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Summary

The aim of the paper is to apply point processes to root datdetiing. We propose a new approach to
parametric inference when the data are inhomogeneousatgdi marked point patterns. We generalize
Geyer’s saturation point process to a model which combimesmogeneity, marks and interaction between
the marked points. Furthermore, the inhomogeneity inflasitiee definition of the neighborhood of points.
Using the maximum pseudolikelihood method, this model éntfitted to root data from mixed stands of
Norway spruce Ricea abies (L.) Kars). and European beeclrdgus sylvatica L).to quantify the degree
of root aggregation in such mixed stands. According to theyais there is no evidence that the two root
systems are not independent.

Key words: bivariate spatial point process, Geyer’s saturation ppiotess, inhomogeneity, interaction,
replicated point patterns, root modelling.

1 Introduction

Statistical analysis and modelling of complex point pai$ds a challenging topic in modern spatial statis-
tics (Baddeley et al., 2006; Diggle, 2003; FinkenstadtldHend Isham, 2006; lllian et al., 2008). For
example, such point patterns arise by observing plant iaatsils. Typically, available data come from
field experiments when one or several root systems are sectiby a profile wall and root ends within
the wall are mapped. The root data are characterized as wdwmeous (mainly vertically), clustered and
small sampled patterns. Each of these properties is a $udfjgdense research in recent time (see the
references below). Obviously, a much more difficult taskiveig when these properties appear simultane-
ously for the point patterns under investigation.

Previous works on the root distribution in pure stands replmat the vertical root intensity can be
described as a one-dimensional depth function (Parkeramdlear, 1996; Schenk, 2005) with the greatest
root density in the top soil layers for most forests (Jackaod Caldwell, 1996). Yet, it turned out that a
vertical homogenization cannot eliminate clustering jertips of root patterns. Therefore, some models
for clustering should be applied to the data. For root pastar pure stands inhomogeneous Matérn cluster
point processes have been fitted (Fleischer et al., 2006y asiertical homogenization based on the depth
root density.
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However, this approach cannot be used for root data in miteetlls, since the vertical root distribu-
tions of different species may be different (Schmid and KaZ0D01) and thus the homogenization step
cannot be applied. Moreover, the Matérn cluster process dot allow to model interaction between roots
of different species. Our approach to model interspecifieraction of roots in mixed stands is to use
inhomogeneous marked Gibbs point processes which are@bdptesent both long-range inhomogene-
ity in the vertical direction as well as short-range variigpif the intensity (clustering). The novelty of
the present paper is the introduction and combination afrsdingredients of an inhomogeneous marked
Gibbs point process model. Let us describe them briefly.

InhomogeneityThere exist several approaches to include inhomogene@kihs models. One of them
is to allow a parameter controlling the intensity to dependoazation (Baddeley and Turner, 2000; Ogata
and Tanemura, 1986; Stoyan and Stoyan, 1998). This seemmhahen the range of interaction does
not vary from one location to another, being motion-invatrigAnother approach suggested in Jensen and
Nielson (2000) and Nielson and Jensen (2004) uses tranafimms of Gibbs point processes, where all
interaction functions, including one-point interactipase subject to local dependency that implies some
anisotropy effect which may be undesirable in applicatiohgossible way to overcome this drawback
is local scaling (Hahn et al., 2003) where two-points ancheigorder interaction functions depend on
location. Our paper presents a different approach to acamtate inhomogeneity in Gibbs models. We
allow the one-point interaction function controlling th@énsity to vary in space as in the first class of
models cited above, while the influence zones, a neighbarhelation, of roots are allowed to depend
on the vertical variation of root density. We believe thag fuggested way to model inhomogeneity
is appropriate for this application, since the size of thteraction distance increases with depth, while
the rest of the long-range inhomogeneity can be explained pgrameter responsible for changing the
intensity of the point process.

Clustering The class of pairwise interaction point processes, a apeleiss of Gibbs point processes,
is often used in applications (Diggle et al., 1994). Howesgeich processes are suitable for modelling
regularity but not clustering (Baddeley and van Liesho@93; Grabarnik and Sarkka, 2001; Mgller,
1999). Various ways to overcome this difficulty were prombsethe literature, e.g. area-interaction
point processes (Baddeley and van Lieshout, 1995) andrents random cluster Markov point processes
(Mgller, 1999). However, it is not clear how to generalizerthto the multivariate case. Another class of
Gibbs models capable to produce a variety of clustered npattgas proposed in Grabarnik and Sarkka
(2001). These point processes are an extension of Geydénsasan model (Geyer, 1999) and can be
generalized to the marked or multivariate case. We choaséitlariate saturation point process model
on the basis of the parsimonious principle. Here, only orrampater is needed to describe one type of
interaction. Additional parameters which potentially tohclustering can be chosen ad hoc, for example
by some trial experiments.

