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Abstract

We consider spatial stochastic models, which can be applied e.g. to telecom-

munication networks with two hierarchy levels. In particular, we consider

Cox processes XL and XH concentrated on the edge set T (1) of a random

tessellation T , where the points XL,n and XH,n of XL and XH can describe

the locations of low–level and high–level network components, respectively, and

T (1) the underlying infrastructure of the network, like road systems, railways,

etc. Furthermore, each point XL,n of XL is marked with the shortest path

along the edges of T to the nearest (in the Euclidean sense) point of XH . We

investigate the typical shortest path length C∗ of the resulting marked point

process, which is an important characteristic e.g. in performance analysis

and planning of telecommunication networks. In particular, we show that

the distribution of C∗ converges to simple parametric limit distributions if

a scaling factor κ converges to zero and infinity, respectively. This can be used

to approximate the density of C∗ by analytical formulae for a wide range of κ.
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1. Introduction

Asymptotic properties of spatial stochastic models are considered, which can be

applied e.g. in the analysis and planning of telecommunication networks. More

precisely, we consider stochastic models for networks with two hierarchy levels, i.e.,

there are network components of two different kinds: low-level components (LLC) and

high-level components (HLC). The locations of both HLC and LLC are represented by

points in the Euclidean plane R
2. We then associate with each HLC a certain subset

of R
2 which is called its serving zone. This is done in such a way that the serving

zones of the HLC are disjoint convex polygons which cover the whole R
2. Each LLC

is linked to the HLC in whose serving zone the LLC is located. In particular, we

assume that the serving zones are constructed as the cells of the Voronoi tessellation

with respect to the locations of HLC. This is equivalent to link each LLC to its nearest

HLC, where ”nearest” means with respect to the Euclidean distance. Furthermore,

we assume that the HLC and LLC are located on the edges of a random geometric

graph, where the link from a LLC to its nearest HLC is assumed to be the shortest

path along the edges of that graph. In the case of telecommunication networks the

edges of the random geometric graph represent the underlying infrastructure, e.g. an

inner-city street system.

Thus, we study a class of stochastic network models which has been introduced

in [10] as the Stochastic Subscriber Line Model (SSLM) for urban access networks. Note

that the SSLM is a model from stochastic geometry which provides tools for the descrip-

tion of geometric features of the network. Based on this model, stochastic econometrical

analysis can be done for real telecommunication networks, e.g. connection costs for

access networks can be determined, see [13, 14, 34, 36], where we focus on the case that

the infrastructure of the network is modeled by the edge set of a stationary random

tessellation and both the HLC and LLC are modeled by Cox processes concentrated on

this edge set. Then we are especially interested in the shortest path length along the

edge set between LLC and HLC, which is an important performance characteristic in

cost and risk analysis as well as in strategic planning of wired telecommunication. In

order to define an appropriately chosen (global) distribution of the shortest path length

we regard the so-called typical shortest path length C∗. It can be interpreted as the
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length of the shortest path from a location of LLC, which is chosen at random among

all locations of LLC, and its nearest HLC. We are then interested in the asymptotic

behaviour of the distribution of C∗ for two extreme cases of model parameters. In

particular, we show that the distribution of C∗ converges to simple parametric limit

distributions if a scaling factor κ converges to zero and infinity, respectively. This can

be used to approximate the density of C∗ by analytical formulae for a wide range of κ

which is a great advantage e.g. for the econometrical analysis of real telecommunication

networks, see [14]. The mathematical techniques, which we exploit in order to derive

our main results presented in Theorems 3.1 and 3.2, include Palm calculus and Poisson

approximation for stationary point processes, Kingman’s subadditive ergodic theorem,

and the generalized Blaschke-Petkantschin formula from geometric measure theory.

The paper is organized as follows. In Section 2 we give a short description of the

particular stochastic network model considered in the present paper. Then, in Section

3, we present the main results stated in Theorems 3.1 and 3.2. The proof of Theorem 3.2

is given in Section 4, where some details are postponed to the Appendix. In Section 5,

it is shown that the mixing and integrability conditions of Theorems 3.1 and 3.2 are

fulfilled for various examples of random tessellations. Some extensions of our results to

other performance characteristics, more general classes of random geometric graphs,

and more general connection rules are discussed in Section 5.4. Finally, Section 6

concludes the paper and gives an outlook to possible future research.

2. Stochastic modelling of hierarchical networks

To begin with we give a short description of the particular stochastic network model

considered in the present paper. For more details on this model see also [13]. Moreover,

we briefly explain the mathematical background and introduce the notation we are

using. For further details on spatial point processes and random tessellations, see e.g.

[8, 29, 30, 31]. Surveys on applications of tools from stochastic geometry to spatial

stochastic modelling of telecommunication networks can be found e.g. in [16, 40].
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2.1. Marked point processes

First we recall some basic notions and results regarding marked point processes in

R
2. They can be used to model locations of customers or equipments in telecommu-

nication networks. Let B2 denote the family of Borel sets of R
2 and N the family of

all simple and locally finite counting measures on B2. Note that each ϕ ∈ N can be

represented by the sequence {xn} of its atoms, i.e. ϕ =
∑

n δxn
, where δx is the Dirac

measure with δx(B) = 1 if x ∈ B and δx(B) = 0 if x 6∈ B. Let N denote the σ-algebra

of subsets of N generated by the sets {ϕ ∈ N : ϕ(B) = j} for j ∈ N and B ∈ B2. The

shift operator tx : N 7→ N is defined by txϕ(B) = ϕ(B + x) for x ∈ R
2 and B ∈ B2,

where B + x = {x + y : y ∈ B}. Then a point process X is a random element of the

measurable space (N,N ), where we identify X with the sequence {Xn} of its (random)

atoms, writing X = {Xn} for brevity.

Let M be a Polish space with its Borel σ-algebra BM. Then we use the notation

NM for the family of all counting measures on B2 ⊗ BM which are simple and locally

finite in the first component. Note that the atoms (xn,mn) of the counting measure

ψ =
∑

n δ(xn,mn) ∈ NM have two components: the location xn ∈ R
2 and the mark

mn ∈ M. The σ-algebra NM is defined in the same way as above and the shift operator

tx : NM 7→ NM translates the first component of the atoms of ψ ∈ NM by −x, i.e.

tx(ψ) =
∑

n δ(xn−x,mn). A random element X = {(Xn,Mn)} of (NM,NM) is then

called a marked point process.

2.2. Palm distributions

Stationarity and isotropy of (marked) point processes are defined in the usual way,

i.e., assuming the invariance of their distributions with respect to arbitrary translations

and rotations around the origin, respectively. By λ > 0 we denote the intensity of a

stationary marked point process X = {(Xn,Mn)}, i.e. λ = E#{n : Xn ∈ [0, 1]2}, and

the Palm mark distribution P
o
X : BM → [0, 1] of X is given by

P
o
X(G) =

E#{n : Xn ∈ [0, 1)2,Mn ∈ G}
λ

, G ∈ BM . (2.1)

A random variable M∗ distributed according to P
o
X is called the typical mark of X .

Furthermore, two jointly stationary marked point processes X(1) = {(X(1)
n ,M

(1)
n )}

and X(2) = {(X(2)
n ,M

(2)
n )} with intensities λ1 and λ2 and mark spaces M1 and M2,
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respectively, will be considered as random element Y = (X(1), X(2)) of the product

space NM1,M2 = NM1 ×NM2 . The Palm distribution P
∗
X(i) of Y with respect to the i-th

component, i = 1, 2, is then defined on NM1 ⊗NM2 ⊗ BMi
by

P
∗
X(i)(A×G) =

E#{n : X
(i)
n ∈ [0, 1)2,M

(i)
n ∈ G, t

X
(i)
n
Y ∈ A}

λi
, (2.2)

where A ∈ NM1 ⊗NM2 and G ∈ BMi
. Note that the Palm mark distribution P

o
X(i) of

X(i) can be obtained from P
∗
X(i) as a marginal distribution.

2.3. Random tessellations

As a model for the underlying random geometric graph we consider the edge set

of random tessellations of R
2. Note that a random tessellation T is a locally finite

partition {Ξn} of R
2 into random (compact and convex) polygons Ξn, which are called

the cells of T . We can also regard T as a marked point process {(α(Ξn),Ξo
n)}, where

the shifted cells Ξo
n = Ξn −α(Ξn) contain the origin. The points α(Ξn) ∈ Ξn ⊂ R

2 are

then called the nuclei of the cells Ξn of T . Furthermore, we can identify T with the

edge set T (1) =
⋃

n ∂Ξn of T . Note that T (1) is a random closed set in R
2, i.e., T (1) is

a random element of (F ,B(F)), where F denotes the family of all closed subsets of R
2

and B(F) is the smallest σ-algebra of subsets of F which contains the ,,hitting sets”

FC = {B ∈ F : B ∩C 6= ∅} for all compact C ∈ B2.

If T is stationary, i.e., T (1) d
= T (1) + x for each x ∈ R

2, then the intensity γ of

T is defined as γ = Eν1(T
(1) ∩ [0, 1]2), i.e. the mean length of T (1) per unit area,

where ν1 denotes the 1-dimensional Hausdorff measure. In the following we always

assume that T is a (normalized) stationary tessellation with Eν1(T
(1) ∩ [0, 1]2) = 1.

Furthermore, for each γ > 0 we consider the scaled tessellation Tγ with intensity γ

which is defined by Tγ = T/γ, i.e., we scale the edge set T (1) with 1/γ getting T
(1)
γ

such that Eν1(T
(1)
γ ∩ [0, 1]2) = γ.

