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Abstract

The 3D nano/microstructure of materials can significantly influence their macroscopic properties. In order to
enable a better understanding of such structure-property relationships, 3D microscopy techniques can be deployed,
which are however often expensive in both time and costs. Often 2D imaging techniques are more accessible, yet
they have the disadvantage that the 3D nano/microstructure of materials cannot be directly retrieved from such
measurements. The motivation of this work is to overcome the issues of characterizing 3D structures from 2D
measurements for hetero-aggregate materials. For this purpose, a method is presented that relies on machine
learning combined with methods of spatial stochastic modeling for characterizing the 3D nano/microstructure of
materials from 2D data. More precisely, a stochastic model is utilized for the generation of synthetic training
data. This kind of training data has the advantage that time-consuming experiments for the synthesis of differently
structured materials followed by their 3D imaging can be avoided. More precisely, a parametric stochastic 3D
model is presented, from which a wide spectrum of virtual hetero-aggregates can be generated. Additionally, the
virtual structures are passed to a physics-based simulation tool in order to generate virtual scanning transmission
electron microscopy (STEM) images. The preset parameters of the 3D model together with the simulated STEM
images serve as a database for the training of convolutional neural networks, which can be used to determine
the parameters of the underlying 3D model and, consequently, to predict 3D structures of hetero-aggregates from
2D STEM images. Furthermore, an error analysis is performed with respect to structural descriptors, e.g., the
hetero-coordination number. The proposed method is applied to image data of TiO2-WO3 hetero-aggregates,
which are highly relevant in photocatalysis processes. However, the proposed method can be transferred to other
types of aggregates and to different 2D microscopy techniques. Consequently, the method is relevant for industrial
or laboratory setups in which product quality is to be quantified by means of inexpensive 2D image acquisition.

Keywords: synthetic HAADF-STEM, nanoparticle aggregate, hetero-aggregate, convolutional neural network,
stereological characterization, stochastic 3D model, statistical image analysis



1 Introduction

The properties of many functional materials depend to a large extent on their structure and chemical composition.
Hence, measuring both is mandatory in order to understand and improve their effective properties. An important
class of materials are hetero-aggregates, which are compositions of at least two dissimilar classes of primary particles,
called, for the sake of simplicity, particles from now on. Properties of hetero-aggregates can be quite different in
comparison to aggregates that consist of monodisperse particles. A prominent example in applications concerned
with photocatalysis are hetero-aggregates made of titanium dioxide (TiO2) and tungsten trioxide (WO3) [1, 2, 3].
The combination of both materials leads to aggregates with hetero-junctions, i.e., points at which two particles
made from different materials touch. At such junctions, photogenerated electron-hole pairs are spatially separated,
hindering their direct recombination, which results in a higher photocatalytic activity compared to pure TiO2 [4].

In order to accurately investigate the properties of hetero-aggregates with imaging techniques, it is essential to
resolve the individual particles within the structure. A suitable tool for the characterization of hetero-aggregates,
consisting of particles with radii of a few nanometers, is (scanning) transmission electron microscopy, (S)TEM.
With a spatial resolution in the sub-nanometer regime, even the atomic structure can be investigated. However, in
conventional STEM only two-dimensional (2D) projection images of the aggregates can be acquired while information
about the third dimension is lost. This problem can be overcome using STEM tomography, where the sample is
tilted with respect to the electron beam such that a series of projection images under various projection angles is
acquired, see [5]. From this series of STEM projection images, the three-dimensional structure can be reconstructed,
e.g., with iterative reconstruction techniques [6]. The major disadvantage of STEM tomography is the fact that
acquisition of a single tilt series can take several hours, and thus, this method does hardly allow for the investigation
of a large number of aggregates. Furthermore, many samples do not allow for such a long measurement as hetero-
aggregates and nanoparticles can change their structure and arrangement during extensive exposure to the electron
beam, hindering the reconstruction.

As opposed to STEM tomography, 2D STEM images can be acquired within a few seconds, allowing for the
acquisition of several images of various aggregates in a reasonable amount of time. For this reason, it is desirable to
use 2D STEM images in order to characterize the 3D morphology of aggregates, such as their hetero-contacts [7] or
their fractal dimension [8]. This can be achieved by training neural networks to predict structural properties of 3D
hetero-aggeregates from 2D STEM images. However, the training of neural networks requires a broad database of
pairs of differently structured hetero-aggregate and corresponding 2D STEM images. The experimental acquisition
of such a database, i.e., the synthesis of differently structured aggregates and their imaging would be expensive in
both time and resources. Alternatively, simulated image data can be used for training purposes, see [9, 10] for a
similar approach.

In the present paper, a stochastic 3D model for the generation of virtual aggregates and a physics-based STEM
model for the simulation of corresponding 2D STEM images is combined in order to provide training data. In
other words, methods of stochastic-geometry [11] are utilized to derive a parametric model for the generation of
a wide spectrum of virtual, but realistic TiO2-WO3 hetero-aggregates. Note that the presented method is not
limited to hetero-aggregates comprised of TiO2 and WO3. Particularly, details on the possibility to transfer the
method to further materials are discussed in Section 5. Additionally, the virtual structures are passed to a physics-
based simulation tool in order to generate virtual scanning transmission electron microscopy (STEM) images. The
preset parameters of the 3D model together with the simulated STEM images serve as a database for the training
of convolutional neural networks, which can be used to predict the parameters of the underlying 3D model and,
consequently, to predict 3D structures of hetero-aggregates from 2D STEM images. In literature, there are already
CNN-based approaches that do not use stochastic-geometry models to generate stochastically equivalent 3D structures
from 2D images [12]. However, the presented approach aims to generate such digital shadows by combining a well-
established parametric stochastic 3D model and a CNN-based approach. In order to use such a parametric stochastic
3D model to generate digital shadows of hetero-aggregates, appropriate values of the model parameters must be
chosen. The focus of the present paper is on this calibration procedure, also called model fitting.
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More specifically, it is investigated how convolutional neural networks (CNNs) [13, 14] can be used to determine
the parameters of the stochastic 3D model and, consequently, to generate digital shadows of 3D aggregates, from 2D
STEM images. CNNs are a type of artificial neural networks commonly used in image analysis and recognition tasks,
see e.g. [15]. They consist of multiple layers of neurons that learn to recognize patterns and features in the input
data through a calibration process, called training. In the literature, several network architectures are noted for
their effectiveness in image analysis tasks, including VGG [16, 17], Inception-v3 [18], and ResNet [19]. In particular,
VGG is recognized for its deep but straightforward and computationally efficient architecture. Inception-v3 is known
for its ability to extract multiscale features through its inception modules. ResNet addresses the vanishing gradient
problem with its innovative use of residual connections [20].

In conventional spatial stochastic modeling of complex 3D morphologies, the process of model fitting typically
involves several steps, see for example [21, 22]. First, image data has to be acquired, preprocessed, and segmented.
Subsequently, an appropriate model type is chosen, and its model parameters are adjusted accordingly using de-
scriptive statistics of the segmented image data. However, the approach considered in the present paper differs from
the classical one. On the one hand, the image data does not have to be segmented, which is advantageous since
image segmentation can be a time-consuming complex task. Moreover, the model parameters are predicted by the
neural networks directly, meaning that the descriptive statistics are not chosen by hand. This allows for the use of
stochastic 3D models with parameters that are not easily predictable from the image data.

In order to evaluate the performance of such a CNN-based approach, structural descriptors of aggregates drawn
from the stochastic 3D model with preset parameter values are compared with structural descriptors of aggregates
drawn from the 3D model with parameter values predicted by the CNN-based approach.

However, the structural similarity of the measured image data of aggregates and image data drawn from the
fitted 3D model strongly depends on two factors, (i) the suitability of the chosen model type for the given data,
and (ii) the ability of the selected CNN approach to determine the parameters of the stochastic 3D model from 2D
STEM image data. More specifically, when analyzing measured image data of experimentally synthesized hetero-
aggregates, there might not be any configuration of model parameters that results in a high-quality fit. In this case,
the dissimilarities between the original image data and its digital shadows, generated by the fitted model, cannot
necessarily be attributed to the fitting procedure, but rather to the inadequate choice of the model type. Thus,
in the present paper, to be able to attribute these dissimilarities to an inadequate CNN approach, including data
preprocessing, model architecture and learning procedure, the same stochastic 3D model is used as both the generator
for the training data and the model to be fitted.

For an adequately designed CNN approach and adequately chosen type of the stochastic 3D model, digital shadows
drawn from the fitted 3D model should be statistically equivalent to experimentally synthesized aggregates in terms of
their 3D structure and chemical composition. Then, these digital shadows can be used as geometry input of (spatially
resolved) numerical modeling and simulation, to determine their functional properties, see e.g. [23, 24]. Notably,
there are recent attempts in literature that aim to reconstruct exact 3D structures from 2D data [25, 26], rather
than statistically equivalent shadows. However, these methods are not able to generate a broad range of statistically
similar 3D structures. In either way, 3D imaging techniques like STEM tomography of the aggregates can be avoided
in order to derive quantitative process-structure or structure-property relationships for hetero-aggregates. Note that,
by means of such relationships, optimized specifications of process parameters can be deduced, which lead to hetero-
aggregates with desired structures and properties. Digital shadows used for structure-property optimization are also
referred to as digital twins. Their implementation will be the subject of a forthcoming study.

In summary, the present work aims to answer the following key research questions: Is it possible to predict the
model parameters exclusively from 2D data, describing the 3D structure of hetero-aggregates? If so, how accurately
can each of these parameters be predicted? Besides model parameters, how accurately can structural descriptors,
e.g., coordination numbers, be predicted by the use of digital shadows?

The present work is organized as follows: In Section 2 the CNN-based approach is described to predict the 3D
structure of hetero-aggregates from 2D STEM images. In particular, the generation of synthetic training data is
explained, which are used for the prediction of model parameters. Then, in Section 3, we present results, which have
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been obtained for various aspects of model parameter prediction. Section 4 compares the methods developed in the
present paper with analysis tools considered in the literature. Section 5 concludes.