Parameter estimationThe estimation of parameters is problematic for Gibbs med8ince a direct
maximization of the likelihood is unfeasible, Monte Carfgpaoximation of the likelihood can be an ap-
propriate solution (Geyer, 1999; Mgller and Waagepeter2e@4). A computationally easier alternative
approach is the maximum pseudolikelihood method (Baddatel Turner, 2000; Goulard, Sarkka and
Grabarnik, 1996) which was taken here because it does noiredtpavy computations for the maximiza-
tion. Although we do not use simulation for the estimatiopafameters, a simulation algorithm based on
Markov chain Monte Carlo (MCMC) methodology is presentethia work because it is used for checking
the goodness-of-fit of the estimated model.

Replicated patternsFrequently, methods of spatial statistics operate witla edten only one single
point pattern is available. Less attention has been paidpticated data, i.e. several profile walls. An
extension of the estimation method to replicated data agttforward if we allow the parameters to vary
across replicates and assume common values for interad¢tinggle, Mateu and Clough, 2000; Mateu,
2001). A more advanced technique based on generalized lmigad modelling was proposed by Bell
and Grundwald (2004), where the assumption of a commorsictien parameter for all replicates can be
relaxed.
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Besides presenting a new approach to deal with the abovdanedtchallenges, our aim of the point
process modelling of root data is to quantify the degree of aggregation in mixed stands of Norway
spruce Picea abieqL.) Karst.) and European beeckagus sylvaticd..). Thus, we are going to model
intraspecific and interspecific interactions between robwifferent species. The study of root patterns
provide information which allows us to better understartussumface processes in tree stands and how roots
exploit soil resources. A further advantage of the stoéhasvdelling of roots is that it can be used for the
improved estimation of root biomass by a root-wall intetgccounting (Grabarnik, Loic and Bengough,
1998).

Note that roots are actually fibres in 3D, but we considersdm2D. Krasnoperov and Stoyan (2004)
showed that for stationary and isotropic fibre processegdhreorrelation function of the 2D point process
of the (centre) points of the fibre sectioning profiles can beduas the estimator for the reduced pair
correlation function of the 3D fibre process. The reducedqmarelation function refers to the case where
only the fibre point pairs from two different fibres are inobald We can assume isotropy of the root fibre
processes but not stationarity. However, after the transitions, we have first-order stationarity with
respect to each species. Therefore, the univariate 2D demaler properties based on the transformed
point patterns on the profiles can be used to gain informaimut the 3D second-order properties of the
root system. Thus, for example, if the 2D second-order ptagsaindicate the absence of interaction, then
there is no evidence that the roots themselves interact in 3D

Stereological methods of an analysis of gradient strustwlgch in fact are relevant to our experimental
situation were studied in Hahn et al. (1999). Their appraga$ model-based using gradient Boolean and
gradient Poisson-Voronoi tessellation models. In the Banlmodel diameters of spherical grains were
location-dependent.

The paper is organized as follows. In Section 2 we briefly desdhe data, i.e. the acquisition of
the profile walls of roots of the two tree speci®s,abiesandF. sylvatica In Section 3 we introduce a
generalized version of Geyer’s saturation point processwtombines inhomogeneity, locally dependent
neighbor relation and interaction between the marked poirtie model fitting of this generalized model to
replicated point patterns is described in Section 4. Funtloee, Section 5 proposes a simulation algorithm
for this generalized model. In Section 6 we present the tesifithe model fitting to root data in mixed
stands oP. abiesandF. sylvatica Finally, in Section 7 we give a short discussion of the pné=g method
and the obtained results.

2 Data description

For details of site description, pit excavation, root magand previous results, see Fleischer et al. (2006)
and Schmid and Kazda (2001, 2002, 2005). Investigatioreiptesent paper are based upon these articles
and thus only a short summary of the most important factsrdéggithe root data is given here.

Data collection took place near Wilhelmsburg, Austria @8Q” N, 1539'48” E) in mixed stands of
P. abiesandF. sylvaticalocated between pure stands of both species. One expeahpdot of about
0.5 ha was selected within each stand. The area was situated atitaelof 480m, an aspect of NNE
and an inclination of 10%. The tree population was 55 yeas thle dominant tree height was 28
and the stand densities Bf abiesand F. sylvatica(16.1 and 26.1n%/ha) were similar to each other.
The soils with only thin organic layer (aboutA:) can be classified as stagnic cambisols developed from
Flysch sediments. Annual rainfall in Wilhelmsburg aversag§é3mm with a mean summer precipitation
from May to September being 438m. The mean annual temperaturesig°C, and the mean summer
temperature i§5.7°C.

