions in pure and mixed

Copyright line will be provided by the publisher



bimj header will be provided by the publisher 15

stands, respectively, could be done if the univariate inhomogeneous saturation point process would also be
fitted to the root profile walls in pure stands, which is subject to future work.

Roots react to nutrient-enriched soil patches by enhanced growth and greater biomass in the areas, where
the roots are clustered. Hodge (2004; 2006) and Kazda and Schmid (2008) discuss different reasons for the
clustering of tree roots, which can be seen as an indication of extensive intraspecific competition. Indeed,
Schmid and Kazda (2001) found about 25% higher growth rate ofbeech coarse roots (> 5 mm) compared
to spruce in mixed stands. The small roots investigated in this study were described with regard to water
and nutrient uptake (Lindenmair et al., 2001) and they mediate to the most active fine roots. Thus, clusters
of small roots reflect the presence of nutrient patches or zones of better water availability (Hodge, 2004;
Parker and van Lear, 1996).

Schmid and Kazda (2005) found that the number of small roots and their clustering were independent
of the distance to and the diameter of the surrounding trees.Root clustering is seen as a rule in natural soils
for optimized exploitation of aggregated resources (Kazdaand Schmid, 2008) but the interaction between
roots of different species within such clusters was so far unknown. The present work suggests that there
is no statistically significant interaction of roots ofP. abiesandF. sylvaticawith respect to their spatial
distribution. The approach introduced in this paper offersa possibility to deal with such intraspecific and
interspecific interactions.
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