2 Methods

This section provides details how the presented CNN-based approach is built for predicting the 3D structure of
hetero-aggregates from 2D STEM images. It comprises two main steps. First, virtual but realistic STEM images
are generated from simulated 3D image data. More specifically, synthetic aggregates are drawn from a stochastic 3D
model with preset model parameters, where the latter describe the aggregation procedure simulated by the model
and therefore influence structural properties of the generated aggregates. These aggregates are then used to generate
corresponding STEM images by means of a physics-based simulation tool, see Figure 1a. Systematically varying the
parameters of the stochastic 3D model provides a wide range of differently structured aggregates and their STEM
images. In a second step, visualized in Figure 1b, the parameters of the stochastic 3D model together with the
simulated STEM images serve as a database for the training of CNNs, in order to learn how to reconstruct the
parameters of the stochastic 3D model from STEM images. For the reconstruction, initially, a CNN extracts features
from STEM images, which characterize the depicted structure of aggregates in an informative but not necessarily
interpretable manner. Then, these features are utilized to predict our interpretable predefined model parameters.
For more details, see Section 2.3. This approach is designed to allow for quick and accurate prediction of model
parameters for real hetero-aggregates from measured STEM images and, consequently, to predict the 3D morphology
of hetero-aggregates from 2D STEM images.

The quality of the predictor is evaluated with respect to the similarity between predefined and predicted model pa-
rameters. Recall that interpretable model parameters describe the aggregation procedure simulated by the stochastic
model. Thus, a good match between predefined and predicted model parameters can already be an indication for a
good structural match between aggregates generated by the model with predefined/predicted parameters. Neverthe-
less, some structural descriptors (i.e., quantities that characterize the structure of aggregates like hetero-coordination
number) may be sensitive with respect to changes in the model parameters.

Therefore, the quality of the predictor is further evaluated by comparing structural descriptors of aggregates drawn
from stochastic 3D models with pre-defined and predicted parameters, respectively, see Figure 1c,d. The structural
descriptors considered in this paper, which are chosen due to their relevance in process engineering, are displayed in
Table 1. They are complementary to the features, utilized in the model parameter prediction. Furthermore, these
descriptors are interpretable and characterize the 3D structure of the aggregates (whereas the features describe the
structure observed in 2D images).

descriptor symbol
average cluster sizes of TiO2 particles STiO2
hetero-coordination number Zhetero
coordination number Ztotal

Table 1: Structural descriptors used for evaluating the model parameter prediction. For formal definitions of the
descriptors, see Section 3.4.

2.1 Generation of synthetic training data

The use of synthetic training data requires careful attention to ensure that the artificially generated data accurately
reflects particularities of experimentally measured data such that a regression model (e.g., a CNN) trained on
synthetic data can be extended to new, real-world data. More precisely, if the generation of realistic data is successful,
a network trained on this data can be used for applications on real-world data, and thus, reducing the amount of
experimentally measured and labeled training data.
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In the present study, synthetic training data was generated through a three-step process. First, virtual hetero-
aggregates were generated using a stochastic 3D model. Then, using a physics-based simulation tool, STEM intensities
were determined based on the material and thickness of the aggregates. Finally, virtual but realistic STEM images
were computed by adding noise and other sources of variability to the previously determined STEM intensities. In
the following, the stochastic 3D model is introduced and then more details about each of the data generation steps
mentioned above is provided.

Figure 1: Workflow of the training and evaluation procedure.
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2.1.1 Stochastic 3D model

In this section, we introduce the stochastic 3D model that will be used to generate a wide spectrum of virtual
hetero-aggregates by varying the values of four different model parameters, denoted by θDf

, θρ, θ0, θ1, where θDf
∈

(1, 3), θρ ∈ (0, 1), and θ0, θ1 ∈ N = {1, 2, . . .}.
These model parameters control the fractal dimension, the mixing ratio, and clustering properties of the hetero-

aggregates, respectively.
Throughout this paper, a spherical particle is defined as a triplet p = (x, r, l) of particle position x ∈ R3, radius

r ∈ R+ = (0,∞) and label l ∈ {0, 1}. Moreover, a hetero-aggregate A, consisting of N particles for some fixed
N ∈ N, is a set of connected and non-overlapping spherical particles, i.e.,

A = {pi = (xi, ri, li) : xi ∈ R3, ri ∈ R+, li ∈ {0, 1}, 1 ≤ i ≤ N}. (1)

In this context, two particles p, p′ ∈ A are said to be connected if for some j ∈ {2, . . . , N} there is a set of indices
{i1, . . . , ij} ⊂ {1, . . . , N} with p = pi1 and p′ = pij , such that

∥xik − xik+1
∥ ≤ 1.01(rik + rik+1

) for all k ∈ {1, . . . , j} , (2)

where ∥y∥ =
√∑3

k=1 y
2
k denotes the Euclidean norm of y = (y1, y2, y3) ∈ R3. The prefactor 1.01 in Eq. (2) represents

the maximum distance of particles that is allowed to consider them to be in contact. It is determined to be 1% of
the sum of their radii. Moreover, two particles p = (x, r, l), p′ = (x′, r′, l′) are said to be overlapping if the distance
of their centers is smaller than the sum of their radii, i.e., ∥x − x′∥ < r + r′. The label l of a particle p = (x, r, l)
determines its material. More precisely, in our case, a particle with label l = 0 consists of WO3, whereas a particle
with label l = 1 consists of TiO2.

The mixing ratio ρ of an aggregate A is defined as its fraction of particles with label l = 0, i.e.,

ρ(A) =
#{pi ∈ A : li = 0}

#A
, (3)

where # denotes cardinality.
Notice the distinction in notation between θρ and ρ since these values are not necessarily equal. More precisely, the

model parameter θρ can be set to an arbitrary value in the interval [0, 1] and it primarily influences the distribution
of the structural descriptor ρ of aggregates generated with θDf

, as explained in more detail later on. Furthermore,
the radius of gyration Rg > 0 of an aggregate A is given by

Rg =

√√√√∑N
i=1 mi · ∥xi − c0∥2∑N

i=1 mi

, with c0 =

∑N
i=1 mixi∑N
i=1 mi

, (4)

where m1, . . . ,mN > 0 denote the particle masses and c0 is the aggregate’s center of mass.
The stochastic 3D model described below is motivated by the idea that hetero-aggregates have a fractal-like

structure [27, 28]. This fractal-like structure of an aggregate A can be quantified by the so-called fractal dimension
Df , given by

Df =
log

(
N
kf

)
log

(
Rg

a

) , (5)

where kf > 0 is a fractal prefactor, which is set to 1.3, and a = 1
N

∑N
i=1 ri is the mean radius of the particles. For

example, aggregates with a fractal dimension Df close to 1 are arranged in a nearly straight line, whereas those with
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a fractal dimension Df close to 3 are composed of densely packed particles. Thus, realistic hetero-aggregates have
values for Df within the interval (1, 3), see e.g. [27, 29, 30, 31, 32].

Note that the hetero-aggregate model presented in this paper is based on cluster-cluster aggregation, which
involves a two-stage process for aggregate formation. In the first stage, primary particles aggregate to form small,
homogeneous primary clusters. These primary clusters then undergo a second aggregation stage, leading to larger
hetero-aggregates.

If an aggregate is homogeneous, i.e., all its particles share the same material, the labels {li}Ni=1 will be neglected,
and therefore the description of the aggregate A can be compressed to

A = {pi = (xi, ri) : xi ∈ R3, ri ∈ R+, 1 ≤ i ≤ N}. (6)

In this case, the primary cluster model is introduced as a random set ΦN = {Pi : 1 ≤ i ≤ N} ⊂ R3 × R+, which
models the geometry of small homogeneous clusters of size N for some fixed N ∈ N, compare [33] for earlier work.
Here, Pi = (Xi, Ri), where Xi is a random vector and Ri is a non-negative random variable describing the position
and radius of a particle, respectively, for each i ∈ {1, . . . , N}.

The random variables R1, . . . , RN are independent and log-normally distributed with parameters µ = 12 nm and
σ = 3 nm. However, the random vectors X1, . . . , XN , which describe the particle positions, are recursively defined
due to the dependency of Xi on X1, . . . , Xi−1 and R1, . . . , Ri for all 1 < i ≤ N . This approach ensures that every
realization of ΦN is a set of connected and non-overlapping particles, with a predetermined fractal dimension Df .
Note that for technical reasons the random vector Xi can take not only values from R3, but also the fictitious value
∞. The latter value is used to model invalid particle positions.

More precisely, X1 = (0, 0, 0) and, under the condition that the values x1, . . . , xi and r1, . . . , ri+1 of X1, . . . , Xi

and R1, . . . , Ri+1 are given for some i ∈ {1, . . . , N − 1}, the random vector Xi+1 is uniformly distributed on some
set L(A, ri+1) ⊂ R3, provided that (∞, r) ̸∈ A for all r ∈ R+ and L(A, ri+1) ̸= ∅, otherwise Xi+1 = ∞. Here,
A = {(x1, r1), . . . , (xi, ri)} and L(A, ri+1) ⊂ R3 is the set of all permissible particle positions x ∈ R3 such that the
set A ∪ {(x, ri+1)} describes a cluster of connected and non-overlapping particles with fractal dimension Df being
equal to some preset value θDf

∈ (1, 3). In other words, L(A, ri+1) is the set of positions where a particle of radius
ri+1 can be added to the cluster A without violating the equation Df = θDf

. If no such position exists, Xi+1 will be
assigned ∞, indicating that the cluster A cannot be extended.

To draw a sample from the random set ΦN = {Pi : 1 ≤ i ≤ N} ⊂ R3 × R+, the procedure described above
is repeated until Xi ̸= ∞ for all i = 1, . . . , N . The primary clusters generated in this way then undergo a second
aggregation stage, leading to larger hetero-aggregates, which consist of N ′ primary clusters for some integer N ′ ∈ N.

More formally, for some sequence of primary cluster sizes N1, . . . , NN ′ , N ′ independent random sets Φ
(1)
N1

, . . . ,Φ
(n)
NN′

are considered as described above. The cluster Φ
(k)
Nk

is assigned a random position Ck in R3 ∪ {∞} for each
k ∈ {1, . . . , N ′}, ensuring that realizations of the resulting hetero-aggregates are union sets of connected and non-

overlapping spheres, which adhere to a preset fractal dimension Df = θDf
. In the following, the cluster Φ

(k)
Nk

, which

has been shifted by a (random) displacement vector Ck is denoted by Φ
(k)
Nk

+ Ck = {(X + Ck, R) : (X,R) ∈ Φ
(k)
Nk

}.