In these stands 20 soil pits were excavated, leading to fcakpgrofile walls that are analyzed in the
following. The other profile walls could not be used due to@xte unequal numbers of rootsfokylvatica
andP. abies On each wall all coarse roots were identified and dividealliming and dead. All living small
roots (25mm) were marked with pins and digitally photographed. Thestupés were evaluated and a
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Fig. 1 Original bivariate point patterns from mixed stand$Pofbies(e) andF. sylvatica(+)

coordinate plane was drawn over each profile wall, so thalyew®t corresponds to a (marked) point in
the plane. After the root mapping, the ends of roots withnglofile walls are regarded as realizations of
a stochastic planar bivariate point process observedmiittd sampling windowV with area|IW| = 200
cm (width) x 100cm (height) (Fig. 1).

It was shown in Schmid and Kazda (2001) that the vertical dégitibutions ofP. abiesandF. sylvatica
in these mixed stands can be approximated by an exponemtial &amma distribution, respectively (see
also Section 3 in this paper). The fitted parameters of thistehditions are; = 11.92 for P. abiesand
& = 2.382, 3 = 10.81 for F. sylvatica

Note that the number of points in each profile wall is rathealsrbut the only possibility to enlarge the
sampling window would be with respect to the horizontal clien (there are no roots above and below
our current sampling windows). The problem which wouldattsen is the horizontal inhomogeneity, i.e.
the profile wall would range too close to a beech tree or spmaeg respectively, such that the number
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of detected roots and the interactions between the roottdvibben be influenced by non-equal sampling
conditions. Therefore, the only way to increase the datagbis experiment is to increase the number of
replications.

3 Model description

One could try to model the bivariate point pattern of rooslibens by two independent Matérn cluster point
processes, one fét abiesand one fol. sylvatica However, then we would lose from the very beginning
the possible interaction between the two species. We hasidetbto model the root locations by Gibbs
point processes, which are often used as models for poitgrpatwith interactions.

Since our root data is clustered (Schmid and Kazda, 200&kithplest interaction model, the Strauss
process (Strauss, 1975), is not applicable (Mgller, 199@) believe that using instead Geyer’s saturation
point process (Geyer, 1999) would be a good choice on a pansims basis. Grabarnik and Sarkka (2001)
extended the saturation process introducing models witbra general interaction structure. In the present
paper we generalize Geyer’s model to the bivariate casermhatie inhomogeneity in the model.

A bivariate point process can be considered as a marked panessX = {(X,;m(X,))} where
marksm attached to every point of the point process are binary bbesan € {1,2} and therefore,
the processX consists of two components™™) = {(X;;1)} and X = {(X;;2)}. Note that in the
following, we will write 2(*) instead of(x; i) for a pointz of typei for easier reading of some formulae
below. In our case we specify that mark 1 referBtabiesand mark 2 td~ sylvatica Itis characteristic for
marked Gibbs point processes that they are defined by a démsdtion f with respect to the distribution
of the homogeneous independently marked Poisson refepgncess with intensity 1 o’ (Goulard et
al., 1996; Mgller and Waagepetersen, 2004).

3.1 Bivariate inhomogeneous saturation point process

Let us foremost recall the saturation point process intteduby Geyer (1999) to replace the Strauss
process for clustered data. Let us preliminarily ignorerfaks, and give the original definition of the
process. A (non-marked) point proceksis called a saturation process if the density functfo(with
respect to the Poisson reference process of unit interissyjhe form

f(X) — ab™ H ,ymin{d,Nx(z)}’

rTEX

wherex C RR? denotes any finite point configuratiom,> 0 is a normalizing constant, controls the
intensity of the point proces¥, n is the number of elements of the sgty is the interaction parameter,
d is the saturation threshold (an upper bound on the coniwibt the densityf of any single point), and
Ny () is the number of neighbors ik of the pointz € x. In the original model, two points are said to be
neighbors if they are closer to each other than some fixedrdist Furthermore, < 1 indicates repulsion,
~ > 1 clustering, andy = 1 the Poisson case.