A random tessellation T is called isotropic if the distribution of T (1) is invariant

with respect to rotations around the origin. Furthermore, a stationary tessellation T

is called mixing if

lim
|x|−→∞

P(T (1) ∈ A, T (1) + x ∈ A′) = P(T (1) ∈ A) P(T (1) ∈ A′)
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for any A,A′ ∈ B(F). Note that for any T which is mixing it holds that

P(T (1) ∈ A) = 1 or P(T (1) ∈ A) = 0 for each A ∈ I(F), (2.3)

where I(F) denotes the sub-σ-algebra of invariant sets of B(F), i.e. A+ x = A for all

A ∈ I(F) and x ∈ R
2. A stationary tessellation T which satisfies condition (2.3) is

said to be ergodic.

2.4. Cox processes on edge sets

For any γ > 0, we consider Cox point processes XH = {XH,n} and XL = {XL,n}
concentrated on T

(1)
γ , in order to model the locations of HLC and LLC, respectively. In

particular, we assume that XH is a Cox process on T
(1)
γ with linear intensity λℓ which

is constructed by placing homogeneous Poisson processes on the edges of Tγ with linear

intensity λℓ. The random driving measure ΛXH
: B2 −→ [0,∞] of XH is then given by

ΛXH
(B) = λℓν1(B ∩ T (1)

γ ), B ∈ B2 . (2.4)

Analogously,XL is a Cox process on T
(1)
γ with linear intensity λ′ℓ which is constructed in

the same way, i.e., by placing Poisson processes on the edges of Tγ with linear intensity

λ′ℓ. Thus, XH and XL are Cox processes concentrated on the same edge set T
(1)
γ , where

we assume that XH andXL are conditionally independent given Tγ . Furthermore, note

that XH and XL are stationary, isotropic, and ergodic if T is stationary, isotropic, and

ergodic, respectively. The planar intensities λ and λ′ of XH and XL are given by

λ = λℓγ and λ′ = λ′ℓγ.

2.5. Serving zones and shortest paths

Let TH = {ΞH,n} denote the Voronoi tessellation induced by the points XH,n of the

Cox process XH = {XH,n}, i.e.

ΞH,n = {x ∈ R
2 : |x−XH,n| ≤ |x−XH,m| for all m 6= n} .

The cells ΞH,n of TH are considered to be the serving zones of HLC. By means of the

four modelling components Tγ , XH , XL and TH we can construct the marked point

process XL,C = {(XL,n, Cn)}, where the mark Cn is the length of the shortest path

from XL,n to XH,j along the edge set T
(1)
γ of Tγ provided that XL,n ∈ ΞH,j . It is not
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(a) PVT as infrastructure model (b) PLT as infrastructure model

Figure 1: Higher-level components with their serving zones (black) and lower-level compo-

nents (grey with black boundary) with shortest paths (dashed) along the edge set (grey).

difficult to show that XL,C is a stationary and isotropic marked point process if Tγ is

stationary and isotropic, respectively. Realizations of service zones and shortest paths

are displayed in Figure 1(a) and (b) for Tγ being a Poisson-Voronoi tessellation (PVT)

and a Poisson line tessellation (PLT), respectively.

The model characteristic we are mainly interested in is the distribution of the typical

mark C∗ ofXL,C . Thus, we are interested in the Palm mark distribution P
o
XL,C

ofXL,C ,

i.e., the distribution of the typical shortest path length.

Note that the realizations ofXL,C can be constructed from the corresponding realiza-

tions of XL and XH,S , where XH,S = {(XH,n, S
o
H,n)} is a stationary marked point

process with marks So
H,n = (T

(1)
γ ∩ ΞH,n) − XH,n. Thus, instead of XL,C , we can

consider the vector Y = (XL, XH,S) and the Palm distribution P
∗
XL

of Y with respect

to XL, which has been introduced in (2.2). Let (X∗
L, X̃H,S) be distributed according

to P
∗
XL

, where we use the notation X̃H,S = {(X̃H,n, S̃
o
H,n)} and

T̃ (1)
γ =

⋃

n≥1

(
S̃o

H,n + X̃H,n

)
. (2.5)

Note that X̃H = {X̃H,n} is a (non-stationary) Cox process on T̃
(1)
γ with linear intensity

λℓ. Moreover, by X̃H,0 we denote the closest point (in the Euclidean sense) of {X̃H,n}
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to the origin. Then, the typical shortest path length C∗ can be given by C∗ = c(X̃H,0),

where c(X̃H,0) denotes the length of shortest path from the origin to X̃H,0, along the

edges of T̃
(1)
γ . In the following we always assume that the joint distribution of C∗, X̃H

and T̃γ is given by P
∗
XL

.

3. Limit theorems for the typical shortest path length

We investigate the asymptotic behavior of the distribution of C∗ for two different

cases: γ → 0 and γ → ∞, i.e., unboundedly sparse edge sets and unboundedly dense

edge sets, respectively. For γ → 0, we show in Theorem 3.1 that the distribution of C∗

converges weakly to an exponential distribution, where no specific assumption on the

underlying stationary tessellation T is needed. Furthermore, for γ → ∞ and T being

a stationary and isotropic random tessellation which is mixing, we get in Theorem 3.2

that the distribution of C∗ converges weakly to a Weibull distribution.

3.1. Scaling invariance property

Recall that the stochastic network model introduced in Section 2 and, in particular,

the distribution of C∗ is fully specified by T , γ, λℓ and λ′ℓ. Moreover, it can be shown

(see e.g. [13, 34]) that the distribution of C∗ does not depend on λ′ℓ. Therefore, we

only regard the parameters γ and λℓ in the following. Sometimes we use the notation

C∗ = C∗(γ, λℓ) to emphasize that the distribution of C∗ depends on γ and λℓ.

Furthermore, a scaling invariance property holds for this model. If the value of the

quotient κ = γ/λℓ is constant, then the structure of XH,S is fixed, but on different

scales for different parameter vectors (γ, λℓ) = (κλℓ, λℓ). We are interested in the

limiting behavior of the distribution of C∗ for κ→ 0 with λℓ fixed and for κ→ ∞ with

λ = λℓγ fixed. In Figure 2 realizations of XH,S are shown for two (extremely small and

large) values of κ, where the realization of T is sampled from a PLT. One can see that

for small values of κ the segment systems within the serving zones mainly consist of

one single segment only, whereas for large values of κ the networks inside the serving

zones become rather dense.

3.2. Asymptotic exponential distribution for κ → 0

First we regard the case that κ = γ/λℓ → 0 with λℓ fixed, i.e., γ → 0.
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(a) κ = 0.5 (b) κ = 1000

Figure 2: Realizations of XH,S = {(XH,n, So
H,n)} for extremal values of κ

Theorem 3.1. Let T be an arbitrary stationary tessellation. Then, for any fixed

λℓ > 0, it holds that

C∗(γ, λℓ)
d→ Z as γ → 0 , (3.1)

where
d→ denotes convergence in distribution and Z ∼ Exp(2λℓ), i.e., the random

variable Z is exponentially distributed with expectation (2λℓ)
−1.

Proof. Let Rγ = max{r > 0 : B(o, r) ∩ L̃o
γ = B(o, r) ∩ T̃ (1)

γ }, where B(o, r) denotes

the ball centered at the origin with radius r and L̃o
γ is the segment containing the origin

of the random edge set T̃
(1)
γ introduced in (2.5). It is not difficult to see that

lim
γ→0

Rγ = ∞ a.s. (3.2)

Recall that C∗ = c(X̃H,0), where X̃H,0 is the closest point to the origin of the point

process X̃H = {X̃H,n} of HLC under P
∗
XL

, and note that the values of the distribution

function FC∗ : (0,∞) → (0, 1) of C∗ can be written as

FC∗(x) = P(X̃H,0 ∈ B(o,Rγ)) P(C∗ ≤ x | X̃H,0 ∈ B(o,Rγ))

+ P(X̃H,0 6∈ B(o,Rγ)) P(C∗ ≤ x | X̃H,0 6∈ B(o,Rγ))

for each x ≥ 0. It can be shown (see e.g. [9]) that X̃H is a Cox process which consists

of homogeneous Poisson processes with linear intensity λℓ on the edges of T̃
(1)
γ . This
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implies that

P(C∗ ≤ x | X̃H,0 ∈ B(o,Rγ)) =
P(min{Z1, Z2} ≤ x,min{Z1, Z2} ≤ Rγ)

P(X̃H,0 ∈ B(o,Rγ))

for each x > 0, where the random variables Z1 and Z2 are independent, exponentially

distributed with parameter λℓ and independent of Rγ . Furthermore, we get that

P(X̃H,0 6∈ B(o,Rγ)) = P(min{Z1, Z2} > Rγ) = E exp(−2λℓRγ) ,

since min{Z1, Z2} is exponentially distributed with parameter 2λℓ and independent of

Rγ . Thus, using (3.2), it follows that

lim
γ→0

P(X̃H,0 6∈ B(o,Rγ)) = 0 and lim
γ→0

P(X̃H,0 ∈ B(o,Rγ)) = 1

and, consequently, limγ→0 FC∗(x) = P(min{Z1, Z2} ≤ x) = 1 − exp(−2λℓx) for each

x ≥ 0.

Note that the case κ = γ/λℓ → 0 with γ fixed and λℓ → ∞ can be treated in the

following way. Due to the scaling invariance property mentioned in Section 3.1 we have

1

λℓ
C∗(γ, λℓ)

d
= C∗(γ/λℓ, 1)

for any γ, λℓ > 0. Thus, Theorem 3.1 yields that

1

λℓ
C∗(γ, λℓ)

d→ Z as λℓ → ∞ ,

where Z ∼ Exp(2).

3.3. Asymptotic Weibull distribution for κ → ∞

In this section we assume that T is a stationary and isotropic random tessellation

which is mixing. Furthermore, we assume that

E ν2
1 (∂Ξ∗) <∞ , (3.3)

where ν1(∂Ξ∗) denotes the circumference of the typical cell Ξ∗ of T .