Furthermore, for each k ∈ {1, . . . , N ′}, the cluster Φ
(k)
Nk

+Ck is assigned a (random) label Lk, which can be equal to 0
or 1, determining whether the cluster consists of WO3 or TiO2. The clusters of label 0 have a size of θ0 whereas the
clusters of label 1 have a size of θ1. These cluster sizes θ0, θ1 ∈ {1, . . . , 6} are a further model parameter. The labeled

version of Φ
(k)
Nk

+Ck with the (random) label Lk is denoted by (Φ
(k)
Nk

+Ck)×Lk = {(X +Ck, R, Lk) : (X,R) ∈ Φ
(k)
Nk

}.
Finally, the stochastic 3D model ΨN ′ of hetero-aggregates, which consist of N ′ primary clusters, is given by

ΨN ′ =

N ′⋃
k=1

(Φ
(k)
Nk

+ Ck) × Lk. (7)

Here, the random variables L1, . . . , LN ′ , modeling the labels of the primary clusters, are independent and Bernoulli-

distributed with P(Lk = 1) =
(1−θρ)θ0

(1−θρ)θ0+θρθ1
for each k ∈ {1, . . . , N ′}. Note that the label of a primary cluster does
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not only determine its material but also its size. Specifically, the size Nk of the k-th primary cluster is given by
Nk = θ0+Lk(θ1−θ0) for each k ∈ {1, . . . , N ′}, i.e., a cluster has a size of θ0 if its label is equal to 0, and θ1 otherwise.
For sufficiently large N ′ ∈ N, according to the law of large numbers, these definitions of L1, . . . , LN ′ and N1, . . . , NN ′

ensure that the mixing ratios ρ of hetero-aggregates drawn from the stochastic 3D model ΨN ′ are approximately
equal to the preset value θρ.

The random displacement vectors C1, . . . , CN ′ that describe the positions of primary clusters in the hetero-
aggregate model ΨN ′ are again defined recursively to ensure that the particles of the random hetero-aggregate are
connected and non-overlapping and that the fractal dimension θDf

is maintained. More precisely, C1 is put to (0, 0, 0)

and, given that
⋃i

k=1(Φ
(k)
Nk

+ Ck) = A1 and Φ
(i+1)
Ni

= A2 for some i ∈ {1, . . . , N ′ − 1}, the random vector Ci+1 is

uniformly distributed on some set L̃(A1, A2) ⊂ R3, provided that (∞, r) ̸∈ A1∪A2 for all r ∈ R+ and L̃(A1, A2) ̸= ∅,

otherwise Ci+1 = ∞. In this context, L̃(A1, A2) ⊂ R3 is the set of all cluster positions c ∈ R3 for which the set
A1 ∪ (A2 + c) represents a hetero-aggregate of connected and non-overlapping particles with fractal dimension Df

being equal to the preset value θDf
∈ (1, 3).

The resulting hetero-aggregate model ΨN ′ , which is described by the model parameters θDf
, θρ, θ0, θ1 can now

be used to generate virtual aggregates. These aggregates consist of N ′ primary clusters with a fractal dimension
of θDf

, an expected mixing ratio θρ, and have a label-dependent clustering properties mainly influenced by θ0 and
θ1. Moreover, the model parameters have a multivariate influence on further structural descriptors, e.g. the hetero-
coordination number, see Section 3.4. In theory, this can be achieved by drawing samples from ΨN ′ under the
condition that (∞, r) ̸∈ ΨN ′ for all r ∈ R+. However, due to computational limitations, this procedure can only be
performed in an approximate sense. In the following section, this will be explained in detail.

2.1.2 Generation of virtual hetero-aggregates

The recursively defined models of primary clusters and hetero-aggregates described above can be used to construct
algorithms for drawing samples from these models. More precisely, the simulation starts by selecting an initial
particle (or cluster), to which particles (or clusters) are added sequentially. Each additional particle (or cluster) is

assigned a random radius (or label) and placed at a uniformly sampled random position in L (or L̃), to be added to
the existing cluster (or aggregate). This procedure is iterated until a desired cluster (or aggregate) size is reached.
In the following, the desired size of each aggregate is independent, uniformly selected from the range {20, . . . , 80}.

The sets L, L̃ ⊂ R3 in the stochastic 3D model, from which particle (or cluster) positions are uniformly sampled in
order to generate aggregates with a given fractal dimension, are only implicitly defined. Therefor, uniform sampling
on L and L̃ is computationally expensive.

To enable efficient uniform sampling from both L(A, ri+1) and L̃(A1, A2), the radii of the particles in the sets
A∪ {pi+1} and A1 ∪A2 are temporarily replaced by their respective arithmetic mean. Note that this replacement is

used exclusively when calculating the fractal dimension Df within the definitions of L and L̃. Thus, all permissible
positions for the center of mass of the added particle (or cluster) are located on the surface of a sphere around the
center of mass of the cluster (or aggregate), the radius d of which is given by

d =

√
a2(NA + NC)2

NANC

(
NA + NC

kf

) 2
Df

− (NA + NC)

NC
R2

A − (NA + NC)

NA
R2

C , (8)

where NA and NC denote the number of particles in the aggregate and the cluster to be added, respectively, RA and
RC are their respective radii of gyration, introduced in 4, and a and kf are the quantities used in the definition of Df

given in Eq. (5), see also [32]. Since uniform sampling on the sphere surface can be performed efficiently, by means

of rejection sampling, uniform sampling from the modified sets L or L̃ can be done much faster. This procedure
results in aggregates with fractal dimensions randomly distributed around the target value θDf

. For further details
on the distribution of the fractal dimension Df(A) of an aggregate A generated by this model, see Section 2.2.1. For
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data acquisition the four model parameters θDf
, θρ, θ0, θ1 of the stochastic hetero-aggregate model are systematically

varied, by name, the parameters regarding the fractal dimension θDf
, the intended mixing ratio θρ and the primary

cluster sizes θ0 and θ1 of the two materials. In this manner a broad spectrum of aggregates is obtained, which differ
not only in preset model parameters used for their generation but also in structural descriptors like the ones listed
in Table 1. The fractal dimension of TiO2-WO3 hetero-aggregates, which form by diffusion-limited cluster-cluster-
aggregation, is expected to approach the value of Df = 1.5 for particles with dispersed sizes [30], and Df = 1.78
for monodispersed particles [34]. Furthermore, the fractal dimension is expected to increase, when particles start
to sinter at their contact points [31]. In order to create a large database of differently structured virtual hetero-
aggregates and their corresponding STEM images, the model parameter θDf

was varied in the present work from
θDf

= 1.5 to 2.5 in steps of 0.1. The intended mixing ratio θρ was varied from θρ = 0.1 to 0.9 in steps of 0.1 and the
primary cluster sizes θ0 and θ1 were chosen between one and six in steps of one for both materials, see also Table 2.
Some examples of virtual hetero-aggregates for various values of the model parameters θDf

, θρ, θ0, θ1 are visualized
in Figure 2.

parameter θDf
θρ θ0 θ1

range {1.5, 1.6, . . . , 2.5} {0.1, 0.2, . . . , 0.9} {1, 2, . . . , 6} {1, 2, . . . , 6}

Table 2: Range of model parameters. The model parameters θDf
and θρ affect the fractal dimension and mixing ratio

of the resulting aggregates, while the model parameters θ0 and θ1 determine the clustering behavior of the materials
within the aggregates, respectively.

(1.6, 0.3, 3, 1) (1.9, 0.5, 1, 1)(1.7, 0.6, 3, 3)(2.1, 0.8, 5, 3)

exemplary primary cluster

Figure 2: Examples of virtual hetero-aggregates. The labels correspond to the values of the vector θ = (θDf
, θρ, θ0, θ1)

of their model parameters. The WO3 particles are displayed in blue, while the TiO2 particles are displayed in orange.
The particle sizes are drawn from a log-normal distribution with parameters µ and σ as defined above. Some primary
clusters, as defined in Section 2.1.1, are highlighted.

2.1.3 Simulation of STEM intensities

After generating virtual hetero-aggregates, reference simulations to calculate the high-angle annular darkfield (HAADF)-
STEM intensity of TiO2 and WO3 are conducted as a function of the sample thickness and material density. For that
purpose, multi-slice simulations in the frozen-lattice approach [35] with the STEMSIM software [36] were performed.
Simulations were done for the rutile and anatase phases of TiO2 as well as for gamma and delta phases of WO3.
Crystal parameters and Debye-Waller factors were taken from [37, 38, 39, 40], and elastic atomic scattering ampli-
tudes from [41] were used. The HAADF-STEM intensity for microscope parameters equal to those one would use
in experiments with a ThermoFisher 60/300 Spectra microscope were simulated. This machine is equipped with a
Cs-corrector for the probe forming system, an X-FEG and SuperXG2 EDXS detectors. A semi-convergence angle of
β = 21.1 mrad and an acceleration voltage of 300 kV were set. The simulated HAADF-STEM intensity was obtained
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by integration of electrons scattered into the annular range between 55 mrad and 250 mrad after application of a
detector specific sensitivity curve [36].

The HAADF-STEM intensity further depends on the orientation of the crystal with respect to the electron beam.
To account for this effect, various orientations for each material and phase of the crystal were simulated.

Therefore, the crystal was systematically tilted in nine equal steps from a [100]- towards a [010]-viewing direction.
In addition, a random tilt was simulated. The final result is a data set with the HAADF-STEM intensity as a function
of the sample thickness for TiO2 and WO3, each in two different crystal phases, each with ten orientations of the
crystal with respect to the electron beam.

2.1.4 Generation of realistic STEM images

The third step combines the HAADF-STEM reference simulations described above with the virtual 3D hetero-
aggregates. STEM images show 2D projections of the aggregates, see Figure 3. Therefore, the projections of the
individual particles along one direction are computed, as usual in electron microscopy, the electron beam direction
and hence the projection direction is referred to as z-direction. This results in thickness maps for the individual
particles. Using the reference simulations, these thickness maps are translated into maps of the HAADF-STEM
intensities. To this end, for each particle, the reference simulation of the respective material was chosen in a random
phase and a random orientation of the crystal with respect to the electron beam.