However, we have two types of roots and some inhomogenettyeipoint patterns and therefore, we
define a bivariate inhomogeneous version of the above s@mu@oint process. A marked point process
X in W ¢ R? with mark spacg 1, 2} is called a bivariate inhomogeneous saturation point m®ets
densityf (with respect to the bivariate unit rate Poisson referemeegss with independent marks) has the
form

o0 = ey T ey e O e () (1)
zex()

H bl (I)Vmin{dszzvx@) (w)},ymin{d127N27x(l) (I)}
2 2 12 ’

zex(®)
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wherex = {x,x®1} with x® = {z{” ... 2{)}. Furthermoreq > 0 is the normalizing constant;
controls the intensity of the proced&®, b/ (z) is the depth density function at locatierof X (), andn;
is the number of points of(?) in TV. The within-species interaction parameter for tyjgey;, andd; is the
saturation threshold ok () (upper bound on the number of neighbors). The paramgtetescribes the
inter-species interaction, amld, is the upper bound on the number of neighbors of differerd ygunted
for a given point. Finally,V; . (x) is the number of points at() in the neighborhood of a point of
typei, andj # i.

Note that the density of a homogeneous version of the bivariate saturation psdtas the same form
as in (1) but without the termig (), ¢ = 1,2. Furthermore, the inter-species interaction parameter
equals 1 if the two patterns are independent.

3.2 Modelling of inhomogeneity

We define that two points € x(V) andy € xU), 4, j = 1,2, are neighbors if their influence regions overlap.
For the definition of the influence region, we use the follayiypproach: We take circles with interaction
radiusr; (: = 1,2) and transform them vertically according to the exponéatia Gamma distribution,
which results in quasi ellipsoidal influence regions (Fig.More precisely, the influence regidi(z) of a
pointz = (w, h), wherew is the horizontal and is the vertical coordinate, respectively, of tyjis given
by

L) = {(u,v) : (u—w)? + hw[F(v) — F()]* < 12},

whereF; denotes the depth distribution function for typée.

and

h
1 a—1_ =2
0
hw = 100 cm denotes the height of the sampling window and the paramstersand 3 are given in
Section 2. The reason for choosing such influence regiomaidtie expected number of neighbor points
would then be equal in each depth.

Making a homogenization by a transformation of the influeraoees we do not take out all inhomogene-
ity occurring in the data. Further variability in space carcbntrolled by allowing the intensity parameters
of our model to depend on location.

Recall that in our model additional parametéf&r) controlling the intensities of points are used to
model the inhomogeneity with respect to the vertical axisede functions are assumed to have the fol-
lowing forms:

1 Lh
b’l(w,h)—ﬁe "
and
h(y/—le B’
by(w, h) = ——
2(w7 ) F(Oél)ﬁla/

for P. abiesandF. sylvatica respectively, where’, o/, 3’ > 0 are some parameters.

There are different possibilities to choose the paramédrim of the b;(x) functions, i.e. different
functions may be used for different root systems. NotePhabieshas a sinker root system aRdsylvatica
possesses a heart root system. We chose the exponentiabamdadistributions, respectively, since the
same shape differences are still present in the inhomotyeectionsd;(z) after the homogenization of
the influence zones.

Copyright line will be provided by the publisher



bimj header will be provided by the publisher 7

== o

Fig. 2 Influence regions foP. abies(e) andF. sylvatica(+)

It is necessary to stress that if there is no interaction eetwpoints, i.e. ally are equal to 1, the
estimated parametric functiohq«) in the model coincide with the intensity functions normetizy the
overall intensities. In contrast, the interactions betwide roots (or points in the data) affect the estimated
inhomogeneity parameters and thus estimateg,ef andg’ can differ from the values of the parameters
1, « andg of the depth distributions which are used in the modellinthefinfluence zones.

To show this effect we made several simulation experimeittsamnon-marked version of the inhomo-
geneous saturation model introduced in (1). The resultetiare visualized in Fig. 3. For simplicity
we considered only the exponential distribution with= 0.2 in a sampling windowl?V = 1 x 1 with
circular influence regions( = 0.02) and a saturation threshald = 4. It is obvious that if the interaction
parameter changes, then the intensity of points changeslassimilar observation was made in Stoyan
and Stoyan (1998) for inhomogeneous hard core point presess
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Fig. 3 Realizations of (non-marked) inhomogeneous saturatiamt poocesses for which inhomogeneity terms are
equal

3.3 Conditional intensity

In order to simulate the point process and to estimate theehymarameters, the conditional intensities
Xi(u,x) are needed. They are defined as a ratio of density functicshd@uristically, they tell us how
likely it is to have a point at location with mark: given that the rest of the marked point pattern coincides
with x. The conditional intensitie; (u, x) depend only on the marked point? and its neighbors ix
and do not include any normalizing constant.