We investigate the asymptotic behavior of the distribution of C∗ = C∗(γ, λℓ) for

κ → ∞, where γ → ∞ and λℓ → 0 such that λℓγ = λ is fixed. In particular, we show

that C∗ converges in distribution to ξZ, where ξ ≥ 1 is a certain constant which is
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multiplied by the (random) Euclidean distance Z from the origin to the nearest point

of a stationary Poisson process of intensity λ. Then, it is easy to see that Z as well as

ξZ have Weibull distributions.

Theorem 3.2. Let Z ∼ Wei(λπ, 2) for some λ > 0. Then there exists a constant

ξ ≥ 1 such that

C∗(γ, λℓ)
d→ ξZ as κ→ ∞ (3.4)

provided that γ → ∞ and λℓ → 0 with λℓγ = λ, where ξZ ∼Wei(λπ/ξ2, 2).

The proof of Theorem 3.2 is split into several steps. We first show in Lemma 4.2

that under the Palm probability measure P
∗
XL

, the Euclidean distance |X̃H,0| from the

origin to the nearest point X̃H,0 of the point process X̃H = {X̃H,n} of HLC converges

in distribution to the corresponding characteristic of a stationary Poisson process with

intensity λ. Furthermore, in Lemma 4.4, we show that for some constant ξ ≥ 1 the

difference between ξ|X̃H,0| and the shortest path length C∗ = C∗(γ, λℓ) from the origin

to X̃H,0 along the edge set T̃
(1)
γ converges in probability to zero. Then, combining the

results of Lemmas 4.2 and 4.4, the assertion of Theorem 3.2 follows.

4. Proof of Theorem 3.2

4.1. Some auxiliary results on convergence of point processes

In the proofs of Lemmas 4.1 and 4.2 which will be given below, we use two classic

results regarding the convergence in distribution of point processes, see e.g. [8, 19, 25].

Note that a sequence of point processes X(1), X(2), . . . in R
2 is said to converge in

distribution to a point process X in R
2 if

lim
m→∞

P(X(m)(B1) = i1, . . . , X
(m)(Bk) = ik) = P(X(B1) = i1, . . . , X(Bk) = ik)

for any k ≥ 1, i1, . . . , ik ≥ 0 and for all finite sequences of bounded sets B1, . . . , Bk ∈ B2

which satisfy the condition P(X(∂Bj) > 0) = 0 for each j = 1, . . . , k. In this case we

shortly write X(m) =⇒ X .

Let X = {Xn} be an arbitrary ergodic point process in R
2 with P(X(R2) = 0) = 0,

and let λ ∈ (0,∞) denote the intensity of X . Then, the following limit theorem

for independently thinned and appropriately re-scaled versions of X is true. For each
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c ∈ (0, 1), let X(c) denote a point process which arises from X by independent thinning,

where each atom Xn of X is deleted with probability 1 − c (and ,,survives” with

probability c). Furthermore, let Y (c) be a re-scaled version of X(c), where Y (c)(B) =

X(c)(B/
√
c) for each B ∈ B2. Then, for each c ∈ (0, 1), the point process Y (c) is

stationary with the same intensity λ as X , and

Y (c) =⇒ Y if c→ 0, (4.1)

where Y is a stationary Poisson process in R
2 with intensity λ, see e.g. Section 11.3

of [8] or Theorem 7.3.1 in [25]. Moreover, the following continuity property of Palm

distributions holds. Let X,X(1), X(2), . . . be stationary point processes in R
2 such

that P(X(R2) = 0) = P(X(m)(R2) = 0) = 0 for each m ≥ 1 and let λ, λ(1), λ(2), . . .

denote the intensity of X,X(1), X(2), . . ., respectively. If λm = λ for each m ≥ 1 and

X(m) =⇒ X as m→ ∞, then

Y (m) =⇒ Y as m→ ∞, (4.2)

where Y, Y (1), Y (2), . . . are point processes in R
2 whose distribution is equal to the

Palm distribution of X,X(1), X(2), . . ., respectively, see e.g. Proposition 10.3.6 in [25].

4.2. Euclidean distance from the typical LLC to its closest HLC

Throughout this section we assume that the underlying tessellation T is ergodic. In

order to prove that the Euclidean distance |X̃H,0| from the typical LLC to its closest

HLC is asymptotically Weibull distributed, we first show that the (stationary) Cox

process XH converges in distribution to a homogeneous Poisson process if κ → ∞
provided that λℓγ = λ is constant.

Lemma 4.1. If κ→ ∞, where λℓγ = λ for some constant λ ∈ (0,∞), then XH =⇒ Y ,

where Y is a stationary Poisson process with intensity λ.

Proof. For each γ > 1, let XH = XH(γ) denote the Cox process of HLC with

parameters γ and λℓ, where λℓ = λ/γ for some constant λ ∈ (0,∞). Note that

the Cox process XH(γ) can be obtained from XH(1) by independent thinning with

survival probability c = 1/γ and by subsequent re-scaling with scaling factor
√

1/γ.

Furthermore, the Cox process XH(1) is ergodic, since T is ergodic. Thus, using (4.1),

we get that XH(γ) =⇒ Y as γ → ∞.
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Lemma 4.2. Let Z ∼ Wei(λπ, 2) for some λ > 0. Then |X̃H,0| d→ Z as κ → ∞
provided that γ → ∞ and λℓ → 0 such that λℓγ = λ.

Proof. Let X∗
H(γ) be a point process in R

2 whose distribution is equal to the Palm

distribution of XH = XH(γ). Furthermore, let Y be a stationary Poisson process with

intensity λ. Note that the distribution of Y + δo is then equal to the Palm distribution

of Y , see e.g. Proposition 13.1.VII in [8]. Thus, using (4.2), Lemma 4.1 gives that

X∗
H(γ) =⇒ Y + δo (4.3)

as γ → ∞ and λℓ → 0, where λℓγ = λ. Since XL and XH are Cox processes

concentrated on T
(1)
γ which are conditionally independent given T

(1)
γ , we get that

X̃H + δ0 and the Palm version X∗
H of XH have the same distributions. This is an

easy consequence of the representation formula for the Palm distribution of stationary

Cox processes, see e.g. Section 5.2 in [31]. In particular, this gives that for each r > 0

lim
γ→∞

P(|X̃H,0| > r) = lim
γ→∞

P(X̃H(B(o, r)) = 0)

= lim
γ→∞

P((X̃H + δo)(B(o, r)) = 1)

= lim
γ→∞

P(X∗
H(B(o, r)) = 1)

= P((Y + δ0)(B(o, r)) = 1)

= P(Y (B(o, r)) = 0) ,

where we used (4.3) in the last but one equality. Thus, for each r > 0,

lim
γ→∞

P(|X̃H,0| > r) = P(Y (B(o, r)) = 0) = exp(−λπr2) ,

which means that |X̃H,0| d→ Z ∼ Wei(λπ, 2).

4.3. Shortest path length vs. scaled Euclidean distance

In this section we assume that T is a stationary and isotropic random tessellation

which is mixing. Furthermore, we assume that the integrability condition (3.3) is

satisfied. Then, we can show that for some constant ξ ≥ 1 the difference between

ξ|X̃H,0| and the shortest path length C∗ = C∗(γ, λℓ) from the origin to X̃H,0 along

the edge set T̃
(1)
γ converges in probability to zero. In order to show this we need the

following auxiliary result.



14 F. Voss, C. Gloaguen and V. Schmidt

Lemma 4.3. Let T̃
(1)
γ,ε =

{
u ∈ T̃

(1)
γ :

∣∣c(u) − ξ|u|
∣∣ < ε

}
, where ξ ≥ 1 is some constant

and c(u) denotes the length of the shortest path from u to the origin along the edges of

T̃
(1)
γ . If γ → ∞ and λℓ → 0, where λℓγ = λ is fixed, then there exists ξ ≥ 1 such that

for each ε > 0 and r > 0

lim
γ→∞

E exp
(
− λ

γ
ν1
(
T̃ (1)

γ \T̃ (1)
γ,ε ∩B(o, r)

))
= 1 . (4.4)

The proof of this lemma is postponed to the Appendix. Now, using Lemma 4.3, we

are able to complete the proof of Theorem 3.2 by showing that the following is true.

Lemma 4.4. If γ → ∞ and λℓ → 0 such that λℓγ = λ, then there is a constant ξ ≥ 1

with C∗(γ, λℓ) − ξ|X̃H,0| P→ 0, where
P→ denotes convergence in probability.

Proof. We have to show that there exists a constant ξ ≥ 1 such that for any ε > 0

and δ > 0 we can choose γ0 > 0 with

P
(∣∣C∗ − ξ|X̃H,0|

∣∣ > ε
)
≤ δ

for all γ > γ0. Note that

P
(∣∣C∗ − ξ|X̃H,0|

∣∣ > ε
)

= P
(∣∣C∗− ξ|X̃H,0|

∣∣ > ε, |X̃H,0| ≤ r
)

+ P
(∣∣C∗− ξ|X̃H,0|

∣∣ > ε, |X̃H,0| > r
)
,

where r > 0 is an arbitrary fixed number. Since

P
(
|X̃H,0| > r

)
−→ e−λπr2

as γ −→ ∞ ,

see Lemma 4.2, we can choose r > 0 such that P
(
|X̃H,0| > r

)
< δ/2 for all γ > 0

sufficiently large. Thus, it is enough to show that there exists γ0 > 0 such that

P
(∣∣C∗− ξ|X̃H,0|

∣∣ > ε, |X̃H,0| ≤ r
)
≤ δ/2 for all γ > γ0. Let Ñ = X̃H(B(o, r)) denote

the number of points of X̃H in B(o, r). Then we have

P
(∣∣C∗− ξ|X̃H,0|

∣∣ > ε, |X̃H,0| ≤ r
)

≤ E

(
∞∑

k=1

P(Ñ = k | T̃γ) P

(
max

i=1,...,k

(∣∣c(Yi) − ξ|Yi|
∣∣) > ε

∣∣∣ T̃γ , Ñ = k
))

= E

(
∞∑

k=1

P(Ñ = k | T̃γ)
(
1 − P

(∣∣c(Y1) − ξ|Y1|
∣∣ ≤ ε

∣∣ T̃γ

)k)
)
,
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where the points Y1, . . . , Yk are conditionally independent and identically distributed

according to ν1
(
· ∩ T̃ (1)

γ ∩ B(o, r)
)
/ν1
(
T̃

(1)
γ ∩ B(o, r)

)
for given T̃γ and Ñ = k. In

particular, for the conditional probability in the latter expression, we have

P
(∣∣c(Y1) − ξ|Y1|

∣∣ ≤ ε | T̃γ

)
=

∫

T̃
(1)
γ ∩B(o,r)

1I[−ε,ε](c(u) − ξ|u|) ν1(du)

ν1(T̃
(1)
γ ∩B(o, r))

=
ν1
(
T̃

(1)
γ,ε ∩B(o, r)

)

ν1
(
T̃

(1)
γ ∩B(o, r)

) .

