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Objectives and work packages

The goal of the priority program ”MehrDimPart” (SPP 2045) is to develop new separation processes
for systems of particles with sizes below 10 µm. For that purpose the central project Z2 deals with the
characterization of particle systems using multivariate distributions of particle descriptors (Objective
1), which we typically determine from tomographic image data, see Figures 1 (left) and 2 (bottom row).

Figure 1: Objectives of the central project Z2. Left: Multidimensional characterization of parti-
cle systems. For example, using the bivariate distribution of the volume-equivalent diameter and the
sphericity of a particle system. Middle: Assessment of the separation success. In the depicted example
the bivariate probability distribution of a Cu/SiO2 particle mixture is shown. By comparing such dis-
tributions before and after separation, we can compute quantities for assessing the separation success
of the desired fraction. Right: Optimization of process parameters. If the dependency between process
parameters and separation behaviour is known, process parameters can be optimized with respect to
quantities which assess the separation success (e.g., purity and yield) [6].

In the first funding period of the SPP 2045 the central project Z2 developed segmentation proce-
dures for reliably extracting individual particles from tomographic image data, followed by the stochastic
modeling of their particle descriptors using multivariate probability distributions [1, 2, 4, 5]. The char-
acterization with probability distributions reduces the complexity of large data sets to a few model
parameters. In the second funding period of the SPP 2045 the developed methods will be applied to
tomographic image data of particle systems measured before and after separation, which will enable the
assessment of the separation success (Objective 2), see Figure 1 (middle). Furthermore, by comparing
multivariate distributions of particle descriptors of the feed material and the product, we will analyse
microstructural effects on the quality of separation processes. For example, we will compute multivariate

1



partition functions which are generalizations of the commonly investigated univariate partition/Tromp
curves. Once the influence of process parameters on the separation success is quantified, e.g., by map-
ping process parameters on the separation process’ partition function, we can compute optimal process
parameters (Objective 3), see Figure 1 (right) [6].
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Figure 2: Workflow for modeling the multivariate distribution of particle descriptors. First,
tomographic image data is segmented using image processing and methods from machine learning.
Then, individual particles and their vectors of particle descriptors are extracted. For modeling the
multivariate distribution of vectors of particle descriptors, we first fit the marginal distributions. Then,
by fitting a so-called copula, the multivariate distribution is obtained [1, 4, 5].

The work packages of the central project Z2 are structured as follows:

• Analysis of methods for quantitative evaluation of the separation success
This includes the characterization (Objective 1) of particle systems and the evaluation of results
(Objective 2) achieved by separation experiments performed by project partners within SPP2045.

• Computation of multivariate distributions of particle descriptors from 1D measure-
ments
This enables us to leverage univariate measurement techniques, which are available in many lab-
oratories, for deriving multivariate distributions of particle descriptors (Objective 1).

• Data-driven calibration of stochastic 3D particle models
Using segmented tomographic image data, we will derive stochastic 3D particle models which can
generate virtual but realistic particles (Objective 1).

• Generation of virtual particle systems for the analysis of separation processes
The particle systems generated by the stochastic particle models will be used for numerical sim-
ulations performed by project partners, for investigating the influence of microstructural effects
on the separation results (Objectives 2 and 3).
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• Stereological calibration of 3D particle models using 2D data
The particle systems generated by the stochastic particle models will be used for calibrating a
stereological predictor which can characterize properties of a particle system from 2D image data,
like for example, scanning electron microscopy data (Objective 1).

Methods

For the analysis of a system of particles from tomographic image data a particle-wise segmentation
is necessary, see Figure 2 (top row). To achieve this, we deploy both conventional image processing
algorithms (e.g., watershed transform) and methods from machine learning (e.g., convolutional neural
networks such as the U-net), such that it is possible to extract each particle for further analysis [2, 5].
Then, the segmented particle system can be efficiently characterized, e.g., using multivariate probability
distributions (see Figure 2, bottom row, and Figure 3) as well as stochastic 3D particle models, see
Figure 4. In particular, the following characterization and modeling techniques are considered.

Multivariate characterization of size-shape descriptors. Due to the segmentation of tomo-
graphic image data it is possible to determine a vector of descriptors like volume, surface area, sphericity,
convexity and elongation for each particle, which describe its size and shape. By doing so, for the entirety
of the particle system one receives a large sample of such vectors which makes it possible to determine
a multidimensional probability distribution of descriptors for the system of particles. Parametric copula
distributions are a viable option for modeling such distributions, since they can incorporate correlations
and dependencies between descriptors [4]. In Figure 2 (bottom row), a copula with five parameters is
used two describe the multidimensional distribution of such vectors of descriptors.
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Figure 3: Reconstruction of bivariate probability densities from univariate measurements.
Top: Bivariate probability density of length and diameter distribution of gold nanorods with hemi-
spherical endcaps (left). Univariate probability densities of mass and sedimentation coefficient can be
measured by an aerosol particle mass analyzer and by multiwavelength analytical ultracentrifugation,
respectively (right). Bottom: Reconstructions of the bivariate probability density using univariate mea-
surements [3].

Alternatively, if no tomographic image data is available, multivariate probability densities of particle
descriptors can still be reconstructed from measured univariate probability densities. For example,
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Figure 3 depicts the reconstruction results for the bivariate probability density of length and diameter
of gold nanorods from univariate distributions of their mass and sedimentation coefficient [3].

Stochastic 3D particle models. Instead of modeling the distribution of descriptors which are ag-
gregated quantities for the characterization of particles, we can perform a more holistic characterization
by fitting stochastic geometry models to particles observed in tomographic image data [7]. More pre-
cisely, from a fitted stochastic 3D particle model, we can generate arbitrarily many virtual particles
which are statistically similar to the corresponding particle system to which it was calibrated to, see
Figure 4. Since the developed methods are scale-invariant, they can be applied on tomographic 3D im-
age data of a wide variety of particle systems. There is also a wide range of stochastic geometry models
for the generation of virtual particles [7]. By utilizing the spherical harmonics representation of particle
surfaces, stochastic geometry models can be defined that can generate star-shaped (a generalization of
convexity) particles, see Figure 4 (bottom row). For the generation of faceted particles or the inner grain
architecture of polycrystalline particles, random mosaics (tessellations) are viable stochastic geometry
models, see Figure 4 (top row).

Figure 4: Modeling the outer shape and grain architecture of cathode particles. The grain
architecture of a particle was imaged by combining a focused ion beam with electron backscatter
diffraction. A stochastic grain architecture model was fitted using random Laguerre tessellations. Nano-
computed tomography was used to calibrate a stochastic model for the outer shell of particles. By
combining both the grain architecture and the outer shell model we obtain a multi-scale model from
which numerous particles can be generated [7].

Generating virtual particle systems. Since parametric models are considered, such a stochastic 3D
particle model is described by just a few parameters which in turn fully characterize the corresponding
measured particle system. Moreover, by systematic variation of model parameters further virtual particle
systems can be generated which deviate statistically from measurements. These particles will be used for
numerical simulations performed by project partners, for investigating the influence of microstructural
effects on the separation results. Moreover, a stereological predictor will be calibrated to the generated
particles such that the parameters of the corresponding stochastic geometry model can be determined
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from 2D images, like for example, scanning electon microscopy data. Thus, a stereological predictor
serves as yet another tool for an in-depth characterization of particle systems.
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