The conditional intensity(u, x) for the (non-marked) Geyer point processdog x is given by (Geyer,
1999)

n

A(U,X) _ b,ymin{d,Nx(u)} H ,Vmin{d,NxU{u}(z)}fmin{d,Nx(z)}'
rEX

For the bivariate inhomogeneous saturation point protkess;onditional intensities are given by

fnin{dwNi,xm (W2, e Siule) min{diz,N, ) (W)I+3 i) i (@)

b (w)y; T12 )
if u¢ x(® wherex = {x(l),x(Q)},

. (1) @ ifi=1
) _ {X U {u}7x } LK ’
XUl = {{x<l>,x<2> U{u}} ifi=2,

5 ((E) _ 1 if Ni,xm(x) < Ni,x(i)u{u} (SC) < d;,
i 0 otherwise,

and

6" (SC) _ 1 |f Nj_’x(i) (x) < Nj-,x(i>U{u} (x) S d12’
e 0 otherwise
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In case ofu € x() the formulae for\; (u, x), d; ., (z) andd;; ., (x) are modified as

7()
Ai 5 = —
W) = T\ Wy
= bibé(u)vznin{di’Nnx“)\{u}(“)”zzex(i)\{u} Ji’“(z)ylngm{dm’]vi’x(” (HLsext S ®)

Siu(z) = L Nixonguy (2) < Nixo (2) < di,
b 0 otherwise,

and

5o (I) _ 1 if Njﬂx(i)\{u} (x) < Nj_’x(i) (.I') < djo,
s 0 otherwise.

4 Model fitting

For the estimation of model parameters itis assumed thdethsity f (x; #) is known up to some parameter
vectorf = (64, ..., 6,). To estimate®), we have chosen to use the pseudolikelihood method (Baddete
Turner, 2000; Goulard et al., 1996). Only the condition&irsities); (x, x; 8) which do not depend on
the unknown normalizing constant are needed in order t@wotvn (and maximize) the pseudolikelihood
function and therefore, the method is computationally emient. Also, it is known how to estimate the
overall parameters from replicated point patterns by théthmd.

4.1 Pseudolikelihood method
The pseudolikelihood function of a marked point procesh wito marks is given by (Goulard et al., 1996)
PLO:x) = [] iz, x)exp(~ / M(u,x)du) T Aol x) exp(~ / Ao (u, x)du),
zex(™) w zex(® w

where the conditional intensities (x, x) = \;(z, x; §) depend on the unknown parameter veétor

Substituting the conditional intensities for the bivagismhomogeneous saturation point process and
taking the logarithm, we obtain the log pseudolikelihooddiion which is used for the estimation of
model parameters:

log PL(#;x) = nqloghy + Z log b’ (x) 4+ n2 log bs + Z log by ()

zex(D) zex(2)

+logyi | Y min{di, Nxo (@)} + Y d1.(y)]

zex®) yex(M\{z}

tlogne [ Y0 Mminfds Ny (2)} + Y G20y

zex(?) yex@\{z}

+logyiz [ Y min{dis, Nixer (@)} + > Y dara(y)

zex(D) zex(D) yex(2)

+logyiz [ Y min{dis, Noseor (@)} + > Y d12.4(y)

zex(?) zex(2) yex()
k k
=D MED M =3 Az x)uwl®,
s=1 s=1
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where the two sumi'jzl Al(zgl), x)wgl) andzlzz1 /\2(z§2), x)w§2) are approximations of the integrals
S A1(u, x)du and [, Xa2(u, x)du, respectively. The dummy point»s‘lz), ...,z,(j), k= 2524 = 1,2,
together with the data points?) € X induce a Voronoi tessellation ¥ andw!” is the weight of the
dummy pointzgz), i.e. the area of the Voronoi cell with nucleug). This method has been proposed by
Berman and Turner (1992) for far fewer data and dummy poitiishivsaves CPU time and provides the
same results as quadrature rules. Here, the dummy poimis &@ equidistant grid and thecoordinate is
transformed according to the density function defining tifeience regions, since most of the points are
located in the upper part of the sampling window. The estisaf the parametets, b2, 71, V2, Y12, 1, @
andg are obtained by maximizing this log pseudolikelihood fimttvith respect to them.

4.2 Replicated point patterns

Unlike point patterns which are typically analyzed by methof spatial statistics, root data are seldom
sufficiently large. A way to get more data is to sample indeleely several patterns and combine so-
called replicated point patterns in one data set.

Extending the estimation method developed for a singletpazttern to the replicated case is straight-
forward (Diggle et al., 2000). Under the assumption thaktpeint patterns are realizations of independent
and identically distributed point processes we can coostrpooled pseudolikelihood

k
log PL(6;x1,...,xKx) = Zlog PL;(6;xs),
s=1
where PL,, s = 1, ..., k is the pseudolikelihood of thé” replication. Maximization ofog PL(0; x4, ..., Xx)
with respect td yields the estimates of the unknown parameters.

