Supplementary Material

3D analysis of equally X-ray attenuating mineralogical phases utilizing a correlative tomographic workflow across multiple length scales

Silvan Englisch¹, Ralf Ditscherlein², Tom Kirstein³, Leonard Hansen⁴, Orkun Furat³, Dominik Drobek¹, Thomas Leißner², Benjamin Apeleo Zubiri^{1,*}, Alfred P. Weber⁴, Volker Schmidt³, Urs A. Peuker², and Erdmann Spiecker^{1,*}

¹Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
²Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
³Institute of Stochastics, Ulm University, 89069 Ulm, Germany
⁴Institute of Particle Technology, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
*corresponding authors: erdmann.spiecker@fau.de, benjamin.apeleo.zubiri@fau.de

Figure S1: Cumulative distribution function of particle sizes for saxolite from manufacturer measured by laser diffraction.

Figure S2: Cumulative distribution function of particle sizes for talcum (incl. dolomite and magnesite) from manufacturer measured by sedimentation analysis.

D 11 O1	D '.'	c	1 1	• • • 1	1	•		/ 3
Table SL.	Densities	OT.	both	original	nowders	1n	a	m^{o}
10010 01.	DOIDI0100	O1	00011	originar	pomaoin	111	97	110

Saxolite	Talcum
2.75	2.8

Appendix B: Tomographic Measurements

Table S2: Measurement and reconstruction parameters of all 3 resolution modes - low-resolution (low-res), medium-resolution (med-res) and high-resolution (high-res); (*) not applicable for monochromatic measurements.

parameter	micro-CT low resolution	micro-CT <i>medium resolution</i>	nano-CT high resolution
sample size diameter / mm	1.6	0.5	0.060
field of view (FOV) / mm	1.5	0.3	0.065
acceleration voltage / keV	80	80	5.4
electrical power / W	7	7	900
target material $/-$	tungsten	tungsten	chromium
source filter (Zeiss standard)	LE4	LE4	*
exposure time / s	2	25	70
optical magnification / x	4	40	*
number of projections	3201	3201	901
angle range / °	360	360	180
voxel size / µm	1.5	0.3	0.064
binning	2	2	1
reconstruction algorithm	FBP	FBP	SIRT
smoothing $(Gau\beta)$	0.1	0.1	_
beam hardening correction	0.05	0.05	*

Appendix C: Laser-ablated Sample

Figure S3: Laser-ablated Micro-CT sample to fit the field of view of Nano-CT.

Appendix D: 3D Segmentation

Figure S4: (a) Phase-related segmentation workflow visualized in 3D for the complete Nano-CT volume (stitched volume of three single, adjacent Nano-CT volumes). Phase-discrete segmentation side by side with gray-scale image. (b) Indicated positions of the single Nano-CT volumes in the stitched Nano-CT volume and slice positions of the acquired EDXS maps.

Appendix E: Phase-wise and Particle-wise Segmentation

Figure S5: U-net architecture.

Figure S6: Results of phase-discrete and particle-discrete segmentation algorithms applied to the Nano-CT reconstructions, visualized for an exemplary colorized slice.

Appendix F: Further Grain over Particle Volume Maps

Figure S7: Grain over particle volume map targeting magnesite (green), dolomite (yellow) and talcum (blue). The colored curves illustrate the mean grain volume for a given particle volume, whereas the gray shadowing indicates the corresponding error bars.