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In the present paper, electrolyte filling processes were studied by means of the lattice

Boltzmann method (LBM) with regard to the influence of structural and physico-chemical

properties as well as the process time tP. In particular, the influencing factors were the

particle size distribution RPS, the volume fraction φA, and the wettability θA of the ac-

tive material as well as the the inner volume fraction φ′B and the wettability θB of the

binder. Results were reported as pressure-saturation relationship, final degree of satura-

tion, detailed analysis of the gas entrapment, and permeability. The numerical values of

the results as well as complementary information are given in the following.

The Supporting Information is organized as follows. In Section SI-1 the general LBM

and the multi-component Shan-Chen pseudopotential method (MCSC) are briefly de-

scribed. A verification of the combined MCSC and grayscale (GS) model is given in

Section SI-2. The uncertainty estimation of the pressure-saturation curves is described

in Section SI-3. The numerical values of the results presented in the present paper are

summarized in Section SI-4. Finally, additional plots of the size distributions of gas ag-

glomerates for all simulations from the present paper are shown in Section SI-5.

∗Corresponding author:
Email address: Martin.Lautenschlaeger@dlr.de (Martin P. Lautenschlaeger)

Preprint submitted to Energy Storage Materials October 25, 2021



SI-1. LBM

SI-1.1. General introduction

The book The Lattice Boltzmann Method [1] introduces LBM in very detail. It is also

helpful to get a comprehensive overview over the method and its applications. In the

following, only a condensed overview of the lattice Boltzmann models that are relevant

for the present paper is given.

The general LBM for single-phase fluid flow solves the discretized Boltzmann equation

∂fi (x, t)

∂t
+ ci∇fi (x, t) = Ωi (x, t) , (SI.1)

where f are the distribution functions, Ω is a general collision operator, and x and t

denote the position of the lattice cell and the time, respectively. As already described

in the main text and the appendix of the present paper, Eq. (SI.1) is discretized on a

regular and cubic 3D lattice using the D3Q19 velocity set. The directions of the velocity

set are denoted as i. They correspond to the directions along which information from

the distribution functions f is transferred. They are directly connected to the predefined

lattice velocity ci, i.e. the microscopic speed of transport during a single time step ∆t.

The collision operator Ω describes the physics of the problem via particle collisions which

lead to modifications and a redistribution of f . The simplest and most commonly used

functional form of Ω is from Bhatnagar, Gross, and Krook (BGK) [2]

Ωi = −1

τ̃
(fi − f eq

i ) . (SI.2)

The combination of Eqs. (SI.1) & (SI.2) is referred to as the lattice BGK (LBGK)

equation. It describes the relaxation of f towards the Maxwell–Boltzmann equilibrium

distribution function f eq (cf. appendix of the present paper). The characteristic relaxation

time is denoted by τ̃ .

By solving Eq. (SI.1), different relevant macroscopic properties can be determined

locally as moments of f . Examples are given in the appendix of the present paper.

In addition, it is also important to model interaction between the fluid and the solid

wall since fluid flow through porous electrode structures is studied in the present paper.

The simplest and most popular approach for such a no-slip boundary condition is the
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bounce-back method [3, 4]. Using this method, distribution functions that approach the

wall are reflected back to the lattice cell from which they originated. There are different

types of bounce-back schemes reported in the LBM literature, where the so-called halfway

bounce-back scheme is applied here [1]. This frequently used approach is defined as

fi(x, t) = fī(x, t+ ∆t), (SI.3)

where ī denotes the direction opposite to i, i.e. cī = −ci.

SI-1.2. Multi-Component Shan-Chen Pseudopotential Method

The MCSC [5] can be applied to study multi-phase fluid flows. It is based on a bottom-

up modeling approach [4, 6] in which molecular interaction forces are determined from the

pseudopotential ψ = f(ρ). In the following, the model is described for two immiscible

components and the pseudopotential ψ = ρ, which is a typical choice in the literature

[7–12].