The assumption that the unknown parameters are identicallfeplications can be relaxed. One way
to do this is to condition on the number of points in each ptéd point pattern (Diggle et al., 2000). An
approach based on generalized linear mixed models is givBeli and Grunwald (2004), where the use
of models with random effects allows us to relax an assumptioa common interaction parameter.

4.3 Correction of edge effects

Because of the small numbers of roots, we have chosen to tisdipdoundary conditions (Ripley, 1977)
for edge correction. In our case this means that the samplindow 17 is wrapped onto a cylinder by
identifying the opposite sides & which are parallel to thg-axis, so that points at these two opposite
edges of the sampling window may be considered neighbor&reTare no roots above or below the
sampling window, and therefore no edge correction partltiez-axis is needed.

4.4 A priori chosen parameters

The parameters which have to be specified a priori for thenasitbn procedure were obtained from further
data analyses as well as from biological reasoning:

e For the radius of the influence regions we homogenized the wdih respect to the vertical axis
(Fleischer et al., 2006) and estimated the mean univariitecprrelation functions for both tree
species (Fig. 4). The interaction radius seems to be aroQnah2and 10cm, and thus we chose
r1 = 10 em andry = 5 c¢m as influence ranges fd?. abiesand F. sylvatica respectively. The
homogenization has been done separatelfPf@biesandF. sylvaticawith 7, & andﬁfrom Section
2.

e The saturation thresholds were setito= ds = dy2 = 4, since we believe that more thameighbors
seem to have no larger influence than juseighbors.
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Fig. 4 Estimated mean univariate pair correlation functigfs) for homogenized data &% abieg(left) andF. sylvat-
ica (right) with pointwise 99% envelopes (shown by thin lineSC&R

5 Simulation

Although we do not use simulations for the estimation of theameter vectof, a simulation algorithm

is presented. It is needed in this study for the goodnedg-tEfsting. As it is the case for Gibbs point
processes, a direct sampling is not feasible because afttlaetability of the normalizing factor. A way to
overcome this problem is to use a MCMC algorithm (Robert andeta, 2004). We simulate the bivari-
ate saturation point process by means of the Metropoligiitgsalgorithm (Mgller and Waagepetersen,
2004), which allows us to simulate a Gibbs point process wiitier random or a fixed number of points.
In the latter case updates are realized by shifting singl#govhereas in the former case updates are per-
formed by deaths, births and (optional) shifts. We use aoréilgn where the updates can only be births or
deaths of points. We chose a probability for the birth prapasp = 0.5. The starting point configuration
was the empty set. The number of iterations was set to 100@®alfgorithm can be described as follows:

Step 1 Decide which mark will be considered

Choose mark to be 1 with probability 0.5 and 2 otherwise.

Step 2 Update the point configurationby a birth or a death

Propose a birth with probability, i.e. generate a new point? with marki in 7 and accepy(¥ with
probability min{\; (g, x)% JK‘I, 1}, otherwise propose a death, i.e. pick randomly a pdintof x(*)
and remove®) from x with probabilitymin{A\;" (s, ) 125 537, 1}-

Step 3 Repeat steps 1 and 2 altogether 10000 times and take tHeémggwint configuratiork as a final
realization.

6 Results

Data analysis was done by using the GeoStoch library. NateGleoStoch is a Java-based library sys-
tem developed by the Institute of Applied Information Pissirg and the Institute of Stochastics at Ulm
University which can be used for stochastic-geometric datdysis and spatial statistics (Mayer, Schmidt
and Schweiggert, 2004). See also the internet descripfitimis project undehttp://www.geostoch.de
For the maximization of the pseudolikelihood (see Sectipredisting software (R, 2006) for non-linear
optimization has been used.

Homogeneity of replicated sample3o show that it is reasonable to assume that point patterns of
the various profile walls are sampled from the same disiohutwe plotted the individually estimated

Copyright line will be provided by the publisher



12 Eckel et al.: Modelling Tree Roots in Mixed Stands by Inlegeneous Marked Gibbs Point Processes

L(r)-

Fig. 5 EstimatedL(r) — r functions of each of the 7 profile walls for homogenized ddt®.cabies(left) andF.
sylvatica(right) with pointwise 99% envelopes (shown by thick lineg}he fitted model

L;;(r) — r functions for the homogenized data in Fig. 5. Furthermore,computed pointwise 99%
envelopes for the.(r) — r function based on 2000 simulation runs of the fitted modeigisinly one
replication. The estimated functions show the same statidbehaviour and run inside the envelopes,
except for two curves oF. sylvatica The curve which clearly runs outside the envelopes in Fig 5
estimated from the second profile wall on the left side in Ejgvhere the number of roots Bf sylvaticais

low and hence, variability of the estimate of thdunction is high. Thus, the model seems to be appropriate
for each individual profile wall. From a biological point ofew the assumption of an independent and
identically distributed sample seems to be legitimate bsedhe profile walls were dug each at a different
place, where the surrounding (biological) conditions séeimave been similar (see Section 2).