Using that Ñ ∼ Poi(λ̃) with λ̃ = λℓν1
(
T̃

(1)
γ ∩B(o, r)

)
given T̃γ , we get

∞∑

k=1

P(Ñ = k | T̃γ)
(
1 − P

(∣∣c(Y1) − ξ|Y1|
∣∣ ≤ ε

∣∣ T̃γ

)k)

= 1 −
∞∑

k=0

e−λ̃ λ̃
k

k!

(λℓν1
(
T̃

(1)
γ,ε ∩B(o, r)

)

λ̃

)k

= 1 −
∞∑

k=0

e−λ̃ 1

k!

(
λℓν1

(
T̃ (1)

γ,ε ∩B(o, r)
))k

= 1 − e−λℓ

(
ν1(T̃ (1)

γ ∩B(o,r))−ν1(T̃
(1)
γ,ε∩B(o,r))

)
.

Thus we have

lim
γ→∞

P
(∣∣C∗−|X̃H,0|

∣∣ > ε, |X̃H,0| ≤ r
)

≤ 1− lim
γ→∞

E exp
(
− λ

γ
ν1
(
T̃ (1)

γ \T̃ (1)
γ,ε ∩B(o, r)

))
.

Using Lemma 4.3 this gives that limγ→∞ P
(∣∣C∗−|X̃H,0|

∣∣ > ε, |X̃H,0| ≤ r
)

= 0, which

completes the proof.

5. Examples

Recall that in Theorem 3.2 we assumed that the underlying tessellation T is sta-

tionary and isotropic. The examples of tessellations discussed in the present section

obviously possess these properties. Furthermore, we assumed in Theorem 3.2 that T

is mixing and fulfills the integrability condition (3.3). We first show that the mixing

condition is satisfied for a wide class of tessellations. Moreover, we also show that (3.3)

is true for these tessellations.

The tessellation models considered in the literature focus mainly on PLT and PVT

as well as on Poisson-Delaunay tessellations (PDT) and on iterated tessellations con-
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structed from these basic tessellations of Poisson type, see e.g. [1]–[5], [9]–[14] and [34]–

[38]. Here, we assume that an iterated tessellation is either a TI/TII-superposition or

a TI/TII-nesting of tessellations TI and TII as defined e.g. in [2, 24, 38]. Note that the

edge set of a TI/TII-superposition is given by the union T
(1)
I ∪T (1)

II , where TI and TII are

independent. Furthermore, a TI/TII nesting is constructed by subdividing each cell of

TI by independent copies of TII . We show that for these important models Theorem 3.2

can be applied. Furthermore, if T is a PLT or a TI/TII-superposition/nesting with

TI being a PLT, then we can even calculate the constant ξ explicitly that appears in

Theorem 3.2. On the other hand, if T is a PDT, we get an upper bound for ξ.

5.1. Mixing tessellations

In order to apply Theorem 3.2 we have to show that the underlying tessellation T

is mixing, where we will use the following criterion to show that a stationary random

closed set is mixing.

Lemma 5.1. A stationary random closed set Ξ in R
2 is mixing if and only if

lim
|x|→∞

P(Ξ ∩ C1 = ∅, Ξ ∩ (C2 + x) = ∅) = P(Ξ ∩ C1 = ∅) P(Ξ ∩C2 = ∅) (5.1)

for all C1, C2 ∈ R, where R is the family of all subsets of R
2 which are finite unions

of closed balls with rational radii and centres with rational coordinates.

Note that the statement of Lemma 5.1 is essentially Lemma 4 in [17], see also

Theorem 9.3.2 in [30], where the (stronger) condition is considered that (5.1) holds for

all compact sets C1, C2 ⊂ R
2. However, it is easy to see that it suffices to assume that

(5.1) holds for the separating class R; see also Section 1.4 of [28]. To make this clear,

we only have to show that E = {FC0

C1,...,Ck
: C0, . . . , Ck ∈ R′, k ≥ 0} is a semi-algebra

which generates B(F), where R′ = R∪ ∅ and

FC0

C1,...,Ck
= {F ∈ F : F ∩ C0 = ∅, F ∩ C1 6= ∅, . . . , F ∩ C1 6= ∅} .

Note that the family R′ is union-stable. Thus, by Lemma 2.2.2 in [30], we get that

E is a semi-algebra. Moreover, let G ⊂ R
2 denote an open set, then G =

⋃∞
i=1 Ci

for some C1, C2, . . . ∈ R′ and FG = {F ∈ F : F ∩ G 6= ∅} =
⋃∞

n=1 F⋃n
i=1 Ci

, thus

FG ∈ σ(E). Since {FG : G ⊂ R
2 open} generates B(F), we get that σ(E) = B(F).
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Now the statement of Lemma 5.1 can be proven by exactly the same arguments used

in the proof of Lemma 4 in [17].

It is well known that T is mixing if T is a PDT, PVT and PLT, respectively, see e.g.

Chapter 10.5 in [30]. Furthermore, using Lemma 5.1, we can show that T is mixing if

T is an iterated tessellation constructed from these basic tessellations of Poisson type.

Lemma 5.2. The tessellation T is mixing if T is a TI/TII-superposition of two mixing

tessellations TI and TII, or a TI/TII-nesting of a mixing initial tessellation TI and

any stationary component tessellation TII .

Proof. Suppose first that T is a TI/TII-superposition. Then, for any C1, C2 ∈ R

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅)

= P(T
(1)
I ∩ C1 = ∅, T (1)

I ∩ (C2 + x) = ∅, T (1)
II ∩ C1 = ∅, T (1)

II ∩ (C2 + x) = ∅)

= P(T
(1)
I ∩ C1 = ∅, T (1)

I ∩ (C2 + x) = ∅) P(T
(1)
II ∩C1 = ∅, T (1)

II ∩ (C2 + x) = ∅) ,

since TI and TII are independent. Thus, using Lemma 5.1, we get that T is mixing

if TI and TII are mixing. Let now T be a TI/TII -nesting and assume that C1 =

∪n
j=1Bj , C2 = ∪n+m

j=n+1Bj for closed balls B1, . . . , Bn+m ⊂ R
2 with rational radii and

centres with rational coordinates. Let Ξ1,Ξ2, . . . be the cells of the initial tessellation

TI = {Ξn}, let D denote the family of all decompositions of the index set {1, . . . , n+m}
into nonempty subsets, and for J = {J1, . . . , Jk} ∈ D consider the set

AJ (x) = {∪j∈Ji
(Bj + x1I{j>n}) ⊂ int Ξji

, i = 1, . . . , k, Ξji
6= Ξjl

for ji 6= jl} , (5.2)

i.e., each of the sets ∪j∈Ji
(Bj + x1I{j>n}) is contained in a different cell of TI . Using

this notation we get

lim
|x|→∞

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅)

=
∑

J∈D

lim
|x|→∞

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅, AJ (x)) .

Since the cells Ξ1,Ξ2, . . . of TI are finite with probability 1, we have

lim
|x|→∞

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅, AJ(x)) = 0

if there are i ≤ n and j > n with i, j ∈ Jl for some l ∈ {1, . . . , k}. On the other hand,

suppose that J = {J1, . . . , Jk} is a decomposition of {1 . . . , n+m} with Ji ⊂ {1, . . . , n}
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for i = 1, . . . , l and Ji ⊂ {n+ 1, . . . , n+m} for i = l+ 1, . . . , k. Then we get that

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅, AJ (x))

= P(AJ (x), BJi
∩ T (1)

II,i = ∅, i = 1, . . . , l, BJi
+ x ∩ T (1)

II,i = ∅, i = l + 1, . . . , k) ,

where BJi
= ∪j∈Ji

Bj and TII,1, . . . , TII,k are independent copies of TII which are

independent of TI . Thus we have

P(AJ (x), BJi
∩ T (1)

II,i = ∅, i = 1, . . . , l, BJi
+ x ∩ T (1)

II,i = ∅, i = l + 1, . . . , k)

= P(AJ (x)) P(BJi
∩ T (1)

II,i = ∅, i = 1, . . . , l) P(BJi
∩ T (1)

II,i = ∅, i = l + 1, . . . , k) .