In the MCSC, each lattice cell is occupied by all immiscible components. The temporal

evolution of fσ is described by the lattice Boltzmann (LB) equation (cf. Eq. (SI.1)) with

the BGK collision operator (cf. Eq. (SI.2)). Using the Shan-Chen forcing approach, one

obtains

fσi (x + ci∆t, t+ ∆t)− fσi (x, t) = −∆t

τ̃σ
(fσi (x, t)− f eq,σ

i (x, t)) , (SI.4)

where σ denotes the component, i.e. electrolyte or gas phase.

In addition, the interfacial tension between the components σ and σ̄ is modeled as a

fluid-fluid interaction force F σ
inter. The wettability or adhesion at a solid wall is modeled

as a solid-fluid interaction force F σ
ads. The external force fields F σ

ext can be considered

in the simulations, where the definition of all three forces is given in the main text. The

sum of the aforementioned force contributions determines the total force F σ
tot = F σ

inter +

F σ
ads + F σ

ext acting on a lattice cell. Using the Shan-Chen forcing approach [1], F σ
tot is

finally incorporated into MCSC as a force-induced contribution to the equilibrium velocity

of each component. More precisely, it holds

ueq,σ =

∑
σ ρ

σuσ/τ̃σ∑
σ ρ

σ/τ̃σ
+
τ̃σF σ

tot

ρσ
. (SI.5)
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The equilibrium velocity ueq,σ must not be confused with the macroscopic streaming

velocity of the mixture. The latter has also to be force-corrected and is given by

umacro =
∑
σ

(∑
i

fσi ci
ρσ

+
F σ

tot∆t

2ρσ

)
. (SI.6)

SI-2. Verification of Model Parameters

The LB model that was applied for the current study is described in Section 2.1 in the

present paper. Compared to the model proposed by Pereira [11, 13, 14] it contains some

adaptions and uses a different forcing scheme. Therefore, potential effects of the model

changes on the physical behavior of the model were tested. Verifications with respect to

the interfacial tension and the wetting behavior were conducted. They are described in

the following.

SI-2.1. Interfacial Tension

Fluid flow through a homogenized binder region should not affect the interfacial tension

between the electrolyte and the gas phase. Thus, it has to be ensured that setting the

same value for GEG
inter in all lattice cells of the system does not lead to different interfacial

tensions.

Therefore, a series of bubble tests was conducted from which the Laplace pressure was

determined. The simulation setup is shown in Figure SI-1 and consists of a fully periodic

2D system with a size of 100 cells along the x- and y-direction. The system contains a

gas bubble with the density ρG which is surrounded by electrolyte with the density ρE.

Both components have equal masses. The model parameters were similar to those given in

Table 1 in the present paper. Here, in each cell, the homogenized model, i.e. the combined

MCSC and GS method, was applied. The values of the solid-fluid interaction parameter

Gads = GG
ads = −GE

ads and the solid fraction ns were were identical in each cell. They were

varied between the simulations.

A simulation run consisted of 500,000 time steps in which the pressure difference be-

tween the gas bubble and the electrolyte ∆p = pG−pE as well as the bubble radius R were

determined every 10,000 time steps. Therefrom, the interfacial tension γ was determined

using Laplace’s law γ = ∆pR.
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Figure SI-1: Simulation setup for evaluating the influence of the homogenized model on the interfacial

tension. A gas bubble (red) with radius R is submersed in an electrolyte phase (blue) of equal mass. The

pressures of both the gas phase pG and the electrolyte pE are determined at the locations indicated by

the white boxes.

The results are given in Table SI-1. It can be shown that there is no influence of Gads

and hardly any impact of ns on γ. The values of γ are in good agreement with the value

of γ used in this study (cf. Table 1 in the present paper). Therefrom, it is concluded that

the model adaptions for homogenized components, i.e. ns 6= 0, do not lead to different

interfacial tensions compared to the pure MCSC (cf. [8]). Another advantage of the present

model is that the scaling of the interfacial force parameter Ginter also ensures a stable and

non-diverging interface (cf. Figure SI-1).

SI-2.2. Wetting Behavior

The inner volume fraction of the binder φ′B = ns should not affect the contact angle

θ between the binder and the electrolyte or the gas, respectively. Thus, it has to be

ensured that the choice of the solid-fluid interaction parameter Gads = GG
ads = −GE

ads

which determines θ, is independent of ns.