Second-order statisticsFig. 4 shows the estimated mean univariate pair correldtiontions of the
homogenized data which have already been used to obtaies/duthe interaction radii. The pointwise
99% envelopes for CSR are calculated by simulating the hemegus Poisson point procestmes in
W (using 7 different estimated intensities) and estimathegreplicated;;;-functions for this simulation
run. From 200 simulation runs we then compute the pointwiselepes. Since the estimated functions
are above the corresponding CSR envelopes, both speciag@bave clustered root patterns. Thus, there
is some indication that the parametegfsand~, cannot be eliminated from our model. Note that the pair
correlation function is usually used for exploratory as@éyof data while Ripley's<- (or L-) function is
used for testing but here we use the pair correlation fundtoboth purposes.

Estimates of parametersThe estimated values of the parametierss, v1,v2, v12, 7', ¢’ and g’ for
each individual point pattern are unstable, since theraaréew points in each sampling window. But
using the method described in Section 4.2 for replicatetiagaoint patterns, we obtain the following
estimates:

e The parameters for the depth distributions of the rootB.afbiesandF. sylvaticaare estimated as
7’ = 10.515, o/ = 2.0246 and@’ = 12.323, respectively.

e The parameters, , b, which control the intensities are estimated;a& 0.0524 andbAQ = 0.1194 for
P. abiesandF. sylvatica respectively.

e The interaction parametefs, v2 and~;» are estimated ag = 1.3294 and4s = 1.3165 for P. abies
andF. sylvatica respectively and s = 0.9445.

Note that changing the interaction radii and the saturdtioesholds alters slightly the obtained values
of the parameters, but the qualitative interpretation iemgne same.
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Fig. 6 Realizations of the estimated bivariate inhomogeneousatain point processX abiese, F. sylvatica+)

data 7 replications 14 replications

b1 | 0.0524| 0.0498 4+ 0.0098 | 0.0483 + 0.0057
6; 0.1194| 0.1144 +0.0141 | 0.1097 + 0.0065
A1 | 1.3294| 1.2907 £ 0.0907 | 1.2974 + 0.0411
42 | 1.3165| 1.3250 &+ 0.0761 | 1.3416 + 0.0486
Y12 | 0.9445| 0.9250 & 0.0525 | 0.9476 & 0.0264
ﬁ’ 10.515| 10.127 +0.823 10.142 4+ 0.480

2 | 2.0246| 2.0079 £ 0.3163 | 2.0883 & 0.2214

ﬁA’ 12.323| 12.869 + 2.202 12.074 +1.304

Table 1 Mean values and standard deviations of the parameter ésirhased on 50 simulations of 7 (middle) and
14 (right) replicates together with the values estimatethfthe data (left)

Fig. 6 shows two typical realizations of the bivariate intaganeous saturation point process obtained
by the Metropolis-Hastings algorithm described in Secliarsing the parameters mentioned in the present
section and in Section 4.4.

Accuracy of the estimate#n order to investigate the accuracy of the estimates, welaited 50 real-
izations of our fitted model with 7 and 14 replications, respely, and fitted the model to the simulated
replicated data. The mean and standard deviations of theagstl parameters are presented in Tab. 1. It
can be seen that the estimates obtained are reliable endwveghuging replicates (as in the experiment) to
enlarge the data set, and doubling the number of replicgtian doubling the acquisition of profile walls,
can improve the results reasonably. Furthermore, the attlparametefr,;; = 0.9445 is not significantly
different from 1 indicating that the two root patterns aréépendent. Note that the interaction parameters
~1 and~y, look similar, but since we chose different interaction ratlie strength of interaction differs, too.
Therefore, there is no reason to simplify our model so thiaag the same interaction parameter for each
species.