In an aggregate, which extends several tens of nanometers in z-direction, not all particles appear in focus. Only
particles with centers located at height z = 0 nm are in focus, as the electron beam is focused on this plane. To
account for this effect, each HAADF-STEM map of the individual particles is convolved with a Gaussian kernel.
More precisely, for a particle located at height z, the standard deviation σSTEM of the Gaussian kernel with which
the corresponding HAADF-STEM map is convoluted is chosen as σSTEM = |z| · tan(β), where β = 21.1 mrad is the
semi-convergence angle, assuming a conical beam shape. Then, blurred HAADF-STEM maps of individual particles
are summed up to obtain the artificial HAADF-STEM image of the hetero-aggregate. Finally, shot noise according

to a typical electron dose of 149 electrons/Å
2

[42] and scan noise according to a possible typical beam displacement
of 0.01 nm [43] were applied.

Figure 3: Schematic representation of the 3D structure of a virtual hetero-aggregate (left) and its respective STEM
image (right). The WO3 particles are colored blue and correspond to the bright particles in the STEM image. The
TiO2 particles are colored orange and correspond to the dark particles.
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2.2 Statistical analysis and processing of simulated data

In this section the need for the usage of neural networks is explained, addressing some problems connected with the
reconstruction of preset values of the model parameters θDf

, θρ, θ0, θ1, based on virtual aggregates drawn from the
stochastic 3D model. Further complications in this reconstruction task arise when using 2D STEM data instead of
the full 3D geometry of the aggregates, through a loss of information. Therefore, it is explained how image processing
methods can be used to simplify the extraction of information from STEM data.

2.2.1 Estimating the parameters of the stochastic 3D model

One of the challenges associated with predicting the parameters of the stochastic 3D model from STEM images is
that some model parameters are even imperceivable from the 3D structure of a virtual aggregate from which the
corresponding STEM image is determined. This is due to the simplifying assumptions made within the simulation
process of the 3D model and its stochastic nature, see Section 2.1.2, resulting in empirical values of the model
parameters slightly differing from the preset ones.

For example, the fractal dimension Df computed by means of Eq. (5) for a virtual hetero-aggregate A might differ
from the preset value of the model parameter θDf

. More precisely, in the simulation of hetero-aggregates, the radii
r1, . . . , rN of particles considered in Eq. (5) are replaced by their arithmetic mean (r1+ . . .+rN )/N , see Section 2.1.2.
Also, the mixing ratio ρ of an aggregate A computed by means of Eq. (3) can deviate from the model parameter
θρ, due to the randomly chosen labels of primary clusters, modeled by the Bernoulli-distributed random variables
L1, . . . , LN ′ . For example, the first aggregate in Figure 2 has an expected (preset) mixing ratio of θρ = 0.3, but the
actual mixing ratio ρ computed from Eq. (3) is ρ = 9

41 ≈ 0.22. Recall that, in order to distinguish between these
quantities, the vector of model parameters used to generate A is referred to as θ = (θDf

, θρ, θ0, θ1), while Df(A) and
ρ(A) describe the empirical fractal dimension and mixing ratio of the aggregate A, computed from Eqs. (5) and (3),
respectively.

Figure 4 illustrates the discrepancy between preset model parameters and the empirical fractal dimension and
mixing ratio of virtual aggregates, computed from Eqs. (5) and (3), respectively. Nevertheless, Figure 4 indicates
that, on average, the structural descriptors Df and ρ nicely coincide with the preset model parameters θDf

and θρ.
Therefore, rather than attempting to determine the model parameters θDf

, θρ, θ0, θ1 from a single aggregate A, a
family B = {A1, . . . , Aν} of ν > 1 aggregates is used instead, called batch in the following. More specifically, it is
expected that choosing a larger batch size would yield more accurate results, but at an increased cost.

We were not able to find any scalar features that can be utilized to predict the model parameters θ0 and θ1
associated with the cluster size used in the generation of virtual aggregates, i.e., in the cluster-cluster-model intro-
duced in Section 2.1.1. For example, in order to predict the model parameter θ0, an obvious choice for such a scalar
feature would be to describe the average size of observable WO3 clusters, where an observable cluster is an inclusion
maximal homogeneous subset C ⊂ A of an aggregate A, i.e., there is no larger homogeneous subset C ′ ⊂ A such
that C ⊂ C ′. These clusters can differ from the primary clusters used in the construction algorithm described in
Section 2.1.1. Specifically, the observable clusters are formed by unions of primary clusters, whereas, contrary to the
latter ones, the observable clusters are recognizable in the 3D data, see Figure 2 for a visualization. However, this
average (observable) cluster size can not be used to predict θ0. Figure 5 shows that there are various specifications
of model parameters that differ in θ0 and, nevertheless, yield similar average cluster sizes of WO3 particles.

The prediction of the model parameter vector θ is further complicated by the fact that only the 2D STEM image
can be utilized, which may not perfectly inform the 3D morphology of A. To predict the preset vector of model
parameters θ from a family B of aggregates using only their simulated STEM images, CNNs are initially utilized
to extract relevant features from these images. These features are subsequently utilized to predict the preset model
parameters, see the schematic description of this workflow shown in Figure 1b. While the process of extracting
features from the STEM images remains largely consistent across all model parameters, the calculation of the esti-
mators for θDf

, θρ, θ0, θ1 exhibits significant variations, see Sections 2.3.2-2.3.5 below. For instance, when estimating
the model parameters θDf

and θρ, the features computed from a STEM image I of an aggregate A are scalar values
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that approximate Df(A) and ρ(A). Then, the arithmetic mean of the respective image-wise features of a family

B = {A1, . . . , Aν} of aggregates is used as estimators θ̂Df
and θ̂ρ for θDf

and θρ. In contrast, when predicting the
model parameters θ0 and θ1, a neural network is employed to identify high-dimensional features from which the
estimators θ̂0 and θ̂1 for θ0 and θ1 are computed, see Section 2.3 below.

Figure 4: Visualization of empirical probability densities of the fractal dimension Df(A) (left) and mixing ratio ρ(A)
(right) of virtual hetero-aggregates, depending on the model parameters θDf

and θρ, where the values of Df(A) and
ρ(A) are computed by means of Eqs. (5) and (3), respectively. The other model parameters were chosen at random
from their respective ranges, as introduced in Section 2.1.2. To improve clarity, kernel density estimation was used
to assign colors to the scatter points computed for 19 440 realizations of the stochastic 3D model.

Figure 5: Average cluster size of WO3 particles. Each scatter point is computed over a batch B = {A1, . . . , Aν} with
ν = 12 for six different specifications of the model parameters θDf

, θρ, θ0, θ1. For three of these specifications, the
values of θ = (θDf

, θρ, θ0, θ1) and the average cluster sizes, corresponding to the red scatter points, are displayed.
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2.2.2 Data processing and augmentation

Various common image processing methods are used to simplify the extraction of information from STEM images.
In particular, the pixel intensity values of STEM images are linearly scaled to the entire range of [−0.5, 0.5] and
rounded to 256 equidistant values in order to achieve faster convergence to a lower error during the training process.
More specifically, the scaling centers the pixel intensity values around zero [44], whereas the rounding reduces the
noise of the images. Note that this procedure is performed on all STEM images, even if not explicitly mentioned,
whereas the subsequent preprocessing steps will only be applied during training.

Overfitting is a common problem where neural networks achieve good results on training data but perform rather
poorly when applied to previously unseen data. This can occur when the model learns irrelevant information within
the dataset. As a result, the model fits too closely to the training set and becomes overfitted, making it unable
to generalize well to new data. To address this issue, augmentation of training data is used. In the context of the
present paper, this means that the input data is randomly modified in each training step, such that during each step
of the training procedure the network is provided with input data, which differs from the input data of previous
steps. Therefore, a significantly larger number of training steps can be conducted while still providing the neural
network with novel training data in each step, and thus, avoiding overfitting.

Note that there is a wide variety of possible methods for modifying input data, which are commonly used in
training data augmentation, e.g., rotation, reflection, radial transformation, elastic distortion [45] and random erasing
[46]. However, in order to preserve certain structural descriptors of aggregates observed in image data, like shape
and size descriptors of particles, only random rotations, reflections and small displacements are used for training
data augmentation.

2.3 CNN-based approach for the prediction of model parameters

The goal of this section is to introduce the CNN-based methodology for predicting the model parameters θDf
, θρ, θ0, θ1

of the hetero-aggregate model from (simulated) STEM images.
Due to computational constraints, it was not feasible to generate the required number of aggregates for each

possible preset of the model parameters θDf
, θρ, θ0, θ1. Therefore, in order to ensure robust training, the focused

was on generating 100 aggregates for each triple (θρ, θ0, θ1) in {0.1, . . . , 0.9} × {1, . . . , 6} × {1, . . . , 6}, as these
parameters exhibited interactive effects that were crucial for our study. More specifically, for each such triple,

two values θ
(1)
Df

, θ
(2)
Df

of θDf
were chosen at random from {1.5, . . . , 2.5} and each resulting model parameter preset

(θ
(1)
Df

, θρ, θ0, θ1), (θ
(2)
Df

, θρ, θ0, θ1) was used to generate 50 aggregates. After applying the STEM simulation described
in Section 2.1, this results in a set G = {(Ai, Ii, θi) : 1 ≤ i ≤ 32 400} of 32 400 triplets of 3D aggregates Ai,
corresponding STEM images Ii, and vectors of preset model parameters θi = (θDf ,i, θρ,i, θ0,i, θ1,i). The set G is
thereafter split into two datasets, one for training and one for evaluation.

For both, training and evaluation, batches

B = {(Ai1 , Ii1 , θi1), . . . , (Aiv , Iiv , θiv )} ⊂ G (9)

will be used for some ν > 1, which are generated by the same preset of model parameters, i.e., θi1 = . . . = θiv . To
ensure the availability of such batches, the split of G is done such that there is no model parameter configuration that
occurs less than 20 times in neither the data used for training nor in the data used for evaluation. These two datasets
will be referred to by their respective index sets T (for training) and E (for evaluation), where T ∪E = {1, . . . , 32 400}
with #T = 19 440 and #E = 12 960.