Moreover, since TI is mixing, we get

lim
|x|→∞

P(AJ (x)) = P(AJ′(o)) P(AJ′′ (o)) ,

where J ′ = {J1, . . . , Jl} and J ′′ = {Jl+1, . . . , Jk} are the decompositions of {1, . . . , n}
and {n+1, . . . , n+m}, respectively, induced by J , and AJ′(o) resp. AJ′′(o) are defined

analogously to (5.2). Summarizing the above considerations, we get

lim
|x|→∞

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅, AJ(x))

= P(AJ′(o), BJi
∩ T (1)

II,i = ∅, i = 1, . . . , l)

× P(AJ′′(o), BJi
∩ T (1)

II,i = ∅, i = l + 1, . . . , k)

= P(T (1) ∩ C1 = ∅, AJ′(o)) P(T (1) ∩ C2 = ∅, AJ′′(o)) ,

which yields

lim
|x|→∞

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅)

=
∑

J∈D

lim
|x|→∞

P(T (1) ∩C1 = ∅, T (1) ∩ (C2 + x) = ∅, AJ (x))

=
∑

J′∈D′

∑

J′′∈D′′

P(T (1) ∩C1 = ∅, AJ′(o)) P(T (1) ∩ C2 = ∅, AJ′′(o))

= P(T (1) ∩ C1 = ∅) P(T (1) ∩ C2 = ∅) ,

where D′, D′′ is the family of all decompositions of {1, . . . , n} and {n+ 1, . . . , n+m},
respectively. Thus, by Lemma 5.1, the nested tessellation T is mixing.
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5.2. Integrability condition (3.3)

The next result provides several classes of stationary tessellations such that the

second moment of the circumference of their typical cell is finite, where R(Ξ) denotes

the radius of the minimal ball containing the random convex polygon Ξ.

Lemma 5.3. If T is a PVT, PDT and PLT, respectively, then ER2(Ξ∗) < ∞ and,

consequently,

Eν2
1 (∂Ξ∗) <∞ . (5.3)

Moreover, (5.3) holds if T is a a TI/TII-superposition/nesting such that

max{ER2(Ξ∗
I),ER

2(Ξ∗
II)} <∞ , (5.4)

where Ξ∗
I and Ξ∗

II is the typical cell of TI and TII, respectively.

Proof. Note that

Eν2
1 (∂Ξ∗) ≤ π2

ER2(Ξ∗) (5.5)

holds for the typical cell Ξ∗ of any stationary tessellation T . Furthermore, if T is

a PDT, then it is well-known that ER2(Ξ∗) < ∞. This result goes back to [26],

see also Theorem 7.5 in [27] and Theorem 10.4.4 in [30]. Similarly, it is well known

that ER2(Ξ∗) < ∞ holds if T is a PVT or PLT, see e.g. [7]. If T = TI/TII is an

iterated tessellation with cell intensity λT , then we can use Proposition 3.1 in [23] and

Campbell’s theorem in order to get

Eν2
1 (∂Ξ∗) =

λI

λT
E

( ∑

Ξi∈TII

ν2
1(∂(Ξi ∩ Ξ∗

I)) 1I{Ξi∩Ξ∗

I
6=∅}

)

=
λIλII

λT
E

∫

R2

ν2
1 (∂(Ξ∗

II + x ∩ Ξ∗
I)) 1I{Ξ∗

II
+x∩Ξ∗

I
6=∅} ν2(dx) ,

where λI , λII and Ξ∗
I ,Ξ

∗
II denote the cell intensities and the typical cells, respectively,

of TI and TII . Note that we can assume that Ξ∗
I and Ξ∗

II are independent random

convex bodies. Since ν2
1(∂(Ξ∗

II + x ∩ Ξ∗
I)) ≤ min{ν2

1(∂Ξ∗
I), ν

2
1 (∂Ξ∗

II)} we get

Eν2
1 (∂Ξ∗) ≤ λIλII

λT
E

(
min{ν2

1(∂Ξ∗
I), ν

2
1 (∂Ξ∗

II)}ν2(Ξ̌∗
II ⊕ Ξ∗

I)
)

≤ 4π λIλII

λT
E

(
min{ν2

1(∂Ξ∗
I), ν

2
1(∂Ξ∗

II)} max{R2(Ξ∗
I), R

2(Ξ∗
II)}

)
,

where in the latter inequality we used that

ν2(Ξ̌
∗
II ⊕ Ξ∗

I) ≤ πR2(Ξ̌∗
I ⊕ Ξ∗

II) ≤ 4πmax{R2(Ξ∗
I), R

2(Ξ∗
II)} .
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Using (5.5) and the independence of Ξ∗
I and Ξ∗

II , this gives

Eν2
1 (∂Ξ∗) ≤ 4π3 λIλII

λT
E

(
min{R2(Ξ∗

I), R
2(Ξ∗

II)} max{R2(Ξ∗
I), R

2(Ξ∗
II)}

)

≤ 4π3 λIλII

λT
ER2(Ξ∗

I) ER2(Ξ∗
II) < ∞ ,

provided that (5.4) holds.

5.3. Asymptotic Weibull distribution of shortest path lengths

In Sections 5.1 and 5.2 we showed that the assumptions of Theorem 3.2 are ful-

filled for several classes of random tessellations T . Thus, we are now able to apply

Theorem 3.2 to these tessellations.

Corollary 5.1. Let Z ∼Wei(λπ, 2) and let T be a PDT, PVT or PLT, or an iterated

tessellation T = TI/TII such that condition (5.4) is fulfilled, where T is either

1. a superposition of two mixing tessellations TI and TII , or

2. a nesting of a mixing initial tessellation TI and any stationary component tessel-

lation TII.

Then C∗ d→ ξZ for some constant ξ ≥ 1 provided that γ → ∞ and λℓ → 0 such that

λℓγ = λ. Furthermore, if T is a PLT or a TI/TII-superposition/nesting, where TI is

a PLT, then ξ = 1. If T is a PDT, then ξ ≤ 4/π ≈ 1.27.

Proof. The first part of the assertion follows from Theorem 3.2 if the results of Lem-

mas 5.2 and 5.3 as well as the comments immediately before Lemma 5.2 are taken into

account. Now we consider the cases that T is a PLT, a TI/TII-superposition/nesting

with a PLT TI , or a PDT. To begin with, let T be a PLT with intensity 1. Then,

the edge set T̃
(1)
γ of the tessellation T̃γ introduced in Section 2.5 is generated by a

random sequence of lines L0, L1, . . . , where L1, L2, . . . form the edge set T
(1)
γ of the

(stationary and isotropic) PLT Tγ and L0 is an isotropic line through the origin o,

which is independent of Tγ . Thus we have

1

γ
ν1(T̃

(1)
γ \T̃ (1)

γ,ε ∩B(o, r)) ≤ 1

γ
ν1(T

(1)
γ ∩B(o, r)) +

2r

γ
.

Using Theorem A.1, together with Lemma A.1, this yields that the family of random

variables {Xγ , γ > 0} with Xγ = ν1(T̃
(1)
γ \T̃ (1)

γ,ε ∩ B(o, r))/γ is uniformly integrable
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since ν1(T
(1)
γ ∩ B(o, r))/γ = πr2ν1(T

(1) ∩ B(o, rγ))/ν2(B(o, rγ)) converges to r2π in

L1 due to the fact the PLT T is mixing and, therefore, ergodic ([8], Theorem 12.2.IV).

Furthermore, in Lemma 4.3 we showed that the Laplace transform of Xγ converges

to 1, which implies that Xγ
P−→ 0 ([20], Theorem 5.3). Thus, applying Theorem A.1

again, we get that

lim
γ→∞

EXγ = 0 . (5.6)

This result can be used to show that ξ = 1. Suppose that ξ > 1 and let r > 2 > ε > 0

with ξ > 1 + ε. If the line Li intersects the segment L0,ε, where L0,ε = L0 ∩B(o, ε/2),

then for each y ∈ Li it holds that 0 ≤ c(y)− |y| ≤ ε since the path from y to o via the

intersection point Li∩L0,ε is not longer than |y|+ε. Thus, if |y| > 2, then (ξ−1)|y| ≥ ε

and, consequently,

∣∣c(y) − ξ|y|
∣∣ =

∣∣c(y) − |y| − (ξ − 1)|y|
∣∣ ≥ ε(|y| − 1) ≥ ε ,

which means that y ∈ T̃
(1)
γ \T̃ (1)

γ,ε . Furthermore, if Li ∩L0,ε 6= ∅, it is not difficult to see

that Li ∩B(o, r)\B(o, 2) ≥ a for some constant a > 0. These two observations lead to

Xγ =
1

γ
ν1(T̃

(1)
γ \T̃ (1)

γ,ε ∩B(o, r)) ≥ 1

γ
ν1

( ⋃

i:Li∩L0,ε 6=∅

{Li ∩B(o, r)\B(o, 2)}
)

≥ a

γ
#{Li : Li ∩ L0,ε 6= ∅}

and, since #{Li : Li ∩ L0,ε 6= ∅} ∼ Poi(2 εγ/π),

lim inf
γ→∞

EXγ ≥ lim
γ→∞

a

γ
E#{Li : Li ∩ L0,ε 6= ∅} =

2 εa

π
> 0 ,

which is a contradiction to (5.6). Thus, ξ = 1 holds. If the tessellation T = TI/TII is

a superposition/nesting such that TI is a PLT, then

1

γ
ν1(T̃

(1)
γ \T̃ (1)

γ,ε ∩B(o, r)) ≥ 1I
{o∈T̃

(1)
I,γ}

1

γ
ν1(T̃

(1)
I,γ\T̃

(1)
I,γ,ε ∩B(o, r)) ,

where T̃
(1)
I,γ denotes the part of T̃

(1)
γ which corresponds to TI . Since TI is assumed to

be a PLT, the same arguments as above can be applied to show that ξ = 1. Finally,

let T be a PDT and let N(y) denote that node of T which is closest to y ∈ R
2. It has

been shown in [4] that for any t > 0 and y ∈ ∂B(o, 1), there is a path P (ty) from N(o)

to N(ty) on T (1) with length c(P (ty)) such that almost surely

lim
t−→∞

c(P (ty))

t
=

4

π
. (5.7)
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Figure 3: Densities of C∗ if T is a PLT (together with corresponding limit distributions)

Consider the stationary point process T (1) ∩ L of intersection points {Xi}, where L =

{sy : s ∈ R} and · · · < X−1 < X0 ≤ 0 < X1 < · · · , and denote by c(Xi, Xj) the

shortest path length from Xi to Xj on T (1). Furthermore, consider the stationary

marked point process {(Xi, c(Xi, N(Xi))} and denote its typical mark by c∗N . For each

i > 0 we then have

c(X0, Xi)

|Xi −X0|
≤ c(N(o), N(Xi))

|Xi −X0|
+
c(X0, N(o))

|Xi −X0|
+
c(Xi, N(Xi))

|Xi −X0|

≤ c(P (Xi))

|Xi|
+
c(X0, N(o))

|Xi|
+
c(Xi, N(Xi))

|Xi|
.