Typically, the correlation between the solid-fluid interaction force Gads and the contact

angle θ is determined via contact angle measurements on solid surfaces. This is not

possible when using solids with inner porosity, where the fluid is either fully repelled or
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Table SI-1: Results of the surface tensions γ determined from the bubble test simulations. The parameter

ns is the solid fraction of the homogenized lattice cell, Gads is the solid-fluid interaction parameter, R is

the bubble radius, and ∆p is the Laplace pressure.

ns Gads R (m) ∆p (Pa) γ (N/m)

0.0 0.0 1.487E-05 2782.64 0.04137

0.4 0.0 1.487E-05 2847.24 0.04234

0.4 0.2 1.487E-05 2847.24 0.04234

0.4 0.4 1.487E-05 2847.24 0.04234

0.5 0.0 1.488E-05 2842.64 0.04230

0.5 0.2 1.488E-05 2842.64 0.04230

0.5 0.4 1.488E-05 2842.64 0.04230

0.6 0.0 1.488E-05 2838.23 0.04222

0.6 0.2 1.488E-05 2838.23 0.04222

0.6 0.4 1.488E-05 2838.23 0.04222

0.9 0.0 1.488E-05 2804.23 0.04174

fully absorbed into the solid. Therefore, the effect of the homogenized model on the contact

angle was studied using an approach similar to the Washburn experiment [15]. A tube or

channel is filled in equal parts with electrolyte and gas, where the electrolyte is absorbed

into the channel by attractive solid-fluid interaction forces. The speed of the absorption,

i.e. the velocity of the advancing electrolyte-gas interface vx = dx/dt correlates with Gads.

This correlation can be derived from Hagen-Poiseuille’s law for a capillary with radius

Rpore and the capillary pressure ∆p = 2γ cos(θ)/Rpore:

dV

dt
=

dx(πR2
pore)

dt
=
πR4

pore∆p

8ηL

vx =
dx

dt
=
Rporeγ cos(θ)

4ηL
.

(SI.7)

Here, dV/dt is the volumetric flow rate, η is the dynamic viscosity of the electrolyte, and

L is the length of the capillary.

The simulation setup consists of a 2D system with a size of L = 500 cells along the

x- and H = 5 cells along the y-direction. Each cell was handled the same way as the
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binder in the present paper, i.e. the homogenized model was applied. A constant density

was prescribed at boundaries in x-direction, whereas periodic boundary conditions were

applied in y-direction. The left and the right half of the system were initialized with an

electrolyte with density ρE and a gas phase with density ρG, respectively. Both components

had equal masses. No pressure gradient or other external force field was applied. The

model parameters were similar to those given in Table 1 in the present paper.

A simulation run consisted of 1,500,000 time steps. Due to the attractive adhesive

forces on the electrolyte, the interface started moving along the +x-direction, i.e. elec-

trolyte displacing gas. The interface velocity v was determined every 10,000 time steps.

The solid fraction ns was varied in the range ns = [0.3, 0.7]. This range includes

the values of ns that were chosen in the present paper. For each value of ns, a broad

range of values for Gads = GG
ads = −GE

ads was considered and the velocity of the advancing

electrolyte-gas interface v was recorded. The contact angle θ was then determined by

inserting v into Eq. (SI.7). The corresponding results of θ are given in Table SI-2. They

indicate that the contact angle mainly depends on Gads and is hardly affected by ns.

However, ns correlates with the capillary radius Rpore in the range between R = 132 nm

and R = 290nm which agrees with experimental values from the literature [16].