In the following, it is explained how the triplets (Ai, Ii, θi) are used to generate pairs of image data and ground
truth labels, which will be utilized for the training of the neural networks. First, general aspects of network ar-
chitecture and training are presented and, then, some specifics regarding the prediction of each of the four model
parameters θDf

, θρ, θ0, θ1 are given.
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2.3.1 Network architecture and training

The networks used for feature extraction are all based on the same basic network architecture, which is a slight
modification of the VGG architecture [16, 47], regardless of the model parameter being predicted. More precisely, it
consists of stacked convolutional layers with a kernel size of 3×3, batch normalization layers [48], the ReLu activation
function, given by

ReLu(x) = max{0, x} for x ∈ R, (10)

and max pooling layers with a kernel size of 2 × 2, followed by fully connected layers. The basic architecture of the
convolutional neural networks considered in the following has the form

CNN = g(f) , (11)

i.e., it is represented as the composition of two subnetworks, f and g. The subnetwork f consists of the convolutional
part of the basic network architecture, a flatten layer and two dense layers with a final output dimension of 112.
The subnetwork g consists of two dense layers with a final output dimension of 1. A schematic representation of the
network architecture is given in Figure 6 (left), whereas details regarding this architecture are provided in Table 3.
Note that the modular structure of the proposed architecture allows for easy replacement of the subnetwork f with
other network architectures, to address specific needs. These considerations include computational speed, tendencies
to overfit on synthetic data, and other factors that influence the generalization to real data. For a quantitative
comparison of the predictive power for a selection of some alternative network architectures [20], the reader is
referred to Section 4.

To achieve a high prediction quality, the parameters of the neural networks have to be adopted. This will be
done supervised. More precisely, the dissimilarity between the ground truth, denoted as y = (y1, . . . , yn), and the
network output ŷ = (ŷ1, . . . , ŷn), i.e., ŷ1 = CNN(x1), . . . , ŷn = CNN(xn) for some input x = (x1, . . . xn), n > 1, will
be minimized.

For example, when predicting the fractal dimension θDf
, the input x of the network consists of STEM images

I1, ..., In and the ground truth is given by the vector of fractal dimensions of the respective aggregates A1, ..., An,
i.e. y = (Df(A1), ..., Df(An)). The ground truth and the network output are compared using the mean squared error
(MSE), given by

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2. (12)

The resulting loss MSE(y, ŷ) is minimized by a gradient descent method using an Adam optimizer [13, 49] with a
learning rate of 0.0001, where the value of n in Eq. (12) determines the number of network evaluations before a step
of the gradient descent method is applied. These evaluations are done on the training data, given by the index set
T , where n is put to 16 when predicting θDf

or θρ, and n = 8 otherwise.
The general network architecture described above and the prediction procedure will be slightly adapted for each

of the four model parameters θDf
, θρ, θ0 and θ1. In the following, detailed explanations will be provided regarding

these parameter-specific adaptations.
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Figure 6: The basic network architecture represented as a simple composition of subnetworks f and g (left), and
an adjusted multi-image input network (right), where the subnetwork f is applied to multiple input images and the
outputs are concatenated as a new input for subnetwork g (see also Section 2.3.4 below).

layer output shape number of parameters
0 input (512, 512, 1) · b 0 · 1
1 average pooling (256, 256, 1) · b 0 · 1
2 convolution + batch norm. + ReLu (254, 254, 8) · b (80 + 56 + 0) · 1
3 convolution + batch norm. + ReLu (252, 252, 16) · b (1 168 + 112 + 0) · 1
4 convolution + batch norm. + ReLu (250, 250, 32) · b (4 640 + 224 + 0) · 1
5 max pooling (125, 125, 32) · b 0 · 1
6 convolution + batch norm. + ReLu (123, 123, 64) · b (18 496 + 448 + 0) · 1
7 convolution + batch norm. + ReLu (121, 121, 64) · b (36 928 + 448 + 0) · 1
8 max pooling (60, 60, 64) · b 0 · 1
9 convolution + batch norm. + ReLu (58, 58, 128) · b (73 856 + 896 + 0) · 1
10 convolution + batch norm. + ReLu (56, 56, 128) · b (147 584 + 896 + 0) · 1
11 max pooling (28, 28, 128) · b 0 · 1
12 convolution + batch norm. + ReLu (26, 26, 256) · b (295 168 + 1 792 + 0) · 1
13 convolution + batch norm. + ReLu (24, 24, 256) · b (590 080 + 1 792 + 0) · 1
14 max pooling (12, 12, 256) · b 0 · 1
15 flatten (36 864) · b 0 · 1
16 dense + ReLu (224) · b 8 257 760 · 1
17 dense + ReLu (112) · b 25 200 · 1
18 dense + ReLu (44) 112 · b · 44 + 44
19 dense 1 45 · 1

= b · 4 928 + 9 457 713

Table 3: Details of network architecture. The value of b is put equal to b = 1 for the prediction of the model
parameters θDf

and θρ, and b = ν for the prediction of θ1 and θ0. Since padding is omitted, each convolutional layer
reduces the size of the feature map by two in both dimensions.

2.3.2 Fractal dimension

The fractal dimensions Df(Ai1), . . . , Df(Aiν ) of the aggregates Ai1 , . . . , Aiν in a batch B, as introduced in Eq. (9), are
typically symmetrically distributed around the preset value of θDf

, which will be denoted by θDf
(B) in the following,

see Figure 4a. Therefore, the mean value Df(B), given by

Df(B) =
1

ν

ν∑
k=1

Df(Aik),

could be used as an estimator for θDf
(B). However, since the fractal dimensions Df(Ai1), . . . , Df(Aiν ) cannot be

directly determined from the STEM images Ii1 , . . . , Iiν , approximations D̂f(Ii1), . . . , D̂f(Iiν ) are used instead. These
approximations are computed by a convolutional neural network CNNDf , where the STEM images Ii1 , . . . , Iiν are
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used as input. Thus, finally, the estimator θ̂Df
(B) for θDf

(B) is given by

θ̂Df
(B) =

1

ν

ν∑
j=1

D̂f(Iij ) =
1

ν

ν∑
j=1

CNNDf (Iij ). (13)

The architecture of the neural network CNNDf coincides with the one described in Section 2.3.1. The activation
function of the output layer is a scaled sigmoid function. This kind of activation function is a standard choice for
NNs with bounded outputs. More precisely, the activation function is given by γ(x) = α 1

1+e−x + β for x ∈ R, where
α = 1.4 and β = 1.3 are selected to ensure that the network can represent the expected range of values for Df , with
added tolerances on each side of the expected range, see Figure 4a. Note that the input of the network during training
consists of augmented versions a(Ii) of the STEM images Ii for i ∈ T , i.e., images that arise from Ii by reflecting,
rotating and displacing, as described in Section 2.2.2. The corresponding supervisory signal consists of the fractal
dimension of the corresponding aggregates. Hence, the network training is conducted using pairs (a(Ii), Df(Ai)), for
i ∈ T .

2.3.3 Mixing ratio

In Figure 4b the distribution of the mixing ratio of aggregates in dependence of the model parameter θρ is visualized.
From there, it is evident that the mixing ratios ρ(Ai1), . . . , ρ(Aiν ) of aggregates Ai1 , . . . , Aiν within a batch B,
generated by the 3D model with a preset value of θρ(B), follow a distribution the mean of which is approximately
equal to θρ(B).

This suggests using a similar approach as described above in Section 2.3.2. However, note that there are some
aggregates with a mixing ratio ρ(Ai) being equal to 0 or 1. A neural network with an architecture as that of CNNDf

does not reflect these discrete values properly. Therefore, the prediction procedure for the mixing ratio is slightly
modified by initially classifying whether an image Ii depicts an aggregate with mixing ratio of exactly 0 or 1, using
a classification network CNNρ

class, and afterwards predicting the mixing ratio of the corresponding aggregate, using
a regression network CNNρ

reg. For this purpose, the networks CNNρ
class and CNNρ

reg, having the same basic network

architecture as described in Section 2.3.1 and a commonly used [50] unscaled sigmoid function γ(x) = 1
1+e−x for x ∈ R

as activation function in the output layer, are trained for the respective tasks. The training of the regression network
CNNρ

reg is done on pairs (a(Ii), ρ(Ai)), i ∈ T , of augmented STEM images and corresponding ground truth mixing
ratios, while the training of the classification network CNNρ

class is done on pairs of augmented STEM images and
corresponding binary class labels, where a class label of 0 or 1 identifies the corresponding aggregate as heterogeneous
or homogeneous, respectively.

However, it is a well-known problem that number-wise imbalanced classes can lead to poorly performing clas-
sifications since classifiers tend to neglect the underrepresented classes, also known as imbalance problem [51]. To
address this issue, the augmented STEM images of homogeneous aggregates, which account for about 10% of all
images, were oversampled in the training procedure of the classifier to achieve balanced classes.

Finally, to predict the mixing ratio of an aggregate via its STEM image, the outputs of CNNρ
class, which identifies

homogenous aggregates, and CNNρ
reg, which determines the mixing ratio, are combined. More specifically, for a

STEM image I, the predicted mixing ratio ρ̂(I) of the corresponding aggregate is given by

ρ̂(I) =

{
η
(
CNNρ

reg(I)
)
, if CNNρ

class(I) > 0.5,

CNNρ
reg(I), else,

where η : [0, 1] → {0, 1} is the function that rounds a number x ∈ [0, 1] to its closest integer η(x) ∈ {0, 1}. This results

in the estimator θ̂ρ(B) for the preset model parameter θρ(B) of a batch B = {(Ai1 , Ii1 , θi1), . . . , (Aiv , Iiv , θiv )}, given
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by

θ̂ρ(B) =
1

ν

ν∑
j=1

ρ̂(Iij ). (14)

2.3.4 Size of primary WO3 clusters

In the procedures for predicting the model parameters θDf
and θρ, described above, the process of determining an

estimator involved the identification of a scalar feature that describes an aggregate property, namely, the fractal
dimension Df and the mixing ratio ρ, which is predominantly influenced by the corresponding model parameter.
This scalar feature can be directly computed from the virtual 3D aggregates, and thus, it is possible to predict it
from the corresponding 2D STEM images. Consequently, using this scalar feature, formulas for estimating the model
parameter from this property has been derived, see Eqs. (13) and (14).