Clearly, the second summand of the latter expression tends to 0 as i→ ∞. The same

is true for the third summand, because {(Xi, c(Xi, N(Xi))} is ergodic and E c∗N <∞.

Thus, by (5.7), we get that

lim sup
i→∞

c(X0, Xi)

|Xi −X0|
≤ 4

π
. (5.8)

On the other hand, we have P(limi→∞ c(X0, Xi)/|Xi − X0| = ξ) = 1 if and only if

P(limi→∞ c(X∗
0 , X

∗
i )/|X∗

i − X∗
0 | = ξ) = 1, where {X∗

i } is the Palm version of {Xi}.
Now, using (5.8) and (B.7), it follows that ξ ≤ 4/π.
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5.4. Some extensions

Note that the setting of Theorem 3.2 can be generalized in different ways. For

example, the statement of this theorem remains valid if instead of C∗ the typical

subscriber line length S∗ is considered, where S∗ is the shortest path length from the

origin to the nearest point XH,0 of XH , which is defined as the sum of the distance

from the origin to the nearest point of the edge set T (1) and the shortest path length

on T (1) from this point to XH,0 ([13]). Note that in this case the auxiliary results

corresponding to Lemmas 4.3 and 4.4 can be proved basically in the same way.

Furthermore, in the proof of Theorem 3.2 it is not necessary to assume that T is a

random tessellation. But it is possible to consider an arbitrary stationary and isotropic

segment process in R
d which is mixing and such that there is only one single cluster

with probability 1. This means in particular that Theorem 3.2 can be extended to

random geometric graphs.

Another kind of extensions can be obtained by relaxing the assumption that XL,n is

connected to the nearest point of XH , i.e., TH is a Voronoi tessellation. For instance,

XL,n can be connected to its k-th nearest neighbour of XH for any k ≥ 1. Then,

in Theorem 3.2 we only have to replace Z by the distance from the origin to the k-

th nearest point of a Poisson process which is distributed according to a generalized

Gamma distribution ([15, 39]). Further possible extensions include that TH is a certain

Cox-Laguerre tessellation ([22]) or an aggregated tessellation ([2, 32]).

6. Conclusion and Outlook

We consider the typical shortest path length C∗ of stochastic network models with

two hierarchy levels, where the locations of network components are modelled by Cox

processes on the edges of random tessellations. It is shown that the distribution of C∗

converges to known limit distributions for extreme cases of the model parameters, i.e.,

if a certain scaling factor κ tends to zero or infinity.

The results of the present paper have applications in the analysis of telecommuni-

cation access networks since the distribution of C∗ is closely related to cost and risk

analysis of such networks ([14]). Using the fitting techniques introduced in [12], an

optimal tessellation model can be chosen for a given set of road data. Moreover, the
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Figure 4: Densities of C∗ if T is a PVT (together with corresponding limit distributions)

scaling factor κ can be estimated. Then, on the one hand, for small values of κ the

limit distribution of C∗ is directly available and it does not depend on the type of

the optimal tessellation model. On the other hand, for large values of κ the limit

distribution of C∗ and an upper bound for this distribution is directly available if the

optimal model is PLT or PLT-superposition/nesting and PDT, respectively.

In order to get an idea how small or large the scaling factor κ should be (to replace

the distribution of C∗ by the corresponding limit distribution) and how to calculate the

constant ξ appearing in the limit distribution for C∗ as κ→ ∞, the density of C∗ can

be estimated by Monte Carlo simulation of the typical serving zone ([34]). This can

be done for PVT, PLT and PDT as well as for superpositions and nestings built from

these basic tessellation models, using simulation algorithms of the typical serving zone

introduced in [9, 11, 35, 37]. In Figures 3 and 4 estimated densities for different values

of κ are shown together with the corresponding limit distributions if the tessellation

model chosen for the underlying road system is a PLT and PVT, respectively. As can

be seen in Figure 4 (b), the density of the Wei(λπ/1.1452, 2)-distribution approximates

the density of C∗ very well for T being a PVT and κ ≥ 1000. This suggests that in

this case the constant ξ appearing in Theorem 3.2 and Corollary 5.1, respectively, is

approximately 1.145.

Furthermore, the limiting distributions derived in the present paper can be used to
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Figure 5: Densities of C∗ (together with fitted parametric densities)

choose parametric densities which can be fitted to the estimated density of C∗ for a

large range of κ. Parametric families which include both exponential distributions and

Weibull distributions turned out to be good choices, see [14]. In Figure 5 estimated

densities for different values of κ are shown together with fitted truncated Weibull

distributions. Note that these truncated Weibull distributions have two parameters

and there is a quite good fit for both tessellation models considered in Figure 5 and

for a large range of values of κ.
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Appendix A. Some mathematical background

In the proof of Lemma 4.3 given below we make use of some well-known results from

measure theory, the theory of subadditive processes, and geometric measure theory

which are briefly summarized. We start with the definition of convergence in measure

and uniform integrability which can be used to characterize L1-convergence. A family

of measurable functions {fγ , γ ≥ 1} defined on a measurable space (Ω,A, µ) and taking

values in R converges locally in µ-measure to a measurable function f : Ω → R if

lim
γ→∞

µ({|fγ − f | ≥ ε} ∩A) = 0 (A.1)

for all ε > 0 and A ∈ A with µ(A) <∞, where µ is assumed to be a σ-finite measure.

If µ is a probability measure such that (A.1) holds for each ε > 0 and A = Ω, then

one says that fγ converges in probability to f . Furthermore, if for each ε > 0 there is

a µ-integrable function g such that
∫

{|fγ |≥g}

|fγ(ω)|µ(dω) ≤ ε for all γ ≥ 1 , (A.2)

then the family {fγ , γ ≥ 1} is said to be uniformly µ-integrable. With the above defi-

nitions it is possible to characterize the L1-convergence as follows; see Theorem 2.12.4

in [6].
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Theorem A.1. A sequence of µ-integrable functions f1, f2, · · · : Ω → R converges in

L1 to a µ-integrable function f : Ω → R if and only if (i) fn converges locally in

µ-measure to f and (ii) {fn} is uniformly µ-integrable.

We still mention an elementary but useful result which immediately follows from the

definition of uniform integrability.

Lemma A.1. Let {fγ , γ ≥ 1} and {gγ , γ ≥ 1} be two families of measurable functions

on (Ω,A, µ) which satisfy that |fγ | ≤ |gγ | for all γ ≥ 1. Then {fγ , γ ≥ 1} is uniformly

µ-integrable if {gγ, γ ≥ 1} is uniformly µ-integrable.

Another useful tool is the notion of subadditivity. Let Y be a family of real-valued

random variables Y = {Yij , i, j ≥ 1, i < j} defined on some probability space (Ω,A,P).

Note that Y can be seen as a random element of some measurable space (S,B(S)) of

double-indexed sequences, where B(S) is the Borel-σ-algebra of S. Then Y is called a

subadditive process if

1. Yik ≤ Yij + Yjk for all i < j < k,

2. Y = {Yij} d
= Y′ = {Yi+1,j+1},

3. EY +
01 <∞, where Y +

01 = max{0, Y01}.

The following result is due to Kingman ([21], Theorem 1). It is called the subadditive

ergodic theorem; see also Theorem 10.22 in [20].

Theorem A.2. Let Y be a subadditive process. Then the limit

ζ = lim
j→∞

1

j
Y0j (A.3)

exists and is finite with probability one, where Eζ = infj→∞ EY0j/j. If Eζ > −∞,

then the convergence in (A.3) also holds in the L1-norm. Moreover, let IS ⊂ B(S)

be the σ-algebra of subsets of S which are invariant under the shift Y 7→ Y′, where

Y ′
ij = Yi+1,j+1, and let I = Y−1IS ⊂ A be the corresponding sub-σ-algebra of events.

Then,

ζ = lim
j→∞

1

j
E
(
Y0j | I

)
. (A.4)
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Note that a subadditive process Y is called ergodic if P(Y ∈ A) = 0 or P(Y ∈ A) = 1

for each A ∈ IS . Thus, in the ergodic case, the limit ζ considered in (A.3) and (A.4),

respectively, is almost surely constant.

Finally, we use a decomposition of the Hausdorff measure ν1 which is a special case

of the generalized Blaschke-Petkantschin formula ([18], Proposition 5.4).

Theorem A.3. Let C ⊂ R
2 be a differentiable curve and assume that

ν1({x ∈ C : Tan[C, x] = span{x}}) = 0 , (A.5)

where Tan[C, x] is the tangent at x to C and span{x} = {cx : c ∈ R} is the line

which goes through the origin o ∈ R
2 and the point x ∈ C. Then, for any measurable

g : C → [0,∞) it holds that

∫

C

g(x) ν1(dx) =

∫ 2π

0

∑

xi∈C∩L+
Φ

|xi|
sinαi

g(xi) dΦ , (A.6)

where L+
Φ is the half line of direction Φ ∈ [0, 2π) emanating from o and αi is the angle

between Tan[C, xi] and span{xi}.