Model validation. For the model validation (here goodness-of-fit testing),campute the pointwise
envelopes for the univariate;;-functions,; = 1, 2, of the homogenized data. The homogenization is done
as in the case of the pair correlation function with respetté vertical axis with the estimated parameters
, a andB from Section 2 separately fét abiesandF. sylvatica

First, we obtain estimatagl\l(r) andf2\2(r) as an average of those for each single homogenized point
pattern. Then, we simulate the bivariate inhomogeneousatin point processtimes inW/ (because of
7 sampling windows) using the algorithm described in Secii@nd estimate the replicatég;-functions
for this simulation run. From 200 simulation runs we comppdéntwise envelopes. If the estimated
functions are inside the corresponding envelopes, the htadebe considered as appropriate. Fig. 7
shows the envelopes for the estimafedr) — r functions ofP. abiesandF. sylvatica respectively.
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Fig. 7 Estimated mean univariate(r) — r functions for homogenized data Bf abies(left) andF. sylvatica(right)
with pointwise 99% envelopes (shown by thin lines) of theefitmodel

Note that it is not possible to use tlig,-function, since the vertical depth densities PoabiesandF.
sylvaticadiffer and thus the homogenization approach is not appkcab

7 Discussion

A new approach of modelling and analyzing inhomogeneoulcegpd marked point patterns has been
presented. We fitted a bivariate inhomogeneous saturation process to the roots & abiesandF.
sylvaticain mixed stands. The novelty of this approach is the inclusithe specific inhomogeneity which
does not only appear in the density function of the bivaii#emogeneous saturation point process, but is
also reflected in the definition of the neighborhood, i.e.itfleence region of the roots. Another challenge
was the fitting of replicated point patterns, where we usediiaximum pseudolikelihood method. Note
that the presented approach can easily be extended to naorénth types of roots.

For model validation we only considered a point processastiaristic of the homogenized univariate
point patterns. We computed envelopes for the estimate@@®dl ;;-functions (Fig. 7). FoF. sylvatica
the chosen model seems to be a good fit, but for short distdheeasstimated.-function of P. abieshits
the envelope. Nevertheless, altogether for both tree apgitiis simple model seems to be appropriate.

The estimated interaction parametersand~, seem to be quite similar, i.e. in mixed stands the roots
of P. abiesare clustered as strongly as the root§adylvatica but in a larger region. A further reduction
of the model could be obtained by the assumptipr= ~5, which from a biological point of view is not
reasonable. Moreover, our estimated interspecific interaparametefy;, is not significantly different
from 1, i.e. there is no clear evidence that interspecifieranttion between roots &f abiesand roots of~
sylvaticaoccurs in the data set. Note that we used a model with only mres-dnteraction parametef,s.
The model can be extended to have two parametesdpr the typel affected by neighbor points of type
2 and~»; for the type2 affected by neighbor points of type Allowing 12 # 721 would then result in
a model with non-symmetric cross-interaction - this is d@feawhich is not considered in Gibbs models
literature so far. However, given the small number of rontsach point pattern, we have taken only one
cross-interaction parameter in order not to increase thaebeun of parameters too much.

The spatial distributions of roots ¢ abiesandF. sylvaticain pure stands have been modelled by
inhomogeneous Matérn cluster point processes (Fleisehal., 2006) and the roots & abiesshow
stronger clustering in a smaller region of attraction th@rbots off. sylvatica Our results suggest that
the stronger clustering of roots Bf abiescompared to roots df. sylvaticain pure stands is also present
in mixed stands. Note that although the estimates of thedotien parameters are close, the regions of
attraction are not the same for the two species. The inieradistances were determined by means of
the univariate pair correlation function and were fixed fue estimation of the other model parameters.
A more profound discussion of the structural differencesvben the root distributions in pure and mixed
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stands, respectively, could be done if the univariate inbg@meous saturation point process would also be
fitted to the root profile walls in pure stands, which is subjeduture work.

Roots react to nutrient-enriched soil patches by enhanwediy and greater biomass in the areas, where
the roots are clustered. Hodge (2004; 2006) and Kazda andi8€¢R008) discuss different reasons for the
clustering of tree roots, which can be seen as an indicafiertensive intraspecific competition. Indeed,
Schmid and Kazda (2001) found about 25% higher growth rabeeth coarse roots-(5 mm) compared
to spruce in mixed stands. The small roots investigatedignstiudy were described with regard to water
and nutrient uptake (Lindenmair et al., 2001) and they ntedathe most active fine roots. Thus, clusters
of small roots reflect the presence of nutrient patches oezoffi better water availability (Hodge, 2004;
Parker and van Lear, 1996).

Schmid and Kazda (2005) found that the number of small rawdstlaeir clustering were independent
of the distance to and the diameter of the surrounding tfRest clustering is seen as a rule in natural soils
for optimized exploitation of aggregated resources (KaauhSchmid, 2008) but the interaction between
roots of different species within such clusters was so f&nomwn. The present work suggests that there
is no statistically significant interaction of roots Bf abiesandF. sylvaticawith respect to their spatial
distribution. The approach introduced in this paper ofeepossibility to deal with such intraspecific and
interspecific interactions.
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