Since the model parameter θ0 is designed to control the cluster sizes of WO3 particles for the cluster-cluster-
aggregation model introduced in Section 2.1.1, such a property should relate to the number of connected WO3

particles. However, the sizes of observable clusters are not only influenced by θ0 but also by θρ. On the one hand,
larger values of θ0 lead to larger primary cluster sizes of clusters of label 0 and thus larger observable clusters. Lower
values of θρ lead to larger proportions of primary clusters of label 0. Therefore, it is more likely that two primary
clusters that are in contact, share the material label 0, and thus, the expected size of observable clusters of label 0
increases, see Figure 5.

This makes the average of the observable cluster size on its own an unsuitable property for estimating the model
parameter θ0. Therefore, one has to search for another feature that is functionally related to θ0. Additionally, a
functional relationship that suitably maps features derived from STEM images to an estimator of θ0 may not be
captured solely by an average, necessitating the search for another suitable function. However, these two steps can
be quite complex and time-consuming if done heuristically. To address this, a data-driven approach utilizing a neural
network is adopted. This approach allows us to determine the feature vectors and the formula that relates them
to the corresponding model parameter θ0. More specifically, the identification of relevant features is conducted by
means of part f of the basic network architecture described in Section 2.3.1. The subnetwork f is applied to all
images in a batch individually, and the concatenated results are then used as input of part g of the basic network
architecture, which is in charge of determining the relationship between the feature vectors determined by f and the
model parameter θ0. In detail, this results in a modified network, denoted as CNN0, which is given by

CNN0(I(B)) = g(f(Ii1), . . . , f(Iiν )), (15)

where I(B) = {Ii1 , . . . , Iiν} denotes the STEM images corresponding to the aggregates Ai1 , . . . , Aiν in a batch B.
Referring to Table 3, the feature vectors of STEM images up to the output of layer 17 are computed as before. Then
these feature vectors of a batch are concatenated and used as input of layer 18. The final output layer uses a ReLu
transfer function. The modified network architecture is illustrated on the right-hand side of Figure 6.

Note that the approach described above differs from the commonly used technique where a network, denoted as f ′,
takes multi-channel input data, i.e., in our case f ′(Ii1 , ..., Iiν ). Such an approach allows the network to detect spatially
resolved interdependencies among the images. In contrast, our approach considered in Eq. 15 employs identical CNNs
f for dimensionality reduction and feature extraction on each input channel individually. As a consequence, this
ensures uniform feature extraction for every input image while also reducing the number of trainable parameters in
the CNN. The choice of this approach is rooted in the concept that each image within a batch a priori contains the
same information regarding the underlying model parameters, and the lack of spatial interdependence between the
images, which would be relevant for the prediction of model parameters.

Due to the problem-specific architecture of the network CNN0, the training data no longer consists of pairs of indi-
vidual images and corresponding ground truths. Instead, for each batch B, the training pair ({a(Ii1), . . . , a(Iiν )}, θ0(B))
consists of a corresponding batch of augmented images and the underlying model parameter θ0(B).

16



Since the model parameter θ0 can only take integer values, the output of the network has to be rounded to obtain
a valid estimator for θ0, given by θ̂0(B) = η(CNN0(I(B)), where where η : [0,∞) → {0, 1, . . .} is the function that
rounds a number x ≥ 0 to its closest integer η(x) ∈ {0, 1, . . .}.

2.3.5 Size of primary TiO2 clusters

The method used to predict the model parameter θ1 for the cluster size of TiO2 particles is similar to the approach
described in the previous section. Nonetheless, given that the pixel intensity values of TiO2 particles in the STEM
images closely resemble the background and are significantly lower than those of WO3 particles, they are considerably
more difficult to differentiate by visual inspection. Consequently, it might be plausible that a neural network could
also encounter challenges in tasks that depend on the identification of TiO2 particles. As shown in Figure 7, the
neural network CNN1 achieves unsatisfactory results when using unadjusted image data, which may be due to the
difficulty mentioned above.

To address this issue, the intensity value p > 0 of non-background pixels in the STEM images is replaced by its
multiplicative inverse pmodified, i.e., for some threshold t > 0 the modified pixel value is given by

pmodified =

{
p, if 0 < p < t,

p−1, otherwise.

This procedure is applied to all STEM images used in the prediction of θ1 before the preprocessing steps described
in Section 2.2.2 are applied. The highlighting effect of this adjustment of pixel intensity values is shown in Figure 8.

Figure 7: Prediction error of the network CNN1 for unmodified input images, in dependence of the preset value of the
model parameter θ1. The prediction quality is comparable to that of a constant prediction, where CNN1(I(B)) = 3.5.
The results have been obtained on a randomly chosen subset of the training data set.
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Figure 8: Effect of pixel intensity modification. The image on the right-hand side is obtained after replacing the
intensity values of non-background pixels (shown on the left-hand side) by their multiplicative inverse, where a
threshold of t = 0.001 is used.

3 Results

In this section, the results of the analysis on various aspects of model parameter prediction are presented. To ensure
that these results accurately represent the generalization capability of the trained neural networks, all evaluations
were conducted on data not used during training. More specifically, recall that the data corresponding to the index
set T is used for training, whereas the data corresponding to the index set E is used to evaluate results, see Section 2.3
for details on the training-test split.

As a prelude to the main findings, first, the impact of batch size on prediction quality is assessed for all four
model parameters θDf

, θρ, θ0, θ1. For that purpose, Figure 9 illustrates how the batch size affects the quality of the
predictions with respect to the mean absolute error (MAE), defined as

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|, (16)

where n > 0 is the number of predictions and ŷ = (ŷi)i=1,...,n are the predictions of the ground truth values
y = (yi)i=1,...,n. Note that the mean absolute error given in Eq. (16) yields more easily interpretable values compared
to the MSE, which was used for network training, see Section 2.3. As expected, it can be observed that larger batch
sizes lead to better predictions. However, no significant improvement is observed for values exceeding 10. Thus, the
results presented below, which were computed with a fixed batch size of ν = 12, can be considered representative for
the presented methodology.

3.1 Fractal dimension

The accuracy of the estimator θ̂Df
for θDf

depends on two key properties. First, the mean error of the single STEM
image predictions CNNDf (I) should be centered around zero, since otherwise a bias could be propagated through

the averaging procedure and therefore bias the estimator θ̂Df
, see Eq. (13). Second, the variance of the single image

prediction error should be low, so a low variance estimator can be achieved even with a small batch size ν.
In Figure 10a the error for the predicted fractal dimension D̂f is shown. As desired, the error of the network

output exhibits a small absolute value for the bias and a low variance, as indicated by a mean value of -0.006 and
interquartile range of 0.118. As the network output is a suitable basis for predicting the model parameter θDf

, the

estimator θ̂Df
achieves an MAE of 0.041, see Figure 10b. The network tends to slightly overestimate the fractal

dimension of the depicted aggregates for small preset values of θDf
and underestimate it for large ones. This behavior

is further pronounced in the estimator θ̂Df
. For a possible explanation of this trend, see Section 4 below.
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Figure 9: Quality of the estimators for θDf
, θρ, θ0, θ1, in dependence of the batch size ν. Due to different orders of

magnitude, the error curves for θDf
, θρ and θ0, θ1 are shown separately. The MAEs, defied by Eq. 16, are computed

over all available evaluation data, indexed by the set E.

Figure 10: Prediction error of D̂f (left) and θ̂Df
(right). In Subfigure (a) the quality of the prediction of the fractal

dimension per aggregate is visualized, where the colors are computed by means of a Gaussian kernel density estimator.
In Subfigure (b), the error regarding the prediction of the model parameter θDf

is shown, where batches of size ν = 12

are used for the computation of θ̂Df
.

3.2 Mixing ratio

To evaluate the accuracy of the estimator for the model parameter θρ, first, the image-wise straightforward case is
considered, where the output CNNρ

reg(I) of the regression network is used as an estimator for the mixing ratio ρ(A),
without considering the classification network. As shown in Figure 11a, the output CNNρ

reg(I) of the regression
network exhibits a relatively high bias for aggregates A such that ρ(A) ∈ [0, 0.1] or ρ(A) ∈ [0.9, 1], with biases of
about 0.04 and −0.1, respectively.

To address this issue, in Section 2.3.3 a procedure, which utilizes an additional classification network CNNρ
class

is presented. In Figure 11b, the resulting image-wise error of ρ̂ using this procedure is shown. It is evident that
the error of ρ̂ is significantly reduced for homogenous aggregates. More precisely, the bias of ρ̂(I) for aggregates A
with ρ(A) ∈ [0, 0.1] or ρ(A) ∈ [0.9, 1] decreases to about 0.009 and 0.02, respectively. Incorporating the additional
network, the MAE of the image-wise predicted mixing ratio ρ̂(I) of an aggregate A decreases from 0.059 to 0.053.
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Consequently, the MAE of the batch-wise prediction θ̂ρ of θρ improves significantly, reducing from 0.027 to 0.017.
Note that the diagonally arranged points in Figure 11b are due to a small number of falsely classified heterogeneous

aggregates, whereas the significantly thinned vertical lines are due to correctly classified homogeneous aggregates.
The amounts of correctly and falsely classified aggregates are displayed in Table 4.

Figure 11: Prediction error of ρ̂ (left, center) and θ̂ρ (right). In Subfigure (a) the error of the unrounded output of
the regression network is displayed per image. The black line, visualizing the mean error, is computed via a sliding
window. The error for the output of the modified network is shown in Subfigure (b). In Subfigure (c) the error
regarding the prediction of the model parameter θρ is displayed, where the modified values of ρ̂ are used.

prediction \ true homogenous heterogeneous
homogenous 1 174 567
heterogeneous 67 12 082

Table 4: Confusion matrix of the homogeneous-heterogeneous classification task. About 95% of the aggregates are
correctly classified.