Appendix B. Proof of Lemma 4.3

With the help of Theorems A.1 – A.3 stated above we are now able to prove

Lemma 4.3. Obviously, lim supγ→∞ E exp
(
− λ

γ ν1
(
T̃

(1)
γ \ T̃ (1)

γ,ε ∩ B(o, r)
))

≤ 1. Thus

it is sufficient to show that

lim inf
γ→∞

E exp
(
− λ

γ
ν1
(
T̃ (1)

γ \ T̃ (1)
γ,ε ∩B(o, r)

))
≥ 1 . (B.1)

Proof of (B.1). First recall that we can identify T̃
(1)
γ with the Palm version Λ∗

T
(1)
γ

of the stationary random measure Λ
T

(1)
γ

given by Λ
T

(1)
γ

(B) = ν1(B ∩ T (1)
γ ) for B ∈ B2

since Λ
T

(1)
γ

is the random driving measure of the Cox process XL, see [31], p. 156.

Then, using the abbreviation

h(τ (1)) = exp
(
−λ
γ
ν1(τ

(1) \ τ (1)
ε ∩B(o, r))

)
,

where τ
(1)
ε =

{
u ∈ τ (1) :

∣∣c(u)− ξ|u|
∣∣ < ε

}
and c(u) denotes the length of the shortest

path from u to the origin along the edge set τ (1) of a tessellation τ with o ∈ τ (1), we get
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from the Campbell theorem for stationary random measures ([8], Proposition 13.2.V)

that

Eh(T̃ (1)
γ ) =

1

γν2(B(o, 1/γ))
E

( ∫

T
(1)
γ ∩B(o,1/γ)

h(T (1)
γ − x)ν1(dx)

)

=
1

π
E

( ∫

T (1)∩B(o,1)

h
(
T (1)

γ − z

γ

)
ν1(dz)

)
,

where we used the substitution z = γx in the last expression bearing in mind that

(1/γ)T (1) = T
(1)
γ . Furthermore, we put T

(1)
γ,ε,z = {y ∈ T

(1)
γ : |c(y, z/γ)−ξ|y−z/γ|| < ε},

where c(y, z/γ) denotes the length of the shortest path from y to z/γ along the edges

of the considered graph. Then, for each γ ≥ 1, we get that

Eh
(
T̃ (1)

γ

)
=

1

π
E

( ∫

T (1)∩B(o,1)

exp
(
− λ

γ
ν1
(
T (1)

γ \T (1)
γ,ε,z ∩B(z/γ, r)

))
ν1(dz)

)

≥ 1

π
E

(
ν1
(
T (1) ∩B(o, 1)

)
inf

z∈T (1)∩B(o,1)
exp

(
− λ

γ
ν1
(
T (1)

γ \T (1)
γ,ε,z ∩B(z/γ, r)

)))

=
1

π
E

(
ν1
(
T (1) ∩B(o, 1)

)
exp

(
− sup

z∈T (1)∩B(o,1)

λ

γ
ν1
(
T (1)

γ \T (1)
γ,ε,z ∩B(z/γ, r)

)))

≥ 1

π
E

(
ν1
(
T (1) ∩B(o, 1)

)
exp

(
− sup

z∈T (1)∩B(o,1)

λ

γ
ν1
(
T (1)

γ \T (1)
γ,ε,z ∩B(o, r + 1)

)))
.

Now, in order to prove (B.1), it is sufficient to show that

Xγ
L1

→ 0 for γ → ∞, (B.2)

where Xγ = supz∈T (1)∩B(o,1)
1
γ ν1

(
T

(1)
γ \T (1)

γ,ε,z ∩ B(o, r + 1)
)
. To see this, note first

that (B.2) implies that Xγ converges in probability to 0. Thus, the random variable

Yγ = exp(−λXγ)ν1(T
(1)∩B(o, 1)) converges in probability to ν1

(
T (1)∩B(o, 1)

)
if (B.2)

holds. Moreover, Yγ ≤ ν1(T
(1)∩B(o, 1)) for all γ ≥ 1 and Eν1(T

(1)∩B(o, 1)) = π <∞,

which means that {Yγ , γ ≥ 1} is uniformly integrable. Hence, Theorem A.1 yields

that Yγ converges in L1 to ν1
(
T (1) ∩ B(o, 1)

)
and, in particular, limγ→∞ 1/πEYγ =

1/πEν1
(
T (1) ∩ B(o, 1)

)
= 1 if (B.2) holds. Thus, (B.1) follows if we can show that

(B.2) is true.

Proof of (B.2). Since Xγ ≥ 0 it suffices to show that EXγ → 0. Furthermore, note

that with probability 1 the segments of the segment system T
(1)
γ ∩B(o, r+1) fulfill the

conditions of Theorem A.3, since none of these segments ,,points” to the origin. Thus,
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using Theorem A.3 we get that

EXγ = E

(
sup

z∈T (1)∩B(o,1)

1

γ

∫

T
(1)
γ ∩B(o,r+1)

1I[ε,∞)

(∣∣c(y, z
γ

) − ξ|y − z

γ
|
∣∣
)
ν1(dy)

)

= E

( 1

γ
sup

z∈T (1)∩B(o,1)

∫ 2π

0

∑

Xi∈T (1)
γ ∩L+

Φ :

|Xi|≤r+1

|Xi|
sinαi

1I[ε,∞)

(∣∣c(Xi,
z

γ
) − ξ|Xi −

z

γ
|
∣∣
)
dΦ
)

≤ r + 1

γ
E

(∫ 2π

0

sup
z∈T (1)∩B(o,1)

∑

Xi∈T (1)
γ ∩L+

Φ :

|Xi|≤r+1

1

sinαi
1I[ε,∞)

(∣∣c(Xi,
z

γ
) − ξ|Xi −

z

γ
|
∣∣
)
dΦ
)

=
2π(r + 1)

γ
E

(
sup

z∈T (1)∩B(o,1)

∑

Xi∈T (1)
γ ∩L+:

|Xi|≤r+1

1

sinαi
1I[ε,∞)

(∣∣c(Xi,
z

γ
) − ξ|Xi −

z

γ
|
∣∣
))

= 2π(r + 1)Egγ

(
T (1)

)
,

where in the last but one line we used Fubini’s theorem and the isotropy of T
(1)
γ ,

denoting by L+ = L+
0 the half line with direction Φ = 0, and in the last expression we

used the abbreviation

gγ

(
T (1)

)
=

1

γ
sup

z∈T (1)∩B(o,1)

∑

Xi∈T (1)
γ ∩L+:

|Xi|≤r+1

1

sinαi
1I[ε,∞)

(∣∣c(Xi,
z

γ
) − ξ|Xi −

z

γ
|
∣∣
)
. (B.3)

Since the point process T (1) ∩ R is stationary with intensity 2/π ([30], Theorem 4.5.3)

we can apply the inversion formula for Palm distributions of stationary point processes

on R; see Proposition 11.3 (iii) in [20]. Thus, if T (1)∗ denotes the Palm version of T (1)

with respect to the point process T (1) ∩ R, we get that

Egγ

(
T (1)

)
=

2

π
E

( ∫ ∞

0

1I[0,X∗

1 ](x) gγ

(
T (1)∗ − x

)
dx
)
,

where the points of {X∗
i } = T (1)∗ ∩ R are numbered in ascending order such that

. . . < X∗
−1 < X∗

0 = 0 < X∗
1 < X∗

2 < . . .. Thus, in order to prove (B.2) it suffices to

show that

lim
γ→∞

E

( ∫ ∞

0

1I[0,X∗

1 ](x) gγ

(
T (1)∗ − x

)
dx
)

= 0 , (B.4)

where the function gγ : F → [0,∞) is given in (B.3). The proof of (B.4) is subdivided

into two main steps. First, we show that

lim
γ→∞

g̃γ

(
x, T (1)∗

)
= 0 (B.5)
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almost everywhere with respect to the product measure ν1 ⊗ P
∗, where we used

the abbreviating notation g̃γ(x, T (1)∗) = 1I[0,X∗

1 ](x) gγ(T (1)∗ − x) and P
∗ denotes the

distribution of T (1)∗. Then, we show that {g̃γ , γ > 0} is uniformly (ν1⊗P
∗)-integrable.

By means of Theorem A.1, this implies that (B.4) holds.

Proof of (B.5). Note that for each x ∈ [0, X∗
1 ] we get

gγ

(
T (1)∗ − x

)

≤ 1

γ
sup

z∈(T (1)∗−x)∩B(o,1)

∑

Xi∈(T (1)∗
γ − x

γ
)∩L+:

|Xi|≤r+1

1

sinαi
1I[ε,∞)

(∣∣c(Xi,
z

γ
) − ξ|Xi −

z

γ
|
∣∣
)

=
1

γ
sup

z∈T (1)∗∩B(x,1)

∑

X∗

i ∈T (1)∗∩(L++x):
X∗

i ∈B(x,(r+1)γ)

1

sinαi
1I[ε,∞)

(1

γ

∣∣c(X∗
i , z) − ξ|X∗

i − z|
∣∣
)

≤ 1

γ

∑

X∗

i ∈T (1)∗∩(L++x):
X∗

i ∈B(x,(r+1)γ)

1

sinαi
sup

z∈T (1)∗∩B(x,1)

1I[ε,∞)

(1

γ

∣∣c(X∗
i , z) − ξ|X∗

i − z|
∣∣
)
.