Table SI-2: Results of the contact angle θ determined from the capillary simulations. The parameter ns is

the solid fraction of the homogenized lattice cell, Rpore is the capillary radius, and Gads is the solid-fluid

interaction parameter.

ns Rpore (nm) Gads = 0.05 0.10 0.15 0.175 0.20 0.25 0.30 0.32

0.3 290 θ (°) = 81.96 73.36 64.28 63.66 54.41 45.05 29.14 19.57

0.4 248 81.75 73.12 64.18 59.49 54.48 42.85 29.04 22.15

0.5 220 82.06 73.80 65.17 60.64 55.68 44.32 29.27 20.39

0.6 180 82.11 73.96 65.37 60.80 55.92 44.79 29.80 20.97

0.7 132 82.11 73.96 65.37 60.80 55.92 44.79 29.80 20.97

The values of Gads that were chosen for this study were taken from Table SI-2. In

particular, we used Gads = {0.3, 0.175, 0.0, −0.175} for the corresponding binder contact

angles θB = {30, 60, 90, 120}°.
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SI-3. Uncertainty Estimation for Pressure-Saturation Behavior

Filling simulations were conducted for five different, statistically equivalent electrode

realizations which had the same macroscopic electrode properties. All electrode real-

izations correspond to a medium particle size distribution RPS = medium, the volume

fraction of the active material φA = 0.6, wettability θA = 90°, and no binder content.

Separate pressure-saturation curves were determined from each simulation and an average

pressure-saturation curve was derived.

The corresponding results of both the separate and the average pressure-saturation

curves are shown in Figure SI-2. They are depicted as blue and black solid lines, respec-

tively. The red shaded area shows the confidence band that arises from adding and sub-

tracting the point-wise standard deviation from the average pressure-saturation curve. The

results of the different electrode realizations are in good agreement. The mean standard

deviation of the average curve is 3.74 kPa over the full range of values, i.e. SE = [4, 90] %,

including the steep sides, where small shifts in saturation lead to large deviations. For

the reduced range, i.e. SE = [10, 80] %, where the steep sides are excluded, the mean

standard deviation is 2.62 kPa. The average value of the final degree of saturation is

SE
final = SE(tend) = 90.5 %. The corresponding mean standard deviation is 0.75%.

In addition, by relating each discrete value p(SE
i ) with i ∈ {1, ...,Data} to the corre-

sponding value of the average pressure-saturation curve, i.e.
〈
∆p(SE

i )
〉
, also the bias

bias =
1

NData

NData∑
i=1

(
1− ∆p(SE

i )

〈∆p(SE
i )〉

)
, (SI.8)

the average absolute deviation (AAD)

AAD =
1

NData

NData∑
i=1

∣∣∣∣1− ∆p(SE
i )

〈∆p(SE
i )〉

∣∣∣∣ , (SI.9)

and the maximum deviation (∆max)

∆max = max
i=1,...,NData

(∣∣∣∣1− ∆p(SE
i )

〈∆p(SE
i )〉

∣∣∣∣) (SI.10)

were determined. The values are given in Table SI-3.

Regarding Table SI-3 the AADs of all samples show a good agreement with the average

pressure-saturation curve. The best agreement was observed for the electrode realization 4.
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Figure SI-2: Comparison of pressure-saturation curves determined from filling simulations of five different

electrode realizations with similar macroscopic electrode properties (RPS = medium, φA = 0.6, θA = 90°,

no binder content). The corresponding results are shown by the blue lines. The average pressure-saturation

curve is shown by the black solid line. The red shaded area shows the confidence band. For a better

overview, the section of the figure which is indicated by the dashed gray frame is enlarged and shown at

the top.
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Table SI-3: Determination of the numerical uncertainty of pressure-saturation curves. Results for five

different structural realizations with the same macroscopic electrode parameters were compared. The

statistical evaluation is given by the AAD, bias, and maximum deviation. Two sets of comparisons are

shown. One spanning the full range of data points, i.e. SE = [4, 90] %, and another spanning a reduced

range, i.e. SE = [10, 80] %. The mean standard deviations for the full and the reduced range are 3.74 kPa

and 2.62 kPa, respectively.

data range NData bias (%) AAD (%) ∆max (%)

realization 1 SE = [4, 90] % 104 -0.75 3.89 23.35

SE = [10, 80] % 76 -1.86 3.11 12.29

realization 2 SE = [4, 90] % 104 -3.01 5.99 52.18

SE = [10, 80] % 76 -4.37 4.64 8.68

realization 3 SE = [4, 90] % 105 3.82 4.55 26.69

SE = [10, 80] % 76 4.29 4.49 10.25

realization 4 SE = [4, 90] % 105 -1.74 3.12 39.70

SE = [10, 80] % 76 -1.27 1.70 7.39

realization 5 SE = [4, 90] % 105 1.64 6.09 87.88

SE = [10, 80] % 76 3.21 3.74 9.34

It was therefore used as a reference and is denoted as default simulation or ID 1 in the

present paper.