3.3 Sizes of primary WO3 clusters and primary TiO2 clusters

Figure 12a shows the difference between the network output CNN0(I(B)) for the STEM images I(B) = {Ii1 , . . . , Iiν}
corresponding to the aggregates Ai1 , . . . , Aiν in a batch B (given in Eq. (15), i.e., prior to rounding of the output,

which would result in the estimator θ̂0) and the preset value θ0(B) of the model parameter θ0. Figure 12b shows the

error distribution of θ̂0 after rounding, where in about 48% of all cases the value of θ̂0 coincides with θ0. Additionally,
in more than 92% of the cases, the error of θ̂0 is less than or equal to 1. Although the largest mean absolute error
occurs in the case of θ0 = 6, the resulting inaccuracy corresponds to an average relative error of about 20%.

The quality of the estimator θ̂1 introduced in Section 2.3.5 is similar to that of θ̂0, see Figure 13. After rounding
the output of the network CNN1, 32% of the predictions coincided with the preset values of θ1. In about 82% of
the cases, an error less than or equal to 1 occurred. The mean absolute error for θ1 = 6 is equal to 1.44, where the
resulting inaccuracy corresponds to an average relative error of about 24%.
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Figure 12: Prediction error of θ̂0. In Subfigure (a), the differences between the network output CNN0(I(B)) and the

preset values θ0(B) of the model parameter θ0 are shown. The prediction error of θ̂0 after applying the rounding
operation is displayed in Subfigure (b).

Figure 13: Prediction error of θ̂1. In Subfigure (a), the differences between the network output CNN1(I(B)) and the

preset values θ1(B) of the model parameter θ1 are shown. The prediction error of θ̂1 after applying the rounding
operation is displayed in Subfigure (b).
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3.4 Further structural descriptors of hetero-aggregates

Recall that the goal of the method presented in this paper is to generate realistic digital shadows of hetero-aggregates
in 3D, solely from observations provided by 2D STEM images of the aggregates. For that purpose, the parameters
θDf

, θρ, θ0, θ1 of the stochastic 3D model introduced in Section 2.1.1 are predicted in order to specify the model con-

figuration with which to generate digital shadows. However, so far, only the accuracy of the predictors θ̂Df
, θ̂ρ, θ̂0, θ̂1

for θDf
, θρ, θ0, θ1 was evaluated, rather than investigating further structural descriptors of hetero-agggregates in or-

der to evaluate the structural similarity between the resulting digital shadows and the original hetero-aggregates,
i.e., the aggregates that were used for predicting the model parameters θDf

, θρ, θ0, θ1. Moreover, many structural
properties of the digital shadows are influenced by multiple model parameters, and thus, evaluating the quality of
the four predictors θ̂Df

, θ̂ρ, θ̂0, θ̂1 separately is not sufficient. Therefore, three further structural descriptors, which
characterize the 3D morphology of hetero-aggregates and have not yet been considered in this paper, are investigated
in order to assess the similarity between original aggregates and corresponding digital shadows, see also Figure 1c-d.

3.4.1 Average cluster size and coordination numbers

The average cluster size STiO2
(A) of TiO2 particles of an aggregate A = {pi = (xi, ri, li) : xi ∈ R3, ri ∈ R+,

li ∈ {0, 1}, 1 ≤ i ≤ N}. describes the average cardinality of clusters of connected TiO2 particles in A. It is given by

STiO2
(A) =

1

#CTiO2
(A)

∑
c∈CTiO2

(A)

#c, (17)

where CTiO2
(A) denotes the set of all TiO2 clusters in A. While the value of STiO2

(A) is primarily influenced by the
preset values of θ1 and θρ, the value of θ0 also has some (minor) influence on STiO2

(A) through its appearance in
the definition of the Bernoulli-distributed labels Lk of the stochastic 3D model, see Section 2.1.1.

Furthermore, the so-called average hetero-coordination number Zhetero(A) of an aggregate A is considered, which
is given by

Zhetero(A) =
1

#A

∑
p∈A

#{p′ ∈ A : p, p′ are in contact, l ̸= l′}

=
2#{set of heterogeneous contacts in A}

#A
, (18)

where #A(= N) is the total number of particles in A. Thus, Zhetero(A) is the average number of contacts of particles
in A with particles of the other material. Finally, the average coordination number Ztotal(A), given by

Ztotal(A) =
1

#A

∑
p∈A

#{p′ ∈ A : p, p′ are in contact}

=
2#{set of contacts in A}

#A
, (19)

is considered, which is the average number of contacts of particles in A to other particles, regardless of their material.
Since the number of contacts of a particle within an aggregate A strongly depends on the shape of A, the model

parameter θDf
significantly influences the values of the descriptors Zhetero(A) and Ztotal(A). Further, Zhetero(A)

tends to increase with θρ close to 0.5 and decreasing primary cluster sizes determined by θ0 and θ1.

3.4.2 Comparison of original hetero-aggregates and their digital shadows

To evaluate the quality of the predictor θ̂ = (θ̂Df
, θ̂ρ, θ̂0, θ̂1) in terms of the structural descriptors introduced in Sec-

tion 3.4.1, 50 configurations of θ = (θDf
, θρ, θ0, θ1) were selected at random, out of the index set E of evaluation data.
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For each of these numerical specifications of θ, 800 new aggregates A1, . . . , A800 were drawn from the corresponding
stochastic 3D model, and their structural descriptors STiO2

(Ai), Zhetero(Ai) and Ztotal(Ai) for i ∈ {1, . . . , 800} were
computed. Furthermore, for each case, the (preset) ground-truth parameter vector θ has been predicted using the

methods explained in Section 2.3. Then, for each of the 50 specifications of θ̂, 800 additional aggregates A′
1, . . . , A

′
800

and computed their structural descriptors STiO2
(A′

i), Zhetero(A′
i) and Ztotal(A

′
i) for i ∈ {1, . . . , 800} were generated.

Figure 14 visualizes the distributions of these structural descriptors for four numerical specifications of θ, where the
aggregates A1, . . . , A800 and A′

1, . . . , A
′
800 were generated using either the preset parameter vector θ (blue) or its

prediction θ̂ (orange), respectively.
Note that the gaps in the histograms of the average coordination numbers Ztotal(Ai) and Ztotal(A

′
i) (right column)

are due to the limited size of the considered aggregates, see Section 2.1.2. More specifically, the average coordination
numbers Ztotal(Ai) and Ztotal(A

′
i) given in Eq. (19), of aggregates Ai, A

′
i with sizes smaller than or equal to 80, can

only take values in the set

H = {2q1
q2

: q1, q2 ∈ N, q1 ≤ q2 ≤ 80}, (20)

where H ∩ (1.975, 2) = ∅ because of the limited denominator q2 on the right-hand side of Eq. (20).

Furthermore, note that the predictor θ̂ for θ displayed in the top row of Figure 14 has a much smaller mean
absolute error than the one displayed in the second row. Nevertheless, the latter (blue and orange) histograms show
a higher agreement than those in the top row of Figure 14. Meaning that a high degree of similarity (in terms of

MAE) of θ and θ̂ does not necessarily imply a high degree of similarity of the resulting descriptor distributions.
We quantitatively analyzed this discrepancy between the distributions of the structural aggregate descriptors

resulting from the preset configuration of model parameters and their prediction. For that purpose, the absolute
difference of the means of these pairs of distributions were computed. For example, the mean values of STiO2

(Ai)
and STiO2

(A′
i) (vertical lines) in the top row of Figure 14 are equal to 5.38 and 11.00 for the preset parameter vector

θ and its prediction θ̂, respectively. This results in an absolute error of 5.62. Over all 50 pairs of θ and θ̂, a MAE
error of 2.165 is achieved, see also Table 5, where the MAEs for all three structural descriptors considered in this
section are given. Even though the MAE is an easily interpretable metric for quantifying prediction errors, it is
scale-dependent. Thus, comparing MAE values for structural descriptors, which belong to different length scales
is impracticable. Unlike the MAE, the so-called coefficient of determination R2 is scale-independent and thus an
interpretable quantity for comparing the predictive power for different structural descriptors. In particular, R2 is
defined as

R2(y, ŷ) = 1 − MSE(y, ŷ)

MSE(y, y)
.

Here, the vectors y = (y1, . . . , y50), ŷ = (ŷ1, . . . , ŷ50) ∈ R50 consist of the mean values of the distributions of the

given aggregate descriptor computed for the 50 preset specifications of θ and their predictions θ̂. More precisely,
for j ∈ {1, . . . , 50}, yj = 1

800

∑800
i=1 γ(Aij) and ŷj = 1

800

∑800
i=1 γ(A′

ij), where γ stands for either STiO2
, Zhetero or

Ztotal, and Aij , A
′
ij denote the i-th aggregate drawn from the j-th specification of θ and its prediction θ̂, respectively.

Furthermore, y = 1
50

∑50
i=1 yi. The coefficient of determination R2 takes values ranging from 0 to 1, where the value

of R2 can be interpreted as the fraction of variability in y explained by ŷ. The R2 values for the considered structural
descriptors are given in Table 5.
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Figure 14: Distribution of the structural descriptors STiO2
(Ai) and STiO2

(A′
i) (left column), Zhetero(Ai) and

Zhetero(A′
i) (middle column), as well as Ztotal(Ai) and Ztotal(A

′
i) (right column) of the original aggregates Ai (blue)

and their digital shadows A′
i (orange), for four numerical specifications of θ and their predictions θ̂. For computing

the histograms, 20 equidistant bins have been employed, which span the entire range of respective values on the
x-axis.

STiO2
Zhetero Ztotal

MAE 2.165 0.056 0.007

R2 0.84 0.85 0.87

Table 5: Discrepancy between the mean values of the distributions of STiO2
, Zhetero, and Ztotal, with respect to the

mean absolute error MAE and the coefficient of determination R2, computed for the 50 preset specifications of θ and
their predictions θ̂.

4 Discussion

Before discussing the prediction quality of the proposed method for individual model parameters, the choice of the
basic network architecture f is shortly investigated. As mentioned in Section 2.3, the network architecture of f
can be easily exchanged to other architectures. Therefore, the performance of the proposed network architecture
is compared with that of Inception-v3 and ResNet [20]. In Table 6 the prediction quality of these architectures
regarding Df are compared. It can be observed that the best results were achieved by our proposed network, thanks
to its problem-specific optimized architecture. Therefore, this architecture serves as the foundation for all the results
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in the present paper, which will be discussed in more detail later in this section.