Thus,

gγ

(
T (1)∗ − x

)

≤ 1

γ

∑

X∗

i ∈T (1)∗∩L+:
|X∗

i |≤(r+a)γ

1

sinαi
sup

z∈T (1)∗∩B(o,a)

1I[ε,∞)

(1

γ

∣∣c(X∗
i , z) − ξ|X∗

i − z|
∣∣
)

=
1

γ

∑

X∗

i ∈T (1)∗∩L+:
|X∗

i |≤(r+a)γ

1

sinαi
1I[ε,∞)

( 1

γ
sup

z∈T (1)∗∩B(o,a)

∣∣c(X∗
i , z) − ξ|X∗

i − z|
∣∣
)
,

where a = 1 +X∗
1 . Furthermore, we have

1

γ
sup

z∈T (1)∗∩B(o,a)

∣∣c(X∗
i , z) − ξ|X∗

i − z|
∣∣ ≤ 1

γ

(
c(o,X∗

i ) − ξ|X∗
i |
)

+
1

γ

(
sup

z∈T (1)∗∩B(o,a)

c(z, o) + ξa

)
,

since c(X∗
i , o) − c(o, z) ≤ c(X∗

i , z) ≤ c(X∗
i , o) + c(o, z) and ξ|X∗

i | − ξa ≤ ξ|X∗
i − z| ≤

ξ|X∗
i |+ ξa for all i ≥ 1 and z ∈ T (1)∗ ∩B(o, a). Clearly, the second term of this upper

bound tends to zero P
∗-almost surely as γ → ∞. Thus in order to show that (B.5)

holds, it suffices to prove that P
∗-almost surely

1

γ

(
c(o,X∗

i ) − ξX∗
i

)
∈
(
− ε

2
,
ε

2

)
(B.6)
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for all sufficiently large i ≥ 1 such that X∗
i ≤ (r + a)γ.

Proof of (B.6). Note that X = {|X∗
i −X∗

j |, i, j ≥ 1, i < j} is an additive process,

because |X∗
i − X∗

k | = |X∗
i − X∗

j | + |X∗
j − X∗

k | for i < j < k. Since T (1)∗ ∩ R is

cycle-stationary (see e.g. [33]), we have that {|X∗
i −X∗

j |}
d
= {|X∗

i+1 −X∗
j+1|}, where

0 < EX∗
1 < ∞. Thus, by Theorem A.2 we get that the finite limit limi→∞X∗

i /i = ζX

exists P
∗-almost surely. Furthermore, consider the family Y = {Yij , i, j ≥ 1, i < j}

of non-negative random variables with Yij = c(X∗
i , X

∗
j ), where c(X∗

i , X
∗
j ) denotes the

shortest path length fromX∗
i to X∗

j on T (1)∗. Then, it is easy to see that Yik ≤ Yij+Yjk

for i < j < k. By the cycle-stationarity of T (1)∗ ∩ R, we have that {Yij} d
= {Yi+1,j+1},

where EY01 = Ec(X∗
0 , X

∗
1 ) <∞ holds by condition (3.3); see the next paragraph below.

Thus Y is a subadditive process and we can again apply Theorem A.2 to get that the

finite limit limj→∞ c(X∗
0 , X

∗
j )/j = ζY exists P

∗-almost surely. Since X and Y are

ergodic (see the paragraphs below), the limits ζX and ζY are constant. Noticing that

0 < EX∗
1 = ζX ≤ ζY <∞, this gives that

lim
j→∞

c(o,X∗
j )

X∗
j

= lim
j→∞

j

X∗
j

c(X∗
0 , X

∗
j )

j
= ξ , (B.7)

where ξ = ζY/ζX ∈ [1,∞). Now let ε̃ > 0 such that ε̃(r+a) < ε/2. Then (B.7) implies

that with probability 1

c(o,X∗
i )

X∗
i

− ξ ∈ (−ε̃, ε̃)

for all i sufficiently large and, therefore,

1

γ

(
c(o,X∗

i ) − ξX∗
i

)
∈
(
− ε

2
,
ε

2

)

if i is sufficiently large and X∗
i /γ ≤ r + a.

Proof of Ec(X∗
0 , X

∗
1 )<∞. Consider the stationary marked point process {(Xn,Ξ

+
n )},

where {Xn} = T (1) ∩ R is the point process of intersection points of the edge set T (1)

with the line R, and Ξ+
n the cell of T on the right of Xn. Let λ+ denote the intensity

of the marked point process {(Xn,Ξ
+
n )}, and Ξ+∗ its typical mark. Then, by the
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definition of the Palm mark distribution (see e.g. Section 2.2), we get that

E c(X∗
0 , X

∗
1 ) ≤ E ν1(∂Ξ+∗) =

1

λ+
E

∑

Xi∈T (1)∩[0,1)

ν1(∂Ξ+
i )

=
1

λ+
E

∑

Ξi∈T

1I{∂+Ξi∩[0,1) 6=∅}ν1(∂Ξi) ,

where ∂+Ξ denotes that part of the boundary of Ξ with outer unit normal vector in

[π/2, 3π/2). Thus, applying Campbell’s theorem to the latter expression, we have

Ec(X∗
0 , X

∗
1 ) ≤ λT

λ+
Eν1(∂Ξ∗)

∫

R2

1I{∂+Ξ∗+x∩[0,1) 6=∅}ν2(dx)

=
λT

λ+
Eν1(∂Ξ∗)ν2([0, 1) ⊕ ∂+Ξ∗) ,

where λT = 1/E ν2(Ξ
∗). Since ν2([0, 1)⊕∂+Ξ∗) ≤ a ν1(∂Ξ∗) for some constant a <∞,

this implies that E c(X∗
0 , X

∗
1 ) ≤ (aλT /λ

+) Eν2
1 (∂Ξ∗). Thus, the assertion is shown.

Ergodicity. We only prove that X is ergodic, because the ergodicity of Y can be

shown in the same way. Recall that by IS ⊂ B(S) we denote the σ-algebra of those

subsets of the space S of double-indexed sequences, which are invariant under the shift

{|X∗
i − X∗

j |} 7−→ {|X∗
i+1 − X∗

j+1|}. Furthermore, note that X = h(T
(1)∗
γ ) for some

measurable function h : F → S, where for any tessellation τ in R
2 and A ∈ IS , we

have h(τ (1)) ∈ A if and only if h(τ (1) − x) ∈ A for all x ∈ [0,∞). Thus, from the

definition of the Palm distribution of the stationary point process {Xi} = T (1) ∩ R

with intensity 2/π, we get for any A ∈ IS that

P(X ∈ A) = P(h(T (1)∗) ∈ A)

=
π

2
E

∑

Xi∈T (1)∩B(o,1)∩L+

1IA(h(T (1) −Xi))

=
π

2
E
(
1IA(h(T (1))) #{Xi ∈ T (1) ∩B(o, 1) ∩ L+}

)

=
π

2
E
(
1Ih−1(A)(T

(1)) #{Xi ∈ T (1) ∩B(o, 1) ∩ L+}
)
.

On the other hand, since T1 is mixing and h−1(A) = h−1(A) + x for any A ∈ IS and

x ∈ L+, we have

P
(
T (1) ∈ h−1(A)

)
= lim

|x|→∞,x∈L+
P
(
T (1) ∈ h−1(A), T (1) − x ∈ h−1(A)

)

= P
(
T (1) ∈ h−1(A)

)2
,
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which implies that P
(
T (1)∈ h−1(A)

)
= 0 or P

(
T (1)∈ h−1(A)

)
= 1. Thus, altogether,

we have

P(X ∈ A) = P
(
T (1) ∈ h−1(A)

) π
2

E #{Xi ∈ T (1) ∩B(o, 1) ∩ L+}

= P
(
T (1) ∈ h−1(A)

)

and, consequently, P(X ∈ A) = 0 or P(X ∈ A) = 1 for any A ∈ IS , which means that

X is ergodic.

Uniform integrability. Finally, we show that the family {g̃γ , γ > 0} considered

in (B.5) is uniformly (ν1 ⊗ P
∗)-integrable. From the ergodic theorem for stationary

marked point processes ([8], Theorem 12.2.IV), we get that

lim
γ→∞

1

γ

∑

Xi∈T (1)∩L+:
|Xi|≤(r+1)γ

1

sinαi
= (r + 1) lim

γ→∞

1

(r + 1)γ

∑

Xi∈T (1)∩L+:
|Xi|≤(r+1)γ

1

sinαi

= (r + 1) E(sinα∗)−1

almost surely and in L1 since the point process T (1) ∩ L marked with the intersection

angles is ergodic, which can be shown in the same way as the ergodicity of X. Here

α∗ denotes the typical intersection angle which is distributed according to the density

fα∗(α) = sin(α)/2 for 0 ≤ α < π, see e.g. [31], p. 288. This yields E(sinα∗)−1 =

π/2 <∞. Thus

0 = lim
γ→∞

E

∣∣∣∣
1

γ

∑

Xi∈T (1)∩L+:
|Xi|≤(r+1)γ

1

sinαi
− (r + 1) E(sinα∗)−1

∣∣∣∣

= lim
γ→∞

2

π
E

∫

R

1I[0,X∗

1 ](x)

∣∣∣∣
1

γ

∑

Xi∈(T (1)∗−x)∩L+:
|Xi|≤(r+1)γ

1

sinαi
− (r + 1) E(sinα∗)−1

∣∣∣∣ dx ,

where in the last equality we used the inversion formula for Palm distributions of

stationary marked point processes on R; see Proposition 11.3 (iii) in [20]. In other

words, we showed that

1I[0,X∗

1 ](x)
1

γ

∑

Xi∈(T (1)∗−x)∩L+:
|Xi|≤(r+1)γ

1

sinαi
−→ (r + 1)1I[0,X∗

1 ](x) E(sinα∗)−1
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in L1(ν1 ⊗ P
∗) as γ → ∞. This means in particular that the family {hγ , γ > 0} with

hγ(x, T (1)∗) = 1I[0,X∗

1 ](x)
1

γ

∑

Xi∈(T (1)∗−x)∩L+:
|Xi|≤(r+1)γ

1

sinαi

is uniformly (ν1 ⊗ P
∗)-integrable; see Theorem A.1. Furthermore, we have that

1I[0,X∗

1 ](x)gγ(T (1)∗ − x) ≤ 1I[0,X∗

1 ](x)
1

γ

∑

Xi∈(T (1)∗−x)∩L+:
|Xi|≤(r+1)γ

1

sinαi
.

Thus Lemma A.1 yields that the family {g̃γ, γ > 0} considered in (B.5) is uniformly

(ν1 ⊗ P
∗)-integrable.