SI-4. Numerical Simulation Results from the Present Study

The numerical results of the pressure-saturation simulations are summarized in File 1.

In addition, the data of the permeabilities kE
y and kG

y , the tortuosities τ0 and τend, as well

as the electrochemically active surface area AA,act are given in File 2. All data are provided

as .xls-files and are attached to the Supporting Information.

File 1: Data set of the pressure-saturation relationships from the present work. Results are sorted by

their simulation ID. Beside the simulation time t also the electrolyte saturation SE(t) and the pressure

∆p(t) is given. The data are shown in the Figures 2, 3, and 4 in the main paper.

see PressureSaturation.xls
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File 2: Data set of the of the electrolyte and gas permeabilities kEy and kGy as well as their standard

deviations. In addition, the data of the geodesic tortuosities τ0 and τend as well as the electrochemically

active surface area AA,act are given. The data are shown in Figures 8, 9, and 10 in the main paper.

see Permeability_Tortuosity_ActiveArea.xls

SI-5. Gas Entrapment

In Section 5.3 of the present paper the gas entrapment at the end of the filling process

is discussed. However, the corresponding size distributions of the gas agglomerates are

only exemplarily shown for the reference cases ID 1 and ID 9. In Figures SI-3 and SI-4

they are shown for all simulations, i.e. ID 1−16. The results are given as the ratio of the

cumulated gas volume V G to the total pore volume V E+G. They are plotted as a function

of the equivalent gas bubble radius RG
eq.

11



0 5 1 0 1 5 2 0 2 5 3 00

5

1 0

1 5

2 0

2 5

0 5 1 0 1 5 2 0 2 5 3 00

5

1 0

1 5

2 0

2 5

0 5 1 0 1 5 2 0 2 5 3 00

5

1 0

1 5

2 0

2 5

0 5 1 0 1 5 2 0 2 5 3 00

5

1 0

1 5

2 0

2 5

 I D  1  ( R P S  m e d i u m )
 I D  2  ( R P S  s m a l l )
 I D  3  ( R P S  l a r g e )

VG  / V
E+

G  [%
]

R G e q  [ l u ]

a )  I D  1  ( φA  =  0 . 6 )
 I D  4  ( φA  =  0 . 7 )
 I D  5  ( φA  =  0 . 5 )

VG  / V
E+

G  [%
]

R G e q  [ l u ]

b )

 I D  1  ( θ A  =  9 0 ° )
 I D  6  ( θ A  =  6 0 ° )
 I D  7  ( θ A  =  8 0 ° )
 I D  8  ( θ A  =  1 0 0 ° )

VG  / V
E+

G  [%
]

R G e q  [ l u ]

c )  I D    1  ( t P  m e d i u m )
 I D  1 5  ( t P  s l o w )
 I D  1 6  ( t P  f a s t )

VG  / V
E+

G  [%
]

R G e q  [ l u ]

d )

Figure SI-3: Relation between the cumulated gas volume V G divided by the total pore volume V E+G

and the equivalent gas bubble radius RG
eq. Results are shown for the IDs 1−8 and 15−16. The default

simulation, i.e. ID 1, is depicted with the blue solid line. The influencing factors are indicated by the

colors. Those are a) the particle size distribution RPS (turquoise), b) the volume fraction of the active

material φA (green), c) the wettability θA (orange), and d) the process time tP (black).
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Figure SI-4: Relation between the cumulated gas volume V G divided by the total pore volume V E+G and

the equivalent gas bubble radius RG
eq. Results are shown for the IDs 9−14. The default simulation with

binder, i.e. ID 9, is depicted with the purple solid line. The influencing factors are indicated by the colors.

Those are a) the inner volume fraction of the binder φ′B (magenta), and b) the wettability θB (red).
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