The analysis of image data in order to determine the fractal dimension of finite aggregates has been a popular
approach for some time. Two commonly used methods for this purpose are the box counting and sandbox methods,
which are relatively simple image analysis tools [52, 8]. These methods can provide meaningful structural information,
but the quality of the results is highly dependent on the quality of the images. Specifically, high contrast and resolution
are necessary to obtain clear STEM images from which accurate structural information can be extracted. However, in
cases where a high fractal dimension is present, i.e., Df(A) > 2, the accuracy of these classical methods decreases due
to problems with geometric opacity, see [53]. Similarly, the prediction quality of the CNN-based method decreases
for fractal dimensions Df > 2, see Figure 10a, but nevertheless the achieved accuracy for these cases is reasonably
high. Furthermore, the CNN approach works well independently of the aggregate size, see Figure 16a. In order to
further assess the performance of our predictor θ̂Df

, the model parameter θDf
was predicted with a reference method

from literature, namely, a method based on 2D box counting [8]. Therefore, the following steps have been performed:
First analogously to the method described in [8], the box counting fractal dimension Df,BC(I) was computed for
each STEM image I. Similarly to [8] we observe a deviation between Df,BC(I) and the value for Df(A) of the
corresponding agglomerate A. Therefore, analogously to the method described in [8] we calibrated a correction step,
i.e., using pairs of Df,BC and Df values we fitted a power-law-based regression model. More precisely, the regression
parameters a = 0.74 and b = 2.19 of

D̂BC
f (I) = aDf,BC(I)b (21)

were fitted such that the MSE between the corrected fractal dimension D̂BC
f (I) and the true fractal dimension

Df(A) with respect to all pairs of aggregates A and corresponding STEM images I is minimized. Finally, the box

counting-based prediction θ̂BC
Df

of the model parameter θDf
was computed analogously to θ̂Df

, i.e.,

θ̂BC
Df

(B) =
1

ν

ν∑
j=1

D̂BC
f (Iij ), (22)

see Section 2.3.2 for more information. The errors of these predictions are displayed in Figure 15. A clear improvement
of prediction quality can be observed, when considering the CNN-based method instead of the conventional box
counting method, see Figures 10 and 15. The lower quality of the box counting-based prediction could be attributed
to the following limitations: on the one hand, its inability to extract depth and mass information from STEM
images, and on the other hand, its difficulty in accurately analyzing aggregates composed of a small number of
primary particles.

Probably the most comparable conventional method for determining the mixing ratio of an aggregate via its 2D
STEM image, is based on determining the particle label of each pixel using a threshold value. More specifically,
depending on the pixel intensity, the pixel is classified as TiO2, WO3 or background, and then, using the a priori
known particle size distributions, a mixing ratio can be predicted. However, since the representation of thick TiO2

particles or of many overlapping TiO2 particles can have the same pixel intensity values as the representation
of thin WO3 particles, this threshold approach has a large source of errors [54]. The best appearing thresholds
using a “brute force” algorithm on a representative data were determined. This results in an MAE of 0.078 per
aggregate when estimating the mixing ratio. Compared to the MAE of 0.053, see Section 3.2, of the CNN approach
described in the present paper, the error increases by 40% for the thresholding method described above. This is
likely due to the increased values of pixel intensity caused by overlapping particles (see Figure 8), where these pixels
with increased intensity values tend to be classified as WO3. Therefore, conventional threshold methods become
increasingly inaccurate with an increasing number of overlapping particles, contrary to the behavior of the CNN
approach proposed in the present paper, see Figure 16b.

Regarding the prediction of the remaining two model parameters θ0 and θ1, as far as we know, there is no
comparable conventional method based on 2D image data. Such methods, if they do not consider depth information,
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would not be able to recognize if overlapping particles are touching or not, and thus, it is unlikely that they can
accurately predict the values of θ0 and θ1.

Recall that the objective of the present paper is to generate digital shadows that are stochastically equivalent
to the ground-truth aggregates used for model fitting. These digital shadows, which have known a 3D structure,
can then be employed to predict the structural properties of the ground-truth aggregates at significantly reduced
costs. Therefore, rather than just evaluating the accuracy of the predicted model parameters θ̂ = (θ̂Df

, θ̂ρ, θ̂0, θ̂1),
the morphological similarities of the resulting digital shadows and their ground truth in terms of further structural
descriptors, i.e., average clusters sizes and coordination numbers were also investigated. As already mentioned in
Section 3.4.2, the MAE of θ̂ is no appropriate tool to evaluate the similarity of digital shadows and their ground-truth
aggregates. For instance, an extreme mixing ratio leads to a situation where the precision of either θ̂0 or θ̂1 has only
a negligible impact on the structure of the resulting aggregates due to the corresponding material occurring very
rarely. Moreover, the structural similarity of the resulting digital shadows is more strongly affected by small errors
and rounding of CNN0(I(B)) and CNN1(I(B)) when the values of θ0 and θ1 are small, as opposed to when they are
large. In particular, errors in the prediction of ground truths for small values of θ0 and θ1 result in higher relative
errors. In such cases, large relative errors seem to have a greater impact on the structural discrepancies observed
between aggregates generated for predicted and preset model parameters, see Figure 17. This effect can be further
exacerbated by the application of subsequent rounding operations.

Although the predictor θ̂ = (θ̂Df
, θ̂ρ, θ̂0, θ̂1) proposed in this paper shows only minor discrepancies across all

descriptors listed in Table 1, adapting the model and training process to address the issues mentioned above could
enhance the similarity of digital shadows and original aggregates even further. For example, expanding the possible
values of θ0 and θ1 to the interval [1, 6], rather than just considering the discrete set {1, 2, . . . , 6}, would result in
a diversity of aggregates, while also avoiding rounding errors that can arise in the prediction of θ0 and θ1. More
specifically, this could be achieved by modifying the aggregation model ΨN ′ introduced in Eq. (7), such that the sizes
of the primary clusters are randomly distributed, instead of choosing a constant cluster size. This would achieve
a more detailed coverage of possible aggregate structures, especially for small values of θ0 and θ1. The training of
CNNs could benefit from an adapted cost function that takes the values of other model parameters into account and
assigns weights to errors based on the importance of the ground truth to be predicted.

our architecture Inception-v3 ResNet

relative run time 1 3.8 5

MAE 0.0671 0.0958 0.1762

Table 6: Comparison of network architectures: In our experiments, our network architecture outperforms both
the ResNet and Inception-v3 architectures in terms of run time and prediction quality. The displayed run time is
normalized by the runtime of our architecture. The Mean Absolute Error (MAE) is computed for the predictions D̂f

of Df , analogous to Figure 10a, for all three network architectures.
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Figure 15: Prediction error of D̂BC
f (left) and θ̂BC

Df
(right). In Subfigure (a) the quality of the prediction of the

fractal dimension per aggregate is visualized, where the colors are computed by means of a Gaussian kernel density
estimator. In Subfigure (b), the error regarding the prediction of the model parameter θDf

is shown, where batches

of size ν = 12 are used for the computation of θ̂BC
Df

.

Figure 16: Prediction error for fractal dimension (left) and mixing ratio (right), depending on the number of particles
per aggregate, for aggregates taken from the evaluation data given by the index set E. The color of dots is chosen
according to a 1D Gaussian kernel density estimator along the y-axis.
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Figure 17: Distribution of the average heterogeneous coordination number Zhetero(A) for three different values of θ0.
The dashed vertical lines show the mean value of Zhetero(A) for each of the three specifications of θ0, computed for
a total of 2400 simulated aggregates A.

5 Conclusion

A novel neural network-based method has been developed in order to determine the parameters of a stochastic 3D
model for synthetic hetero-aggregates, based on their 2D STEM images. Even though, the methodology has been
derived and evaluated on the model system of TiO2-WO3 hetero-aggregates, we believe that it can be transferred
to further material systems analogously, simply by adapting the simulation algorithm for STEM images described
in Section 2.1.3. This neural network-based approach has several advantages in hetero-aggregate analysis: (i) It is
capable of fitting a (parametric) stochastic-geometry model solely based on 2D image data. (ii) The predicted model
parameters exhibit relatively small errors. (iii) Through the use of synthetic data for the neural network training,
there are no additional costs for acquiring real training data. (iv) By fitting the stochastic-geometry model instead
of predicting individual descriptors, the entire probability distribution of the 3D morphology of aggregates is known,
allowing for the computation of further hetero-aggregate properties, which have not been considered by the neural
networks during training, see Section 4. (v) Realizations of the fitted stochastic-geometry model can be used as input
for numerical simulations and systematic optimization of aggregate structures.

Note that the method has been calibrated using model realizations of the stochastic-geometry model described
in [33], see also Section 2.1.2. Thus, the application of the trained networks to experimentally acquired STEM images
can only be done if we can assume that the probability distribution of imaged hetero-aggregates can be described by
our considered stochastic-geometry model. Otherwise, we have to adapt the model and its parameter space for these
types of aggregates, e.g., if primary particles follow another size distribution. Once an adequate stochastic-geometry
model is identified, the presented methodology can be applied analogously.

The prediction of certain material-specific parameters (e.g., the mixing ratio) can, in general, become more difficult
if the materials exhibit similar pixel value intensities in STEM images. The model system of hetero-aggregates
considered in the present paper exhibits a good material contrast in STEM images. However, only spherical particles
were used for the generation of synthetic 3D aggregates. In future work, we will investigate the effectiveness of
the proposed method for hetero-aggregates consisting of particles that feature similar STEM intensities but differ
significantly in their shape or size. Moreover, since experimentally measured aggregates feature more varied cluster
sizes than synthetically generated ones, it can be presumed that a larger variability in cluster sizes would require
more comprehensive data sets in order to make accurate predictions, but investigating this effect systematically
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is still important. Finally, in a forthcoming study, the presented method will be experimentally validated. More
precisely, experimentally acquired 3D STEM image data of hetero-aggregates will be analyzed to investigate how
well the stochastic 3D model proposed in the present paper can describe real aggregates.
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